mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 15:04:27 +08:00
269cb04b60
Right now the regulator helpers expect raw register values for the range selectors. This is different from the voltage selectors, which are normalized as bitfield values. This leads to a bit of confusion. Also, raw values are harder to copy from datasheets or match up with them, as datasheets will typically have bitfield values. Make the helpers expect bitfield values, and convert existing users. The field in regulator_desc is renamed to |linear_range_selectors_bitfield|. This is intended to cause drivers added in the same merge window and out-of-tree drivers using the incorrect variable and values to break, preventing incorrect values being used on actual hardware and potentially producing magic smoke. Also include bitops.h explicitly for ffs(), and reorder the header include statements. While at it, also replace module.h with export.h, since the only use is EXPORT_SYMBOL_GPL. Signed-off-by: Chen-Yu Tsai <wenst@chromium.org> Link: https://lore.kernel.org/r/20230714081408.274567-1-wenst@chromium.org Signed-off-by: Mark Brown <broonie@kernel.org>
987 lines
26 KiB
C
987 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
//
|
|
// helpers.c -- Voltage/Current Regulator framework helper functions.
|
|
//
|
|
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
|
|
// Copyright 2008 SlimLogic Ltd.
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/regulator/driver.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/**
|
|
* regulator_is_enabled_regmap - standard is_enabled() for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* enable_reg and enable_mask fields in their descriptor and then use
|
|
* this as their is_enabled operation, saving some code.
|
|
*/
|
|
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
val &= rdev->desc->enable_mask;
|
|
|
|
if (rdev->desc->enable_is_inverted) {
|
|
if (rdev->desc->enable_val)
|
|
return val != rdev->desc->enable_val;
|
|
return val == 0;
|
|
} else {
|
|
if (rdev->desc->enable_val)
|
|
return val == rdev->desc->enable_val;
|
|
return val != 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
|
|
|
|
/**
|
|
* regulator_enable_regmap - standard enable() for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* enable_reg and enable_mask fields in their descriptor and then use
|
|
* this as their enable() operation, saving some code.
|
|
*/
|
|
int regulator_enable_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (rdev->desc->enable_is_inverted) {
|
|
val = rdev->desc->disable_val;
|
|
} else {
|
|
val = rdev->desc->enable_val;
|
|
if (!val)
|
|
val = rdev->desc->enable_mask;
|
|
}
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
|
|
rdev->desc->enable_mask, val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_enable_regmap);
|
|
|
|
/**
|
|
* regulator_disable_regmap - standard disable() for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* enable_reg and enable_mask fields in their descriptor and then use
|
|
* this as their disable() operation, saving some code.
|
|
*/
|
|
int regulator_disable_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (rdev->desc->enable_is_inverted) {
|
|
val = rdev->desc->enable_val;
|
|
if (!val)
|
|
val = rdev->desc->enable_mask;
|
|
} else {
|
|
val = rdev->desc->disable_val;
|
|
}
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
|
|
rdev->desc->enable_mask, val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_disable_regmap);
|
|
|
|
static int regulator_range_selector_to_index(struct regulator_dev *rdev,
|
|
unsigned int rval)
|
|
{
|
|
int i;
|
|
|
|
if (!rdev->desc->linear_range_selectors_bitfield)
|
|
return -EINVAL;
|
|
|
|
rval &= rdev->desc->vsel_range_mask;
|
|
rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
|
|
|
|
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
|
|
if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
|
|
return i;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O and use pickable
|
|
* ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
|
|
* fields in their descriptor and then use this as their get_voltage_vsel
|
|
* operation, saving some code.
|
|
*/
|
|
int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int r_val;
|
|
int range;
|
|
unsigned int val;
|
|
int ret;
|
|
unsigned int voltages = 0;
|
|
const struct linear_range *r = rdev->desc->linear_ranges;
|
|
|
|
if (!r)
|
|
return -EINVAL;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
val &= rdev->desc->vsel_mask;
|
|
val >>= ffs(rdev->desc->vsel_mask) - 1;
|
|
|
|
range = regulator_range_selector_to_index(rdev, r_val);
|
|
if (range < 0)
|
|
return -EINVAL;
|
|
|
|
voltages = linear_range_values_in_range_array(r, range);
|
|
|
|
return val + voltages;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
|
|
|
|
/**
|
|
* regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
|
|
*
|
|
* @rdev: regulator to operate on
|
|
* @sel: Selector to set
|
|
*
|
|
* Regulators that use regmap for their register I/O and use pickable
|
|
* ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
|
|
* fields in their descriptor and then use this as their set_voltage_vsel
|
|
* operation, saving some code.
|
|
*/
|
|
int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
|
|
unsigned int sel)
|
|
{
|
|
unsigned int range;
|
|
int ret, i;
|
|
unsigned int voltages_in_range = 0;
|
|
|
|
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
|
|
const struct linear_range *r;
|
|
|
|
r = &rdev->desc->linear_ranges[i];
|
|
voltages_in_range = linear_range_values_in_range(r);
|
|
|
|
if (sel < voltages_in_range)
|
|
break;
|
|
sel -= voltages_in_range;
|
|
}
|
|
|
|
if (i == rdev->desc->n_linear_ranges)
|
|
return -EINVAL;
|
|
|
|
sel <<= ffs(rdev->desc->vsel_mask) - 1;
|
|
sel += rdev->desc->linear_ranges[i].min_sel;
|
|
|
|
range = rdev->desc->linear_range_selectors_bitfield[i];
|
|
range <<= ffs(rdev->desc->vsel_mask) - 1;
|
|
|
|
if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
|
|
ret = regmap_update_bits(rdev->regmap,
|
|
rdev->desc->vsel_reg,
|
|
rdev->desc->vsel_range_mask |
|
|
rdev->desc->vsel_mask, sel | range);
|
|
} else {
|
|
ret = regmap_update_bits(rdev->regmap,
|
|
rdev->desc->vsel_range_reg,
|
|
rdev->desc->vsel_range_mask, range);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
|
|
rdev->desc->vsel_mask, sel);
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rdev->desc->apply_bit)
|
|
ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
|
|
rdev->desc->apply_bit,
|
|
rdev->desc->apply_bit);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
|
|
|
|
/**
|
|
* regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* vsel_reg and vsel_mask fields in their descriptor and then use this
|
|
* as their get_voltage_vsel operation, saving some code.
|
|
*/
|
|
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
val &= rdev->desc->vsel_mask;
|
|
val >>= ffs(rdev->desc->vsel_mask) - 1;
|
|
|
|
return val;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
|
|
|
|
/**
|
|
* regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
* @sel: Selector to set
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* vsel_reg and vsel_mask fields in their descriptor and then use this
|
|
* as their set_voltage_vsel operation, saving some code.
|
|
*/
|
|
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
|
|
{
|
|
int ret;
|
|
|
|
sel <<= ffs(rdev->desc->vsel_mask) - 1;
|
|
|
|
ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
|
|
rdev->desc->vsel_mask, sel);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rdev->desc->apply_bit)
|
|
ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
|
|
rdev->desc->apply_bit,
|
|
rdev->desc->apply_bit);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
|
|
|
|
/**
|
|
* regulator_map_voltage_iterate - map_voltage() based on list_voltage()
|
|
*
|
|
* @rdev: Regulator to operate on
|
|
* @min_uV: Lower bound for voltage
|
|
* @max_uV: Upper bound for voltage
|
|
*
|
|
* Drivers implementing set_voltage_sel() and list_voltage() can use
|
|
* this as their map_voltage() operation. It will find a suitable
|
|
* voltage by calling list_voltage() until it gets something in bounds
|
|
* for the requested voltages.
|
|
*/
|
|
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int best_val = INT_MAX;
|
|
int selector = 0;
|
|
int i, ret;
|
|
|
|
/* Find the smallest voltage that falls within the specified
|
|
* range.
|
|
*/
|
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
|
ret = rdev->desc->ops->list_voltage(rdev, i);
|
|
if (ret < 0)
|
|
continue;
|
|
|
|
if (ret < best_val && ret >= min_uV && ret <= max_uV) {
|
|
best_val = ret;
|
|
selector = i;
|
|
}
|
|
}
|
|
|
|
if (best_val != INT_MAX)
|
|
return selector;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
|
|
|
|
/**
|
|
* regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
|
|
*
|
|
* @rdev: Regulator to operate on
|
|
* @min_uV: Lower bound for voltage
|
|
* @max_uV: Upper bound for voltage
|
|
*
|
|
* Drivers that have ascendant voltage list can use this as their
|
|
* map_voltage() operation.
|
|
*/
|
|
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
|
ret = rdev->desc->ops->list_voltage(rdev, i);
|
|
if (ret < 0)
|
|
continue;
|
|
|
|
if (ret > max_uV)
|
|
break;
|
|
|
|
if (ret >= min_uV && ret <= max_uV)
|
|
return i;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
|
|
|
|
/**
|
|
* regulator_map_voltage_linear - map_voltage() for simple linear mappings
|
|
*
|
|
* @rdev: Regulator to operate on
|
|
* @min_uV: Lower bound for voltage
|
|
* @max_uV: Upper bound for voltage
|
|
*
|
|
* Drivers providing min_uV and uV_step in their regulator_desc can
|
|
* use this as their map_voltage() operation.
|
|
*/
|
|
int regulator_map_voltage_linear(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
int ret, voltage;
|
|
|
|
/* Allow uV_step to be 0 for fixed voltage */
|
|
if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
|
|
if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
|
|
return 0;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!rdev->desc->uV_step) {
|
|
BUG_ON(!rdev->desc->uV_step);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (min_uV < rdev->desc->min_uV)
|
|
min_uV = rdev->desc->min_uV;
|
|
|
|
ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret += rdev->desc->linear_min_sel;
|
|
|
|
/* Map back into a voltage to verify we're still in bounds */
|
|
voltage = rdev->desc->ops->list_voltage(rdev, ret);
|
|
if (voltage < min_uV || voltage > max_uV)
|
|
return -EINVAL;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
|
|
|
|
/**
|
|
* regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
|
|
*
|
|
* @rdev: Regulator to operate on
|
|
* @min_uV: Lower bound for voltage
|
|
* @max_uV: Upper bound for voltage
|
|
*
|
|
* Drivers providing linear_ranges in their descriptor can use this as
|
|
* their map_voltage() callback.
|
|
*/
|
|
int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
const struct linear_range *range;
|
|
int ret = -EINVAL;
|
|
unsigned int sel;
|
|
bool found;
|
|
int voltage, i;
|
|
|
|
if (!rdev->desc->n_linear_ranges) {
|
|
BUG_ON(!rdev->desc->n_linear_ranges);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
|
|
range = &rdev->desc->linear_ranges[i];
|
|
|
|
ret = linear_range_get_selector_high(range, min_uV, &sel,
|
|
&found);
|
|
if (ret)
|
|
continue;
|
|
ret = sel;
|
|
|
|
/*
|
|
* Map back into a voltage to verify we're still in bounds.
|
|
* If we are not, then continue checking rest of the ranges.
|
|
*/
|
|
voltage = rdev->desc->ops->list_voltage(rdev, sel);
|
|
if (voltage >= min_uV && voltage <= max_uV)
|
|
break;
|
|
}
|
|
|
|
if (i == rdev->desc->n_linear_ranges)
|
|
return -EINVAL;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
|
|
|
|
/**
|
|
* regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
|
|
*
|
|
* @rdev: Regulator to operate on
|
|
* @min_uV: Lower bound for voltage
|
|
* @max_uV: Upper bound for voltage
|
|
*
|
|
* Drivers providing pickable linear_ranges in their descriptor can use
|
|
* this as their map_voltage() callback.
|
|
*/
|
|
int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV)
|
|
{
|
|
const struct linear_range *range;
|
|
int ret = -EINVAL;
|
|
int voltage, i;
|
|
unsigned int selector = 0;
|
|
|
|
if (!rdev->desc->n_linear_ranges) {
|
|
BUG_ON(!rdev->desc->n_linear_ranges);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
|
|
int linear_max_uV;
|
|
bool found;
|
|
unsigned int sel;
|
|
|
|
range = &rdev->desc->linear_ranges[i];
|
|
linear_max_uV = linear_range_get_max_value(range);
|
|
|
|
if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
|
|
selector += linear_range_values_in_range(range);
|
|
continue;
|
|
}
|
|
|
|
ret = linear_range_get_selector_high(range, min_uV, &sel,
|
|
&found);
|
|
if (ret) {
|
|
selector += linear_range_values_in_range(range);
|
|
continue;
|
|
}
|
|
|
|
ret = selector + sel - range->min_sel;
|
|
|
|
voltage = rdev->desc->ops->list_voltage(rdev, ret);
|
|
|
|
/*
|
|
* Map back into a voltage to verify we're still in bounds.
|
|
* We may have overlapping voltage ranges. Hence we don't
|
|
* exit but retry until we have checked all ranges.
|
|
*/
|
|
if (voltage < min_uV || voltage > max_uV)
|
|
selector += linear_range_values_in_range(range);
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (i == rdev->desc->n_linear_ranges)
|
|
return -EINVAL;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
|
|
|
|
/**
|
|
* regulator_desc_list_voltage_linear - List voltages with simple calculation
|
|
*
|
|
* @desc: Regulator desc for regulator which volatges are to be listed
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* Regulators with a simple linear mapping between voltages and
|
|
* selectors can set min_uV and uV_step in the regulator descriptor
|
|
* and then use this function prior regulator registration to list
|
|
* the voltages. This is useful when voltages need to be listed during
|
|
* device-tree parsing.
|
|
*/
|
|
int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
|
|
unsigned int selector)
|
|
{
|
|
if (selector >= desc->n_voltages)
|
|
return -EINVAL;
|
|
|
|
if (selector < desc->linear_min_sel)
|
|
return 0;
|
|
|
|
selector -= desc->linear_min_sel;
|
|
|
|
return desc->min_uV + (desc->uV_step * selector);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
|
|
|
|
/**
|
|
* regulator_list_voltage_linear - List voltages with simple calculation
|
|
*
|
|
* @rdev: Regulator device
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* Regulators with a simple linear mapping between voltages and
|
|
* selectors can set min_uV and uV_step in the regulator descriptor
|
|
* and then use this function as their list_voltage() operation,
|
|
*/
|
|
int regulator_list_voltage_linear(struct regulator_dev *rdev,
|
|
unsigned int selector)
|
|
{
|
|
return regulator_desc_list_voltage_linear(rdev->desc, selector);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
|
|
|
|
/**
|
|
* regulator_list_voltage_pickable_linear_range - pickable range list voltages
|
|
*
|
|
* @rdev: Regulator device
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* list_voltage() operation, intended to be used by drivers utilizing pickable
|
|
* ranges helpers.
|
|
*/
|
|
int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
|
|
unsigned int selector)
|
|
{
|
|
const struct linear_range *range;
|
|
int i;
|
|
unsigned int all_sels = 0;
|
|
|
|
if (!rdev->desc->n_linear_ranges) {
|
|
BUG_ON(!rdev->desc->n_linear_ranges);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
|
|
unsigned int sel_indexes;
|
|
|
|
range = &rdev->desc->linear_ranges[i];
|
|
|
|
sel_indexes = linear_range_values_in_range(range) - 1;
|
|
|
|
if (all_sels + sel_indexes >= selector) {
|
|
selector -= all_sels;
|
|
/*
|
|
* As we see here, pickable ranges work only as
|
|
* long as the first selector for each pickable
|
|
* range is 0, and the each subsequent range for
|
|
* this 'pick' follow immediately at next unused
|
|
* selector (Eg. there is no gaps between ranges).
|
|
* I think this is fine but it probably should be
|
|
* documented. OTOH, whole pickable range stuff
|
|
* might benefit from some documentation
|
|
*/
|
|
return range->min + (range->step * selector);
|
|
}
|
|
|
|
all_sels += (sel_indexes + 1);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
|
|
|
|
/**
|
|
* regulator_desc_list_voltage_linear_range - List voltages for linear ranges
|
|
*
|
|
* @desc: Regulator desc for regulator which volatges are to be listed
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* Regulators with a series of simple linear mappings between voltages
|
|
* and selectors who have set linear_ranges in the regulator descriptor
|
|
* can use this function prior regulator registration to list voltages.
|
|
* This is useful when voltages need to be listed during device-tree
|
|
* parsing.
|
|
*/
|
|
int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
|
|
unsigned int selector)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
BUG_ON(!desc->n_linear_ranges);
|
|
|
|
ret = linear_range_get_value_array(desc->linear_ranges,
|
|
desc->n_linear_ranges, selector,
|
|
&val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return val;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
|
|
|
|
/**
|
|
* regulator_list_voltage_linear_range - List voltages for linear ranges
|
|
*
|
|
* @rdev: Regulator device
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* Regulators with a series of simple linear mappings between voltages
|
|
* and selectors can set linear_ranges in the regulator descriptor and
|
|
* then use this function as their list_voltage() operation,
|
|
*/
|
|
int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
|
|
unsigned int selector)
|
|
{
|
|
return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
|
|
|
|
/**
|
|
* regulator_list_voltage_table - List voltages with table based mapping
|
|
*
|
|
* @rdev: Regulator device
|
|
* @selector: Selector to convert into a voltage
|
|
*
|
|
* Regulators with table based mapping between voltages and
|
|
* selectors can set volt_table in the regulator descriptor
|
|
* and then use this function as their list_voltage() operation.
|
|
*/
|
|
int regulator_list_voltage_table(struct regulator_dev *rdev,
|
|
unsigned int selector)
|
|
{
|
|
if (!rdev->desc->volt_table) {
|
|
BUG_ON(!rdev->desc->volt_table);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (selector >= rdev->desc->n_voltages)
|
|
return -EINVAL;
|
|
if (selector < rdev->desc->linear_min_sel)
|
|
return 0;
|
|
|
|
return rdev->desc->volt_table[selector];
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
|
|
|
|
/**
|
|
* regulator_set_bypass_regmap - Default set_bypass() using regmap
|
|
*
|
|
* @rdev: device to operate on.
|
|
* @enable: state to set.
|
|
*/
|
|
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (enable) {
|
|
val = rdev->desc->bypass_val_on;
|
|
if (!val)
|
|
val = rdev->desc->bypass_mask;
|
|
} else {
|
|
val = rdev->desc->bypass_val_off;
|
|
}
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
|
|
rdev->desc->bypass_mask, val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
|
|
|
|
/**
|
|
* regulator_set_soft_start_regmap - Default set_soft_start() using regmap
|
|
*
|
|
* @rdev: device to operate on.
|
|
*/
|
|
int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = rdev->desc->soft_start_val_on;
|
|
if (!val)
|
|
val = rdev->desc->soft_start_mask;
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
|
|
rdev->desc->soft_start_mask, val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
|
|
|
|
/**
|
|
* regulator_set_pull_down_regmap - Default set_pull_down() using regmap
|
|
*
|
|
* @rdev: device to operate on.
|
|
*/
|
|
int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = rdev->desc->pull_down_val_on;
|
|
if (!val)
|
|
val = rdev->desc->pull_down_mask;
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
|
|
rdev->desc->pull_down_mask, val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
|
|
|
|
/**
|
|
* regulator_get_bypass_regmap - Default get_bypass() using regmap
|
|
*
|
|
* @rdev: device to operate on.
|
|
* @enable: current state.
|
|
*/
|
|
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
|
|
{
|
|
unsigned int val;
|
|
unsigned int val_on = rdev->desc->bypass_val_on;
|
|
int ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
if (!val_on)
|
|
val_on = rdev->desc->bypass_mask;
|
|
|
|
*enable = (val & rdev->desc->bypass_mask) == val_on;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
|
|
|
|
/**
|
|
* regulator_set_active_discharge_regmap - Default set_active_discharge()
|
|
* using regmap
|
|
*
|
|
* @rdev: device to operate on.
|
|
* @enable: state to set, 0 to disable and 1 to enable.
|
|
*/
|
|
int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
|
|
bool enable)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (enable)
|
|
val = rdev->desc->active_discharge_on;
|
|
else
|
|
val = rdev->desc->active_discharge_off;
|
|
|
|
return regmap_update_bits(rdev->regmap,
|
|
rdev->desc->active_discharge_reg,
|
|
rdev->desc->active_discharge_mask, val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
|
|
|
|
/**
|
|
* regulator_set_current_limit_regmap - set_current_limit for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
* @min_uA: Lower bound for current limit
|
|
* @max_uA: Upper bound for current limit
|
|
*
|
|
* Regulators that use regmap for their register I/O can set curr_table,
|
|
* csel_reg and csel_mask fields in their descriptor and then use this
|
|
* as their set_current_limit operation, saving some code.
|
|
*/
|
|
int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
|
|
int min_uA, int max_uA)
|
|
{
|
|
unsigned int n_currents = rdev->desc->n_current_limits;
|
|
int i, sel = -1;
|
|
|
|
if (n_currents == 0)
|
|
return -EINVAL;
|
|
|
|
if (rdev->desc->curr_table) {
|
|
const unsigned int *curr_table = rdev->desc->curr_table;
|
|
bool ascend = curr_table[n_currents - 1] > curr_table[0];
|
|
|
|
/* search for closest to maximum */
|
|
if (ascend) {
|
|
for (i = n_currents - 1; i >= 0; i--) {
|
|
if (min_uA <= curr_table[i] &&
|
|
curr_table[i] <= max_uA) {
|
|
sel = i;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < n_currents; i++) {
|
|
if (min_uA <= curr_table[i] &&
|
|
curr_table[i] <= max_uA) {
|
|
sel = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sel < 0)
|
|
return -EINVAL;
|
|
|
|
sel <<= ffs(rdev->desc->csel_mask) - 1;
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
|
|
rdev->desc->csel_mask, sel);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
|
|
|
|
/**
|
|
* regulator_get_current_limit_regmap - get_current_limit for regmap users
|
|
*
|
|
* @rdev: regulator to operate on
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the
|
|
* csel_reg and csel_mask fields in their descriptor and then use this
|
|
* as their get_current_limit operation, saving some code.
|
|
*/
|
|
int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
|
|
{
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
val &= rdev->desc->csel_mask;
|
|
val >>= ffs(rdev->desc->csel_mask) - 1;
|
|
|
|
if (rdev->desc->curr_table) {
|
|
if (val >= rdev->desc->n_current_limits)
|
|
return -EINVAL;
|
|
|
|
return rdev->desc->curr_table[val];
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
|
|
|
|
/**
|
|
* regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
|
|
* of regulator_bulk_data structs
|
|
*
|
|
* @consumers: array of regulator_bulk_data entries to initialize
|
|
* @supply_names: array of supply name strings
|
|
* @num_supplies: number of supply names to initialize
|
|
*
|
|
* Note: the 'consumers' array must be the size of 'num_supplies'.
|
|
*/
|
|
void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
|
|
const char *const *supply_names,
|
|
unsigned int num_supplies)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < num_supplies; i++)
|
|
consumers[i].supply = supply_names[i];
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
|
|
|
|
/**
|
|
* regulator_is_equal - test whether two regulators are the same
|
|
*
|
|
* @reg1: first regulator to operate on
|
|
* @reg2: second regulator to operate on
|
|
*/
|
|
bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
|
|
{
|
|
return reg1->rdev == reg2->rdev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_is_equal);
|
|
|
|
/**
|
|
* regulator_find_closest_bigger - helper to find offset in ramp delay table
|
|
*
|
|
* @target: targeted ramp_delay
|
|
* @table: table with supported ramp delays
|
|
* @num_sel: number of entries in the table
|
|
* @sel: Pointer to store table offset
|
|
*
|
|
* This is the internal helper used by regulator_set_ramp_delay_regmap to
|
|
* map ramp delay to register value. It should only be used directly if
|
|
* regulator_set_ramp_delay_regmap cannot handle a specific device setup
|
|
* (e.g. because the value is split over multiple registers).
|
|
*/
|
|
int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
|
|
unsigned int num_sel, unsigned int *sel)
|
|
{
|
|
unsigned int s, tmp, max, maxsel = 0;
|
|
bool found = false;
|
|
|
|
max = table[0];
|
|
|
|
for (s = 0; s < num_sel; s++) {
|
|
if (table[s] > max) {
|
|
max = table[s];
|
|
maxsel = s;
|
|
}
|
|
if (table[s] >= target) {
|
|
if (!found || table[s] - target < tmp - target) {
|
|
tmp = table[s];
|
|
*sel = s;
|
|
found = true;
|
|
if (tmp == target)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
*sel = maxsel;
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
|
|
|
|
/**
|
|
* regulator_set_ramp_delay_regmap - set_ramp_delay() helper
|
|
*
|
|
* @rdev: regulator to operate on
|
|
* @ramp_delay: ramp-rate value given in units V/S (uV/uS)
|
|
*
|
|
* Regulators that use regmap for their register I/O can set the ramp_reg
|
|
* and ramp_mask fields in their descriptor and then use this as their
|
|
* set_ramp_delay operation, saving some code.
|
|
*/
|
|
int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
|
|
{
|
|
int ret;
|
|
unsigned int sel;
|
|
|
|
if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
|
|
return -EINVAL;
|
|
|
|
ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
|
|
rdev->desc->n_ramp_values, &sel);
|
|
|
|
if (ret) {
|
|
dev_warn(rdev_get_dev(rdev),
|
|
"Can't set ramp-delay %u, setting %u\n", ramp_delay,
|
|
rdev->desc->ramp_delay_table[sel]);
|
|
}
|
|
|
|
sel <<= ffs(rdev->desc->ramp_mask) - 1;
|
|
|
|
return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
|
|
rdev->desc->ramp_mask, sel);
|
|
}
|
|
EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
|