mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-09 07:14:48 +08:00
0df4f266b3
Based on include/xen/mm.h [1], Linux is mistakenly using MFN when GFN is meant, I suspect this is because the first support for Xen was for PV. This resulted in some misimplementation of helpers on ARM and confused developers about the expected behavior. For instance, with pfn_to_mfn, we expect to get an MFN based on the name. Although, if we look at the implementation on x86, it's returning a GFN. For clarity and avoid new confusion, replace any reference to mfn with gfn in any helpers used by PV drivers. The x86 code will still keep some reference of pfn_to_mfn which may be used by all kind of guests No changes as been made in the hypercall field, even though they may be invalid, in order to keep the same as the defintion in xen repo. Note that page_to_mfn has been renamed to xen_page_to_gfn to avoid a name to close to the KVM function gfn_to_page. Take also the opportunity to simplify simple construction such as pfn_to_mfn(page_to_pfn(page)) into xen_page_to_gfn. More complex clean up will come in follow-up patches. [1] http://xenbits.xen.org/gitweb/?p=xen.git;a=commitdiff;h=e758ed14f390342513405dd766e874934573e6cb Signed-off-by: Julien Grall <julien.grall@citrix.com> Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Wei Liu <wei.liu2@citrix.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
808 lines
20 KiB
C
808 lines
20 KiB
C
/*
|
|
* Xen SMP support
|
|
*
|
|
* This file implements the Xen versions of smp_ops. SMP under Xen is
|
|
* very straightforward. Bringing a CPU up is simply a matter of
|
|
* loading its initial context and setting it running.
|
|
*
|
|
* IPIs are handled through the Xen event mechanism.
|
|
*
|
|
* Because virtual CPUs can be scheduled onto any real CPU, there's no
|
|
* useful topology information for the kernel to make use of. As a
|
|
* result, all CPUs are treated as if they're single-core and
|
|
* single-threaded.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/tick.h>
|
|
|
|
#include <asm/paravirt.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/cpu.h>
|
|
|
|
#include <xen/interface/xen.h>
|
|
#include <xen/interface/vcpu.h>
|
|
#include <xen/interface/xenpmu.h>
|
|
|
|
#include <asm/xen/interface.h>
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include <xen/xen.h>
|
|
#include <xen/page.h>
|
|
#include <xen/events.h>
|
|
|
|
#include <xen/hvc-console.h>
|
|
#include "xen-ops.h"
|
|
#include "mmu.h"
|
|
#include "smp.h"
|
|
#include "pmu.h"
|
|
|
|
cpumask_var_t xen_cpu_initialized_map;
|
|
|
|
struct xen_common_irq {
|
|
int irq;
|
|
char *name;
|
|
};
|
|
static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
|
|
static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
|
|
static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
|
|
static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
|
|
static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
|
|
static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
|
|
|
|
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
|
|
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
|
|
static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
|
|
|
|
/*
|
|
* Reschedule call back.
|
|
*/
|
|
static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
|
|
{
|
|
inc_irq_stat(irq_resched_count);
|
|
scheduler_ipi();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void cpu_bringup(void)
|
|
{
|
|
int cpu;
|
|
|
|
cpu_init();
|
|
touch_softlockup_watchdog();
|
|
preempt_disable();
|
|
|
|
/* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
|
|
if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
|
|
xen_enable_sysenter();
|
|
xen_enable_syscall();
|
|
}
|
|
cpu = smp_processor_id();
|
|
smp_store_cpu_info(cpu);
|
|
cpu_data(cpu).x86_max_cores = 1;
|
|
set_cpu_sibling_map(cpu);
|
|
|
|
xen_setup_cpu_clockevents();
|
|
|
|
notify_cpu_starting(cpu);
|
|
|
|
set_cpu_online(cpu, true);
|
|
|
|
cpu_set_state_online(cpu); /* Implies full memory barrier. */
|
|
|
|
/* We can take interrupts now: we're officially "up". */
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* Note: cpu parameter is only relevant for PVH. The reason for passing it
|
|
* is we can't do smp_processor_id until the percpu segments are loaded, for
|
|
* which we need the cpu number! So we pass it in rdi as first parameter.
|
|
*/
|
|
asmlinkage __visible void cpu_bringup_and_idle(int cpu)
|
|
{
|
|
#ifdef CONFIG_XEN_PVH
|
|
if (xen_feature(XENFEAT_auto_translated_physmap) &&
|
|
xen_feature(XENFEAT_supervisor_mode_kernel))
|
|
xen_pvh_secondary_vcpu_init(cpu);
|
|
#endif
|
|
cpu_bringup();
|
|
cpu_startup_entry(CPUHP_ONLINE);
|
|
}
|
|
|
|
static void xen_smp_intr_free(unsigned int cpu)
|
|
{
|
|
if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
|
|
unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
|
|
per_cpu(xen_resched_irq, cpu).irq = -1;
|
|
kfree(per_cpu(xen_resched_irq, cpu).name);
|
|
per_cpu(xen_resched_irq, cpu).name = NULL;
|
|
}
|
|
if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
|
|
unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
|
|
per_cpu(xen_callfunc_irq, cpu).irq = -1;
|
|
kfree(per_cpu(xen_callfunc_irq, cpu).name);
|
|
per_cpu(xen_callfunc_irq, cpu).name = NULL;
|
|
}
|
|
if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
|
|
unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
|
|
per_cpu(xen_debug_irq, cpu).irq = -1;
|
|
kfree(per_cpu(xen_debug_irq, cpu).name);
|
|
per_cpu(xen_debug_irq, cpu).name = NULL;
|
|
}
|
|
if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
|
|
unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
|
|
NULL);
|
|
per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
|
|
kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
|
|
per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
|
|
}
|
|
if (xen_hvm_domain())
|
|
return;
|
|
|
|
if (per_cpu(xen_irq_work, cpu).irq >= 0) {
|
|
unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
|
|
per_cpu(xen_irq_work, cpu).irq = -1;
|
|
kfree(per_cpu(xen_irq_work, cpu).name);
|
|
per_cpu(xen_irq_work, cpu).name = NULL;
|
|
}
|
|
|
|
if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
|
|
unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
|
|
per_cpu(xen_pmu_irq, cpu).irq = -1;
|
|
kfree(per_cpu(xen_pmu_irq, cpu).name);
|
|
per_cpu(xen_pmu_irq, cpu).name = NULL;
|
|
}
|
|
};
|
|
static int xen_smp_intr_init(unsigned int cpu)
|
|
{
|
|
int rc;
|
|
char *resched_name, *callfunc_name, *debug_name, *pmu_name;
|
|
|
|
resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
|
|
rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
|
|
cpu,
|
|
xen_reschedule_interrupt,
|
|
IRQF_PERCPU|IRQF_NOBALANCING,
|
|
resched_name,
|
|
NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(xen_resched_irq, cpu).irq = rc;
|
|
per_cpu(xen_resched_irq, cpu).name = resched_name;
|
|
|
|
callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
|
|
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
|
|
cpu,
|
|
xen_call_function_interrupt,
|
|
IRQF_PERCPU|IRQF_NOBALANCING,
|
|
callfunc_name,
|
|
NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(xen_callfunc_irq, cpu).irq = rc;
|
|
per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
|
|
|
|
debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
|
|
rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
|
|
IRQF_PERCPU | IRQF_NOBALANCING,
|
|
debug_name, NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(xen_debug_irq, cpu).irq = rc;
|
|
per_cpu(xen_debug_irq, cpu).name = debug_name;
|
|
|
|
callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
|
|
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
|
|
cpu,
|
|
xen_call_function_single_interrupt,
|
|
IRQF_PERCPU|IRQF_NOBALANCING,
|
|
callfunc_name,
|
|
NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
|
|
per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
|
|
|
|
/*
|
|
* The IRQ worker on PVHVM goes through the native path and uses the
|
|
* IPI mechanism.
|
|
*/
|
|
if (xen_hvm_domain())
|
|
return 0;
|
|
|
|
callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
|
|
rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
|
|
cpu,
|
|
xen_irq_work_interrupt,
|
|
IRQF_PERCPU|IRQF_NOBALANCING,
|
|
callfunc_name,
|
|
NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(xen_irq_work, cpu).irq = rc;
|
|
per_cpu(xen_irq_work, cpu).name = callfunc_name;
|
|
|
|
if (is_xen_pmu(cpu)) {
|
|
pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
|
|
rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
|
|
xen_pmu_irq_handler,
|
|
IRQF_PERCPU|IRQF_NOBALANCING,
|
|
pmu_name, NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(xen_pmu_irq, cpu).irq = rc;
|
|
per_cpu(xen_pmu_irq, cpu).name = pmu_name;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
xen_smp_intr_free(cpu);
|
|
return rc;
|
|
}
|
|
|
|
static void __init xen_fill_possible_map(void)
|
|
{
|
|
int i, rc;
|
|
|
|
if (xen_initial_domain())
|
|
return;
|
|
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
|
|
if (rc >= 0) {
|
|
num_processors++;
|
|
set_cpu_possible(i, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init xen_filter_cpu_maps(void)
|
|
{
|
|
int i, rc;
|
|
unsigned int subtract = 0;
|
|
|
|
if (!xen_initial_domain())
|
|
return;
|
|
|
|
num_processors = 0;
|
|
disabled_cpus = 0;
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
|
|
if (rc >= 0) {
|
|
num_processors++;
|
|
set_cpu_possible(i, true);
|
|
} else {
|
|
set_cpu_possible(i, false);
|
|
set_cpu_present(i, false);
|
|
subtract++;
|
|
}
|
|
}
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* This is akin to using 'nr_cpus' on the Linux command line.
|
|
* Which is OK as when we use 'dom0_max_vcpus=X' we can only
|
|
* have up to X, while nr_cpu_ids is greater than X. This
|
|
* normally is not a problem, except when CPU hotplugging
|
|
* is involved and then there might be more than X CPUs
|
|
* in the guest - which will not work as there is no
|
|
* hypercall to expand the max number of VCPUs an already
|
|
* running guest has. So cap it up to X. */
|
|
if (subtract)
|
|
nr_cpu_ids = nr_cpu_ids - subtract;
|
|
#endif
|
|
|
|
}
|
|
|
|
static void __init xen_smp_prepare_boot_cpu(void)
|
|
{
|
|
BUG_ON(smp_processor_id() != 0);
|
|
native_smp_prepare_boot_cpu();
|
|
|
|
if (xen_pv_domain()) {
|
|
if (!xen_feature(XENFEAT_writable_page_tables))
|
|
/* We've switched to the "real" per-cpu gdt, so make
|
|
* sure the old memory can be recycled. */
|
|
make_lowmem_page_readwrite(xen_initial_gdt);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Xen starts us with XEN_FLAT_RING1_DS, but linux code
|
|
* expects __USER_DS
|
|
*/
|
|
loadsegment(ds, __USER_DS);
|
|
loadsegment(es, __USER_DS);
|
|
#endif
|
|
|
|
xen_filter_cpu_maps();
|
|
xen_setup_vcpu_info_placement();
|
|
}
|
|
/*
|
|
* The alternative logic (which patches the unlock/lock) runs before
|
|
* the smp bootup up code is activated. Hence we need to set this up
|
|
* the core kernel is being patched. Otherwise we will have only
|
|
* modules patched but not core code.
|
|
*/
|
|
xen_init_spinlocks();
|
|
}
|
|
|
|
static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned cpu;
|
|
unsigned int i;
|
|
|
|
if (skip_ioapic_setup) {
|
|
char *m = (max_cpus == 0) ?
|
|
"The nosmp parameter is incompatible with Xen; " \
|
|
"use Xen dom0_max_vcpus=1 parameter" :
|
|
"The noapic parameter is incompatible with Xen";
|
|
|
|
xen_raw_printk(m);
|
|
panic(m);
|
|
}
|
|
xen_init_lock_cpu(0);
|
|
|
|
smp_store_boot_cpu_info();
|
|
cpu_data(0).x86_max_cores = 1;
|
|
|
|
for_each_possible_cpu(i) {
|
|
zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
|
|
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
|
|
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
|
|
}
|
|
set_cpu_sibling_map(0);
|
|
|
|
xen_pmu_init(0);
|
|
|
|
if (xen_smp_intr_init(0))
|
|
BUG();
|
|
|
|
if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
|
|
panic("could not allocate xen_cpu_initialized_map\n");
|
|
|
|
cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
|
|
|
|
/* Restrict the possible_map according to max_cpus. */
|
|
while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
|
|
for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
|
|
continue;
|
|
set_cpu_possible(cpu, false);
|
|
}
|
|
|
|
for_each_possible_cpu(cpu)
|
|
set_cpu_present(cpu, true);
|
|
}
|
|
|
|
static int
|
|
cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
struct vcpu_guest_context *ctxt;
|
|
struct desc_struct *gdt;
|
|
unsigned long gdt_mfn;
|
|
|
|
/* used to tell cpu_init() that it can proceed with initialization */
|
|
cpumask_set_cpu(cpu, cpu_callout_mask);
|
|
if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
|
|
return 0;
|
|
|
|
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
|
|
if (ctxt == NULL)
|
|
return -ENOMEM;
|
|
|
|
gdt = get_cpu_gdt_table(cpu);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* Note: PVH is not yet supported on x86_32. */
|
|
ctxt->user_regs.fs = __KERNEL_PERCPU;
|
|
ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
|
|
#endif
|
|
memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
|
|
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
|
ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
|
|
ctxt->flags = VGCF_IN_KERNEL;
|
|
ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
|
|
ctxt->user_regs.ds = __USER_DS;
|
|
ctxt->user_regs.es = __USER_DS;
|
|
ctxt->user_regs.ss = __KERNEL_DS;
|
|
|
|
xen_copy_trap_info(ctxt->trap_ctxt);
|
|
|
|
ctxt->ldt_ents = 0;
|
|
|
|
BUG_ON((unsigned long)gdt & ~PAGE_MASK);
|
|
|
|
gdt_mfn = arbitrary_virt_to_mfn(gdt);
|
|
make_lowmem_page_readonly(gdt);
|
|
make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
|
|
|
|
ctxt->gdt_frames[0] = gdt_mfn;
|
|
ctxt->gdt_ents = GDT_ENTRIES;
|
|
|
|
ctxt->kernel_ss = __KERNEL_DS;
|
|
ctxt->kernel_sp = idle->thread.sp0;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
ctxt->event_callback_cs = __KERNEL_CS;
|
|
ctxt->failsafe_callback_cs = __KERNEL_CS;
|
|
#else
|
|
ctxt->gs_base_kernel = per_cpu_offset(cpu);
|
|
#endif
|
|
ctxt->event_callback_eip =
|
|
(unsigned long)xen_hypervisor_callback;
|
|
ctxt->failsafe_callback_eip =
|
|
(unsigned long)xen_failsafe_callback;
|
|
ctxt->user_regs.cs = __KERNEL_CS;
|
|
per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
|
|
}
|
|
#ifdef CONFIG_XEN_PVH
|
|
else {
|
|
/*
|
|
* The vcpu comes on kernel page tables which have the NX pte
|
|
* bit set. This means before DS/SS is touched, NX in
|
|
* EFER must be set. Hence the following assembly glue code.
|
|
*/
|
|
ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init;
|
|
ctxt->user_regs.rdi = cpu;
|
|
ctxt->user_regs.rsi = true; /* entry == true */
|
|
}
|
|
#endif
|
|
ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
|
|
ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
|
|
if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
|
|
BUG();
|
|
|
|
kfree(ctxt);
|
|
return 0;
|
|
}
|
|
|
|
static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
int rc;
|
|
|
|
common_cpu_up(cpu, idle);
|
|
|
|
xen_setup_runstate_info(cpu);
|
|
xen_setup_timer(cpu);
|
|
xen_init_lock_cpu(cpu);
|
|
|
|
/*
|
|
* PV VCPUs are always successfully taken down (see 'while' loop
|
|
* in xen_cpu_die()), so -EBUSY is an error.
|
|
*/
|
|
rc = cpu_check_up_prepare(cpu);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* make sure interrupts start blocked */
|
|
per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
|
|
|
|
rc = cpu_initialize_context(cpu, idle);
|
|
if (rc)
|
|
return rc;
|
|
|
|
xen_pmu_init(cpu);
|
|
|
|
rc = xen_smp_intr_init(cpu);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
|
|
BUG_ON(rc);
|
|
|
|
while (cpu_report_state(cpu) != CPU_ONLINE)
|
|
HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xen_smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static int xen_cpu_disable(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
if (cpu == 0)
|
|
return -EBUSY;
|
|
|
|
cpu_disable_common();
|
|
|
|
load_cr3(swapper_pg_dir);
|
|
return 0;
|
|
}
|
|
|
|
static void xen_cpu_die(unsigned int cpu)
|
|
{
|
|
while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(HZ/10);
|
|
}
|
|
|
|
if (common_cpu_die(cpu) == 0) {
|
|
xen_smp_intr_free(cpu);
|
|
xen_uninit_lock_cpu(cpu);
|
|
xen_teardown_timer(cpu);
|
|
xen_pmu_finish(cpu);
|
|
}
|
|
}
|
|
|
|
static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
|
|
{
|
|
play_dead_common();
|
|
HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
|
|
cpu_bringup();
|
|
/*
|
|
* commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
|
|
* clears certain data that the cpu_idle loop (which called us
|
|
* and that we return from) expects. The only way to get that
|
|
* data back is to call:
|
|
*/
|
|
tick_nohz_idle_enter();
|
|
}
|
|
|
|
#else /* !CONFIG_HOTPLUG_CPU */
|
|
static int xen_cpu_disable(void)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static void xen_cpu_die(unsigned int cpu)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
static void xen_play_dead(void)
|
|
{
|
|
BUG();
|
|
}
|
|
|
|
#endif
|
|
static void stop_self(void *v)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/* make sure we're not pinning something down */
|
|
load_cr3(swapper_pg_dir);
|
|
/* should set up a minimal gdt */
|
|
|
|
set_cpu_online(cpu, false);
|
|
|
|
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
|
|
BUG();
|
|
}
|
|
|
|
static void xen_stop_other_cpus(int wait)
|
|
{
|
|
smp_call_function(stop_self, NULL, wait);
|
|
}
|
|
|
|
static void xen_smp_send_reschedule(int cpu)
|
|
{
|
|
xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
|
|
}
|
|
|
|
static void __xen_send_IPI_mask(const struct cpumask *mask,
|
|
int vector)
|
|
{
|
|
unsigned cpu;
|
|
|
|
for_each_cpu_and(cpu, mask, cpu_online_mask)
|
|
xen_send_IPI_one(cpu, vector);
|
|
}
|
|
|
|
static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
|
|
{
|
|
int cpu;
|
|
|
|
__xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
|
|
|
|
/* Make sure other vcpus get a chance to run if they need to. */
|
|
for_each_cpu(cpu, mask) {
|
|
if (xen_vcpu_stolen(cpu)) {
|
|
HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void xen_smp_send_call_function_single_ipi(int cpu)
|
|
{
|
|
__xen_send_IPI_mask(cpumask_of(cpu),
|
|
XEN_CALL_FUNCTION_SINGLE_VECTOR);
|
|
}
|
|
|
|
static inline int xen_map_vector(int vector)
|
|
{
|
|
int xen_vector;
|
|
|
|
switch (vector) {
|
|
case RESCHEDULE_VECTOR:
|
|
xen_vector = XEN_RESCHEDULE_VECTOR;
|
|
break;
|
|
case CALL_FUNCTION_VECTOR:
|
|
xen_vector = XEN_CALL_FUNCTION_VECTOR;
|
|
break;
|
|
case CALL_FUNCTION_SINGLE_VECTOR:
|
|
xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
|
|
break;
|
|
case IRQ_WORK_VECTOR:
|
|
xen_vector = XEN_IRQ_WORK_VECTOR;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case NMI_VECTOR:
|
|
case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
|
|
xen_vector = XEN_NMI_VECTOR;
|
|
break;
|
|
#endif
|
|
default:
|
|
xen_vector = -1;
|
|
printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
|
|
vector);
|
|
}
|
|
|
|
return xen_vector;
|
|
}
|
|
|
|
void xen_send_IPI_mask(const struct cpumask *mask,
|
|
int vector)
|
|
{
|
|
int xen_vector = xen_map_vector(vector);
|
|
|
|
if (xen_vector >= 0)
|
|
__xen_send_IPI_mask(mask, xen_vector);
|
|
}
|
|
|
|
void xen_send_IPI_all(int vector)
|
|
{
|
|
int xen_vector = xen_map_vector(vector);
|
|
|
|
if (xen_vector >= 0)
|
|
__xen_send_IPI_mask(cpu_online_mask, xen_vector);
|
|
}
|
|
|
|
void xen_send_IPI_self(int vector)
|
|
{
|
|
int xen_vector = xen_map_vector(vector);
|
|
|
|
if (xen_vector >= 0)
|
|
xen_send_IPI_one(smp_processor_id(), xen_vector);
|
|
}
|
|
|
|
void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
|
|
int vector)
|
|
{
|
|
unsigned cpu;
|
|
unsigned int this_cpu = smp_processor_id();
|
|
int xen_vector = xen_map_vector(vector);
|
|
|
|
if (!(num_online_cpus() > 1) || (xen_vector < 0))
|
|
return;
|
|
|
|
for_each_cpu_and(cpu, mask, cpu_online_mask) {
|
|
if (this_cpu == cpu)
|
|
continue;
|
|
|
|
xen_send_IPI_one(cpu, xen_vector);
|
|
}
|
|
}
|
|
|
|
void xen_send_IPI_allbutself(int vector)
|
|
{
|
|
xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
|
|
}
|
|
|
|
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
|
|
{
|
|
irq_enter();
|
|
generic_smp_call_function_interrupt();
|
|
inc_irq_stat(irq_call_count);
|
|
irq_exit();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
|
|
{
|
|
irq_enter();
|
|
generic_smp_call_function_single_interrupt();
|
|
inc_irq_stat(irq_call_count);
|
|
irq_exit();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
|
|
{
|
|
irq_enter();
|
|
irq_work_run();
|
|
inc_irq_stat(apic_irq_work_irqs);
|
|
irq_exit();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct smp_ops xen_smp_ops __initconst = {
|
|
.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
|
|
.smp_prepare_cpus = xen_smp_prepare_cpus,
|
|
.smp_cpus_done = xen_smp_cpus_done,
|
|
|
|
.cpu_up = xen_cpu_up,
|
|
.cpu_die = xen_cpu_die,
|
|
.cpu_disable = xen_cpu_disable,
|
|
.play_dead = xen_play_dead,
|
|
|
|
.stop_other_cpus = xen_stop_other_cpus,
|
|
.smp_send_reschedule = xen_smp_send_reschedule,
|
|
|
|
.send_call_func_ipi = xen_smp_send_call_function_ipi,
|
|
.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
|
|
};
|
|
|
|
void __init xen_smp_init(void)
|
|
{
|
|
smp_ops = xen_smp_ops;
|
|
xen_fill_possible_map();
|
|
}
|
|
|
|
static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
native_smp_prepare_cpus(max_cpus);
|
|
WARN_ON(xen_smp_intr_init(0));
|
|
|
|
xen_init_lock_cpu(0);
|
|
}
|
|
|
|
static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* This can happen if CPU was offlined earlier and
|
|
* offlining timed out in common_cpu_die().
|
|
*/
|
|
if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
|
|
xen_smp_intr_free(cpu);
|
|
xen_uninit_lock_cpu(cpu);
|
|
}
|
|
|
|
/*
|
|
* xen_smp_intr_init() needs to run before native_cpu_up()
|
|
* so that IPI vectors are set up on the booting CPU before
|
|
* it is marked online in native_cpu_up().
|
|
*/
|
|
rc = xen_smp_intr_init(cpu);
|
|
WARN_ON(rc);
|
|
if (!rc)
|
|
rc = native_cpu_up(cpu, tidle);
|
|
|
|
/*
|
|
* We must initialize the slowpath CPU kicker _after_ the native
|
|
* path has executed. If we initialized it before none of the
|
|
* unlocker IPI kicks would reach the booting CPU as the booting
|
|
* CPU had not set itself 'online' in cpu_online_mask. That mask
|
|
* is checked when IPIs are sent (on HVM at least).
|
|
*/
|
|
xen_init_lock_cpu(cpu);
|
|
return rc;
|
|
}
|
|
|
|
void __init xen_hvm_smp_init(void)
|
|
{
|
|
if (!xen_have_vector_callback)
|
|
return;
|
|
smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
|
|
smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
|
|
smp_ops.cpu_up = xen_hvm_cpu_up;
|
|
smp_ops.cpu_die = xen_cpu_die;
|
|
smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
|
|
smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
|
|
smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
|
|
}
|