mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 08:14:15 +08:00
7c55e8efd2
For spdx Space instead of tab before spdx tag Removed repeated works the, to, two Replacements much much to a much 'to to' to 'to do' aready to already Comunications to Communications freqency to frequency Signed-off-by: Tom Rix <trix@redhat.com> Link: https://lore.kernel.org/r/20220222195153.3817625-1-trix@redhat.com Signed-off-by: Stephen Boyd <sboyd@kernel.org>
260 lines
6.3 KiB
C
260 lines
6.3 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2014 Intel Corporation
|
|
*
|
|
* Adjustable fractional divider clock implementation.
|
|
* Uses rational best approximation algorithm.
|
|
*
|
|
* Output is calculated as
|
|
*
|
|
* rate = (m / n) * parent_rate (1)
|
|
*
|
|
* This is useful when we have a prescaler block which asks for
|
|
* m (numerator) and n (denominator) values to be provided to satisfy
|
|
* the (1) as much as possible.
|
|
*
|
|
* Since m and n have the limitation by a range, e.g.
|
|
*
|
|
* n >= 1, n < N_width, where N_width = 2^nwidth (2)
|
|
*
|
|
* for some cases the output may be saturated. Hence, from (1) and (2),
|
|
* assuming the worst case when m = 1, the inequality
|
|
*
|
|
* floor(log2(parent_rate / rate)) <= nwidth (3)
|
|
*
|
|
* may be derived. Thus, in cases when
|
|
*
|
|
* (parent_rate / rate) >> N_width (4)
|
|
*
|
|
* we might scale up the rate by 2^scale (see the description of
|
|
* CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
|
|
*
|
|
* scale = floor(log2(parent_rate / rate)) - nwidth (5)
|
|
*
|
|
* and assume that the IP, that needs m and n, has also its own
|
|
* prescaler, which is capable to divide by 2^scale. In this way
|
|
* we get the denominator to satisfy the desired range (2) and
|
|
* at the same time a much better result of m and n than simple
|
|
* saturated values.
|
|
*/
|
|
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rational.h>
|
|
|
|
#include "clk-fractional-divider.h"
|
|
|
|
static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
|
|
{
|
|
if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
|
|
return ioread32be(fd->reg);
|
|
|
|
return readl(fd->reg);
|
|
}
|
|
|
|
static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
|
|
{
|
|
if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
|
|
iowrite32be(val, fd->reg);
|
|
else
|
|
writel(val, fd->reg);
|
|
}
|
|
|
|
static unsigned long clk_fd_recalc_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct clk_fractional_divider *fd = to_clk_fd(hw);
|
|
unsigned long flags = 0;
|
|
unsigned long m, n;
|
|
u32 val;
|
|
u64 ret;
|
|
|
|
if (fd->lock)
|
|
spin_lock_irqsave(fd->lock, flags);
|
|
else
|
|
__acquire(fd->lock);
|
|
|
|
val = clk_fd_readl(fd);
|
|
|
|
if (fd->lock)
|
|
spin_unlock_irqrestore(fd->lock, flags);
|
|
else
|
|
__release(fd->lock);
|
|
|
|
m = (val & fd->mmask) >> fd->mshift;
|
|
n = (val & fd->nmask) >> fd->nshift;
|
|
|
|
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
|
|
m++;
|
|
n++;
|
|
}
|
|
|
|
if (!n || !m)
|
|
return parent_rate;
|
|
|
|
ret = (u64)parent_rate * m;
|
|
do_div(ret, n);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void clk_fractional_divider_general_approximation(struct clk_hw *hw,
|
|
unsigned long rate,
|
|
unsigned long *parent_rate,
|
|
unsigned long *m, unsigned long *n)
|
|
{
|
|
struct clk_fractional_divider *fd = to_clk_fd(hw);
|
|
|
|
/*
|
|
* Get rate closer to *parent_rate to guarantee there is no overflow
|
|
* for m and n. In the result it will be the nearest rate left shifted
|
|
* by (scale - fd->nwidth) bits.
|
|
*
|
|
* For the detailed explanation see the top comment in this file.
|
|
*/
|
|
if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
|
|
unsigned long scale = fls_long(*parent_rate / rate - 1);
|
|
|
|
if (scale > fd->nwidth)
|
|
rate <<= scale - fd->nwidth;
|
|
}
|
|
|
|
rational_best_approximation(rate, *parent_rate,
|
|
GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0),
|
|
m, n);
|
|
}
|
|
|
|
static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
struct clk_fractional_divider *fd = to_clk_fd(hw);
|
|
unsigned long m, n;
|
|
u64 ret;
|
|
|
|
if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate))
|
|
return *parent_rate;
|
|
|
|
if (fd->approximation)
|
|
fd->approximation(hw, rate, parent_rate, &m, &n);
|
|
else
|
|
clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n);
|
|
|
|
ret = (u64)*parent_rate * m;
|
|
do_div(ret, n);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct clk_fractional_divider *fd = to_clk_fd(hw);
|
|
unsigned long flags = 0;
|
|
unsigned long m, n;
|
|
u32 val;
|
|
|
|
rational_best_approximation(rate, parent_rate,
|
|
GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0),
|
|
&m, &n);
|
|
|
|
if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
|
|
m--;
|
|
n--;
|
|
}
|
|
|
|
if (fd->lock)
|
|
spin_lock_irqsave(fd->lock, flags);
|
|
else
|
|
__acquire(fd->lock);
|
|
|
|
val = clk_fd_readl(fd);
|
|
val &= ~(fd->mmask | fd->nmask);
|
|
val |= (m << fd->mshift) | (n << fd->nshift);
|
|
clk_fd_writel(fd, val);
|
|
|
|
if (fd->lock)
|
|
spin_unlock_irqrestore(fd->lock, flags);
|
|
else
|
|
__release(fd->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct clk_ops clk_fractional_divider_ops = {
|
|
.recalc_rate = clk_fd_recalc_rate,
|
|
.round_rate = clk_fd_round_rate,
|
|
.set_rate = clk_fd_set_rate,
|
|
};
|
|
EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);
|
|
|
|
struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
|
|
const char *name, const char *parent_name, unsigned long flags,
|
|
void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
|
|
u8 clk_divider_flags, spinlock_t *lock)
|
|
{
|
|
struct clk_fractional_divider *fd;
|
|
struct clk_init_data init;
|
|
struct clk_hw *hw;
|
|
int ret;
|
|
|
|
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
|
|
if (!fd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
init.name = name;
|
|
init.ops = &clk_fractional_divider_ops;
|
|
init.flags = flags;
|
|
init.parent_names = parent_name ? &parent_name : NULL;
|
|
init.num_parents = parent_name ? 1 : 0;
|
|
|
|
fd->reg = reg;
|
|
fd->mshift = mshift;
|
|
fd->mwidth = mwidth;
|
|
fd->mmask = GENMASK(mwidth - 1, 0) << mshift;
|
|
fd->nshift = nshift;
|
|
fd->nwidth = nwidth;
|
|
fd->nmask = GENMASK(nwidth - 1, 0) << nshift;
|
|
fd->flags = clk_divider_flags;
|
|
fd->lock = lock;
|
|
fd->hw.init = &init;
|
|
|
|
hw = &fd->hw;
|
|
ret = clk_hw_register(dev, hw);
|
|
if (ret) {
|
|
kfree(fd);
|
|
hw = ERR_PTR(ret);
|
|
}
|
|
|
|
return hw;
|
|
}
|
|
EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);
|
|
|
|
struct clk *clk_register_fractional_divider(struct device *dev,
|
|
const char *name, const char *parent_name, unsigned long flags,
|
|
void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
|
|
u8 clk_divider_flags, spinlock_t *lock)
|
|
{
|
|
struct clk_hw *hw;
|
|
|
|
hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
|
|
reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
|
|
lock);
|
|
if (IS_ERR(hw))
|
|
return ERR_CAST(hw);
|
|
return hw->clk;
|
|
}
|
|
EXPORT_SYMBOL_GPL(clk_register_fractional_divider);
|
|
|
|
void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
|
|
{
|
|
struct clk_fractional_divider *fd;
|
|
|
|
fd = to_clk_fd(hw);
|
|
|
|
clk_hw_unregister(hw);
|
|
kfree(fd);
|
|
}
|