linux/arch/sparc/lib/U3memcpy.S
Rob Gardner a7c5724b5c sparc64: fix FP corruption in user copy functions
Short story: Exception handlers used by some copy_to_user() and
copy_from_user() functions do not diligently clean up floating point
register usage, and this can result in a user process seeing invalid
values in floating point registers. This sometimes makes the process
fail.

Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions
use floating point registers and VIS alignaddr/faligndata to
accelerate data copying when source and dest addresses don't align
well. Linux uses a lazy scheme for saving floating point registers; It
is not done upon entering the kernel since it's a very expensive
operation. Rather, it is done only when needed. If the kernel ends up
not using FP regs during the course of some trap or system call, then
it can return to user space without saving or restoring them.

The various memcpy functions begin their FP code with VISEntry (or a
variation thereof), which saves the FP regs. They conclude their FP
code with VISExit (or a variation) which essentially marks the FP regs
"clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned
off so that a lazy restore will be triggered when/if the user process
accesses floating point regs again.

The bug is that the user copy variants of memcpy, copy_from_user() and
copy_to_user(), employ an exception handling mechanism to detect faults
when accessing user space addresses, and when this handler is invoked,
an immediate return from the function is forced, and VISExit is not
executed, thus leaving the fprs register in an indeterminate state,
but often with fprs.FPRS_FEF set and one or more dirty bits. This
results in a return to user space with invalid values in the FP regs,
and since fprs.FPRS_FEF is on, no lazy restore occurs.

This bug affects copy_to_user() and copy_from_user() for NG4, NG2,
U3, and U1. All are fixed by using a new exception handler for those
loads and stores that are done during the time between VISEnter and
VISExit.

n.b. In NG4memcpy, the problematic code can be triggered by a copy
size greater than 128 bytes and an unaligned source address.  This bug
is known to be the cause of random user process memory corruptions
while perf is running with the callgraph option (ie, perf record -g).
This occurs because perf uses copy_from_user() to read user stacks,
and may fault when it follows a stack frame pointer off to an
invalid page. Validation checks on the stack address just obscure
the underlying problem.

Signed-off-by: Rob Gardner <rob.gardner@oracle.com>
Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-24 12:13:18 -05:00

429 lines
9.3 KiB
ArmAsm

/* U3memcpy.S: UltraSparc-III optimized memcpy.
*
* Copyright (C) 1999, 2000, 2004 David S. Miller (davem@redhat.com)
*/
#ifdef __KERNEL__
#include <asm/visasm.h>
#include <asm/asi.h>
#define GLOBAL_SPARE %g7
#else
#define ASI_BLK_P 0xf0
#define FPRS_FEF 0x04
#ifdef MEMCPY_DEBUG
#define VISEntryHalf rd %fprs, %o5; wr %g0, FPRS_FEF, %fprs; \
clr %g1; clr %g2; clr %g3; subcc %g0, %g0, %g0;
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
#else
#define VISEntryHalf rd %fprs, %o5; wr %g0, FPRS_FEF, %fprs
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
#endif
#define GLOBAL_SPARE %g5
#endif
#ifndef EX_LD
#define EX_LD(x) x
#endif
#ifndef EX_LD_FP
#define EX_LD_FP(x) x
#endif
#ifndef EX_ST
#define EX_ST(x) x
#endif
#ifndef EX_ST_FP
#define EX_ST_FP(x) x
#endif
#ifndef EX_RETVAL
#define EX_RETVAL(x) x
#endif
#ifndef LOAD
#define LOAD(type,addr,dest) type [addr], dest
#endif
#ifndef STORE
#define STORE(type,src,addr) type src, [addr]
#endif
#ifndef STORE_BLK
#define STORE_BLK(src,addr) stda src, [addr] ASI_BLK_P
#endif
#ifndef FUNC_NAME
#define FUNC_NAME U3memcpy
#endif
#ifndef PREAMBLE
#define PREAMBLE
#endif
#ifndef XCC
#define XCC xcc
#endif
.register %g2,#scratch
.register %g3,#scratch
/* Special/non-trivial issues of this code:
*
* 1) %o5 is preserved from VISEntryHalf to VISExitHalf
* 2) Only low 32 FPU registers are used so that only the
* lower half of the FPU register set is dirtied by this
* code. This is especially important in the kernel.
* 3) This code never prefetches cachelines past the end
* of the source buffer.
*/
.text
.align 64
/* The cheetah's flexible spine, oversized liver, enlarged heart,
* slender muscular body, and claws make it the swiftest hunter
* in Africa and the fastest animal on land. Can reach speeds
* of up to 2.4GB per second.
*/
.globl FUNC_NAME
.type FUNC_NAME,#function
FUNC_NAME: /* %o0=dst, %o1=src, %o2=len */
srlx %o2, 31, %g2
cmp %g2, 0
tne %xcc, 5
PREAMBLE
mov %o0, %o4
cmp %o2, 0
be,pn %XCC, 85f
or %o0, %o1, %o3
cmp %o2, 16
blu,a,pn %XCC, 80f
or %o3, %o2, %o3
cmp %o2, (3 * 64)
blu,pt %XCC, 70f
andcc %o3, 0x7, %g0
/* Clobbers o5/g1/g2/g3/g7/icc/xcc. We must preserve
* o5 from here until we hit VISExitHalf.
*/
VISEntryHalf
/* Is 'dst' already aligned on an 64-byte boundary? */
andcc %o0, 0x3f, %g2
be,pt %XCC, 2f
/* Compute abs((dst & 0x3f) - 0x40) into %g2. This is the number
* of bytes to copy to make 'dst' 64-byte aligned. We pre-
* subtract this from 'len'.
*/
sub %o0, %o1, GLOBAL_SPARE
sub %g2, 0x40, %g2
sub %g0, %g2, %g2
sub %o2, %g2, %o2
andcc %g2, 0x7, %g1
be,pt %icc, 2f
and %g2, 0x38, %g2
1: subcc %g1, 0x1, %g1
EX_LD_FP(LOAD(ldub, %o1 + 0x00, %o3))
EX_ST_FP(STORE(stb, %o3, %o1 + GLOBAL_SPARE))
bgu,pt %XCC, 1b
add %o1, 0x1, %o1
add %o1, GLOBAL_SPARE, %o0
2: cmp %g2, 0x0
and %o1, 0x7, %g1
be,pt %icc, 3f
alignaddr %o1, %g0, %o1
EX_LD_FP(LOAD(ldd, %o1, %f4))
1: EX_LD_FP(LOAD(ldd, %o1 + 0x8, %f6))
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f4, %f6, %f0
EX_ST_FP(STORE(std, %f0, %o0))
be,pn %icc, 3f
add %o0, 0x8, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x8, %f4))
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f6, %f4, %f2
EX_ST_FP(STORE(std, %f2, %o0))
bne,pt %icc, 1b
add %o0, 0x8, %o0
3: LOAD(prefetch, %o1 + 0x000, #one_read)
LOAD(prefetch, %o1 + 0x040, #one_read)
andn %o2, (0x40 - 1), GLOBAL_SPARE
LOAD(prefetch, %o1 + 0x080, #one_read)
LOAD(prefetch, %o1 + 0x0c0, #one_read)
LOAD(prefetch, %o1 + 0x100, #one_read)
EX_LD_FP(LOAD(ldd, %o1 + 0x000, %f0))
LOAD(prefetch, %o1 + 0x140, #one_read)
EX_LD_FP(LOAD(ldd, %o1 + 0x008, %f2))
LOAD(prefetch, %o1 + 0x180, #one_read)
EX_LD_FP(LOAD(ldd, %o1 + 0x010, %f4))
LOAD(prefetch, %o1 + 0x1c0, #one_read)
faligndata %f0, %f2, %f16
EX_LD_FP(LOAD(ldd, %o1 + 0x018, %f6))
faligndata %f2, %f4, %f18
EX_LD_FP(LOAD(ldd, %o1 + 0x020, %f8))
faligndata %f4, %f6, %f20
EX_LD_FP(LOAD(ldd, %o1 + 0x028, %f10))
faligndata %f6, %f8, %f22
EX_LD_FP(LOAD(ldd, %o1 + 0x030, %f12))
faligndata %f8, %f10, %f24
EX_LD_FP(LOAD(ldd, %o1 + 0x038, %f14))
faligndata %f10, %f12, %f26
EX_LD_FP(LOAD(ldd, %o1 + 0x040, %f0))
subcc GLOBAL_SPARE, 0x80, GLOBAL_SPARE
add %o1, 0x40, %o1
bgu,pt %XCC, 1f
srl GLOBAL_SPARE, 6, %o3
ba,pt %xcc, 2f
nop
.align 64
1:
EX_LD_FP(LOAD(ldd, %o1 + 0x008, %f2))
faligndata %f12, %f14, %f28
EX_LD_FP(LOAD(ldd, %o1 + 0x010, %f4))
faligndata %f14, %f0, %f30
EX_ST_FP(STORE_BLK(%f16, %o0))
EX_LD_FP(LOAD(ldd, %o1 + 0x018, %f6))
faligndata %f0, %f2, %f16
add %o0, 0x40, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x020, %f8))
faligndata %f2, %f4, %f18
EX_LD_FP(LOAD(ldd, %o1 + 0x028, %f10))
faligndata %f4, %f6, %f20
EX_LD_FP(LOAD(ldd, %o1 + 0x030, %f12))
subcc %o3, 0x01, %o3
faligndata %f6, %f8, %f22
EX_LD_FP(LOAD(ldd, %o1 + 0x038, %f14))
faligndata %f8, %f10, %f24
EX_LD_FP(LOAD(ldd, %o1 + 0x040, %f0))
LOAD(prefetch, %o1 + 0x1c0, #one_read)
faligndata %f10, %f12, %f26
bg,pt %XCC, 1b
add %o1, 0x40, %o1
/* Finally we copy the last full 64-byte block. */
2:
EX_LD_FP(LOAD(ldd, %o1 + 0x008, %f2))
faligndata %f12, %f14, %f28
EX_LD_FP(LOAD(ldd, %o1 + 0x010, %f4))
faligndata %f14, %f0, %f30
EX_ST_FP(STORE_BLK(%f16, %o0))
EX_LD_FP(LOAD(ldd, %o1 + 0x018, %f6))
faligndata %f0, %f2, %f16
EX_LD_FP(LOAD(ldd, %o1 + 0x020, %f8))
faligndata %f2, %f4, %f18
EX_LD_FP(LOAD(ldd, %o1 + 0x028, %f10))
faligndata %f4, %f6, %f20
EX_LD_FP(LOAD(ldd, %o1 + 0x030, %f12))
faligndata %f6, %f8, %f22
EX_LD_FP(LOAD(ldd, %o1 + 0x038, %f14))
faligndata %f8, %f10, %f24
cmp %g1, 0
be,pt %XCC, 1f
add %o0, 0x40, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x040, %f0))
1: faligndata %f10, %f12, %f26
faligndata %f12, %f14, %f28
faligndata %f14, %f0, %f30
EX_ST_FP(STORE_BLK(%f16, %o0))
add %o0, 0x40, %o0
add %o1, 0x40, %o1
membar #Sync
/* Now we copy the (len modulo 64) bytes at the end.
* Note how we borrow the %f0 loaded above.
*
* Also notice how this code is careful not to perform a
* load past the end of the src buffer.
*/
and %o2, 0x3f, %o2
andcc %o2, 0x38, %g2
be,pn %XCC, 2f
subcc %g2, 0x8, %g2
be,pn %XCC, 2f
cmp %g1, 0
sub %o2, %g2, %o2
be,a,pt %XCC, 1f
EX_LD_FP(LOAD(ldd, %o1 + 0x00, %f0))
1: EX_LD_FP(LOAD(ldd, %o1 + 0x08, %f2))
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f0, %f2, %f8
EX_ST_FP(STORE(std, %f8, %o0))
be,pn %XCC, 2f
add %o0, 0x8, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x08, %f0))
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f2, %f0, %f8
EX_ST_FP(STORE(std, %f8, %o0))
bne,pn %XCC, 1b
add %o0, 0x8, %o0
/* If anything is left, we copy it one byte at a time.
* Note that %g1 is (src & 0x3) saved above before the
* alignaddr was performed.
*/
2:
cmp %o2, 0
add %o1, %g1, %o1
VISExitHalf
be,pn %XCC, 85f
sub %o0, %o1, %o3
andcc %g1, 0x7, %g0
bne,pn %icc, 90f
andcc %o2, 0x8, %g0
be,pt %icc, 1f
nop
EX_LD(LOAD(ldx, %o1, %o5))
EX_ST(STORE(stx, %o5, %o1 + %o3))
add %o1, 0x8, %o1
1: andcc %o2, 0x4, %g0
be,pt %icc, 1f
nop
EX_LD(LOAD(lduw, %o1, %o5))
EX_ST(STORE(stw, %o5, %o1 + %o3))
add %o1, 0x4, %o1
1: andcc %o2, 0x2, %g0
be,pt %icc, 1f
nop
EX_LD(LOAD(lduh, %o1, %o5))
EX_ST(STORE(sth, %o5, %o1 + %o3))
add %o1, 0x2, %o1
1: andcc %o2, 0x1, %g0
be,pt %icc, 85f
nop
EX_LD(LOAD(ldub, %o1, %o5))
ba,pt %xcc, 85f
EX_ST(STORE(stb, %o5, %o1 + %o3))
.align 64
70: /* 16 < len <= 64 */
bne,pn %XCC, 75f
sub %o0, %o1, %o3
72:
andn %o2, 0xf, GLOBAL_SPARE
and %o2, 0xf, %o2
1: subcc GLOBAL_SPARE, 0x10, GLOBAL_SPARE
EX_LD(LOAD(ldx, %o1 + 0x00, %o5))
EX_LD(LOAD(ldx, %o1 + 0x08, %g1))
EX_ST(STORE(stx, %o5, %o1 + %o3))
add %o1, 0x8, %o1
EX_ST(STORE(stx, %g1, %o1 + %o3))
bgu,pt %XCC, 1b
add %o1, 0x8, %o1
73: andcc %o2, 0x8, %g0
be,pt %XCC, 1f
nop
sub %o2, 0x8, %o2
EX_LD(LOAD(ldx, %o1, %o5))
EX_ST(STORE(stx, %o5, %o1 + %o3))
add %o1, 0x8, %o1
1: andcc %o2, 0x4, %g0
be,pt %XCC, 1f
nop
sub %o2, 0x4, %o2
EX_LD(LOAD(lduw, %o1, %o5))
EX_ST(STORE(stw, %o5, %o1 + %o3))
add %o1, 0x4, %o1
1: cmp %o2, 0
be,pt %XCC, 85f
nop
ba,pt %xcc, 90f
nop
75:
andcc %o0, 0x7, %g1
sub %g1, 0x8, %g1
be,pn %icc, 2f
sub %g0, %g1, %g1
sub %o2, %g1, %o2
1: subcc %g1, 1, %g1
EX_LD(LOAD(ldub, %o1, %o5))
EX_ST(STORE(stb, %o5, %o1 + %o3))
bgu,pt %icc, 1b
add %o1, 1, %o1
2: add %o1, %o3, %o0
andcc %o1, 0x7, %g1
bne,pt %icc, 8f
sll %g1, 3, %g1
cmp %o2, 16
bgeu,pt %icc, 72b
nop
ba,a,pt %xcc, 73b
8: mov 64, %o3
andn %o1, 0x7, %o1
EX_LD(LOAD(ldx, %o1, %g2))
sub %o3, %g1, %o3
andn %o2, 0x7, GLOBAL_SPARE
sllx %g2, %g1, %g2
1: EX_LD(LOAD(ldx, %o1 + 0x8, %g3))
subcc GLOBAL_SPARE, 0x8, GLOBAL_SPARE
add %o1, 0x8, %o1
srlx %g3, %o3, %o5
or %o5, %g2, %o5
EX_ST(STORE(stx, %o5, %o0))
add %o0, 0x8, %o0
bgu,pt %icc, 1b
sllx %g3, %g1, %g2
srl %g1, 3, %g1
andcc %o2, 0x7, %o2
be,pn %icc, 85f
add %o1, %g1, %o1
ba,pt %xcc, 90f
sub %o0, %o1, %o3
.align 64
80: /* 0 < len <= 16 */
andcc %o3, 0x3, %g0
bne,pn %XCC, 90f
sub %o0, %o1, %o3
1:
subcc %o2, 4, %o2
EX_LD(LOAD(lduw, %o1, %g1))
EX_ST(STORE(stw, %g1, %o1 + %o3))
bgu,pt %XCC, 1b
add %o1, 4, %o1
85: retl
mov EX_RETVAL(%o4), %o0
.align 32
90:
subcc %o2, 1, %o2
EX_LD(LOAD(ldub, %o1, %g1))
EX_ST(STORE(stb, %g1, %o1 + %o3))
bgu,pt %XCC, 90b
add %o1, 1, %o1
retl
mov EX_RETVAL(%o4), %o0
.size FUNC_NAME, .-FUNC_NAME