mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-01 08:04:22 +08:00
30bda41aba
PowerISA 3.0 introduces two pte bits with the below meaning for radix: 00 -> Normal Memory 01 -> Strong Access Order (SAO) 10 -> Non idempotent I/O (Cache inhibited and guarded) 11 -> Tolerant I/O (Cache inhibited) We drop the existing WIMG bits in the Linux page table in favour of the above constants. We loose _PAGE_WRITETHRU with this conversion. We only use writethru via pgprot_cached_wthru() which is used by fbdev/controlfb.c which is Apple control display and also PPC32. With respect to _PAGE_COHERENCE, we have been marking hpte always coherent for some time now. htab_convert_pte_flags() always added HPTE_R_M. NOTE: KVM changes need closer review. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
1644 lines
42 KiB
C
1644 lines
42 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/file.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/book3s/64/mmu-hash.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/synch.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/cputable.h>
|
|
|
|
#include "trace_hv.h"
|
|
|
|
/* Power architecture requires HPT is at least 256kB */
|
|
#define PPC_MIN_HPT_ORDER 18
|
|
|
|
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
|
|
long pte_index, unsigned long pteh,
|
|
unsigned long ptel, unsigned long *pte_idx_ret);
|
|
static void kvmppc_rmap_reset(struct kvm *kvm);
|
|
|
|
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
|
|
{
|
|
unsigned long hpt = 0;
|
|
struct revmap_entry *rev;
|
|
struct page *page = NULL;
|
|
long order = KVM_DEFAULT_HPT_ORDER;
|
|
|
|
if (htab_orderp) {
|
|
order = *htab_orderp;
|
|
if (order < PPC_MIN_HPT_ORDER)
|
|
order = PPC_MIN_HPT_ORDER;
|
|
}
|
|
|
|
kvm->arch.hpt_cma_alloc = 0;
|
|
page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
|
|
if (page) {
|
|
hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
|
|
memset((void *)hpt, 0, (1ul << order));
|
|
kvm->arch.hpt_cma_alloc = 1;
|
|
}
|
|
|
|
/* Lastly try successively smaller sizes from the page allocator */
|
|
/* Only do this if userspace didn't specify a size via ioctl */
|
|
while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
|
|
hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
|
|
__GFP_NOWARN, order - PAGE_SHIFT);
|
|
if (!hpt)
|
|
--order;
|
|
}
|
|
|
|
if (!hpt)
|
|
return -ENOMEM;
|
|
|
|
kvm->arch.hpt_virt = hpt;
|
|
kvm->arch.hpt_order = order;
|
|
/* HPTEs are 2**4 bytes long */
|
|
kvm->arch.hpt_npte = 1ul << (order - 4);
|
|
/* 128 (2**7) bytes in each HPTEG */
|
|
kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
|
|
|
|
/* Allocate reverse map array */
|
|
rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
|
|
if (!rev) {
|
|
pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
|
|
goto out_freehpt;
|
|
}
|
|
kvm->arch.revmap = rev;
|
|
kvm->arch.sdr1 = __pa(hpt) | (order - 18);
|
|
|
|
pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
|
|
hpt, order, kvm->arch.lpid);
|
|
|
|
if (htab_orderp)
|
|
*htab_orderp = order;
|
|
return 0;
|
|
|
|
out_freehpt:
|
|
if (kvm->arch.hpt_cma_alloc)
|
|
kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
|
|
else
|
|
free_pages(hpt, order - PAGE_SHIFT);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
|
|
{
|
|
long err = -EBUSY;
|
|
long order;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (kvm->arch.hpte_setup_done) {
|
|
kvm->arch.hpte_setup_done = 0;
|
|
/* order hpte_setup_done vs. vcpus_running */
|
|
smp_mb();
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
|
kvm->arch.hpte_setup_done = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
if (kvm->arch.hpt_virt) {
|
|
order = kvm->arch.hpt_order;
|
|
/* Set the entire HPT to 0, i.e. invalid HPTEs */
|
|
memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
|
|
/*
|
|
* Reset all the reverse-mapping chains for all memslots
|
|
*/
|
|
kvmppc_rmap_reset(kvm);
|
|
/* Ensure that each vcpu will flush its TLB on next entry. */
|
|
cpumask_setall(&kvm->arch.need_tlb_flush);
|
|
*htab_orderp = order;
|
|
err = 0;
|
|
} else {
|
|
err = kvmppc_alloc_hpt(kvm, htab_orderp);
|
|
order = *htab_orderp;
|
|
}
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return err;
|
|
}
|
|
|
|
void kvmppc_free_hpt(struct kvm *kvm)
|
|
{
|
|
kvmppc_free_lpid(kvm->arch.lpid);
|
|
vfree(kvm->arch.revmap);
|
|
if (kvm->arch.hpt_cma_alloc)
|
|
kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
|
|
1 << (kvm->arch.hpt_order - PAGE_SHIFT));
|
|
else
|
|
free_pages(kvm->arch.hpt_virt,
|
|
kvm->arch.hpt_order - PAGE_SHIFT);
|
|
}
|
|
|
|
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
|
|
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
|
|
{
|
|
return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
|
|
}
|
|
|
|
/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
|
|
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
|
|
{
|
|
return (pgsize == 0x10000) ? 0x1000 : 0;
|
|
}
|
|
|
|
void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
|
|
unsigned long porder)
|
|
{
|
|
unsigned long i;
|
|
unsigned long npages;
|
|
unsigned long hp_v, hp_r;
|
|
unsigned long addr, hash;
|
|
unsigned long psize;
|
|
unsigned long hp0, hp1;
|
|
unsigned long idx_ret;
|
|
long ret;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
psize = 1ul << porder;
|
|
npages = memslot->npages >> (porder - PAGE_SHIFT);
|
|
|
|
/* VRMA can't be > 1TB */
|
|
if (npages > 1ul << (40 - porder))
|
|
npages = 1ul << (40 - porder);
|
|
/* Can't use more than 1 HPTE per HPTEG */
|
|
if (npages > kvm->arch.hpt_mask + 1)
|
|
npages = kvm->arch.hpt_mask + 1;
|
|
|
|
hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
|
|
HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
|
|
hp1 = hpte1_pgsize_encoding(psize) |
|
|
HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
addr = i << porder;
|
|
/* can't use hpt_hash since va > 64 bits */
|
|
hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
|
|
/*
|
|
* We assume that the hash table is empty and no
|
|
* vcpus are using it at this stage. Since we create
|
|
* at most one HPTE per HPTEG, we just assume entry 7
|
|
* is available and use it.
|
|
*/
|
|
hash = (hash << 3) + 7;
|
|
hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
|
|
hp_r = hp1 | addr;
|
|
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
|
|
&idx_ret);
|
|
if (ret != H_SUCCESS) {
|
|
pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
|
|
addr, ret);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvmppc_mmu_hv_init(void)
|
|
{
|
|
unsigned long host_lpid, rsvd_lpid;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE))
|
|
return -EINVAL;
|
|
|
|
/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
|
|
host_lpid = mfspr(SPRN_LPID);
|
|
rsvd_lpid = LPID_RSVD;
|
|
|
|
kvmppc_init_lpid(rsvd_lpid + 1);
|
|
|
|
kvmppc_claim_lpid(host_lpid);
|
|
/* rsvd_lpid is reserved for use in partition switching */
|
|
kvmppc_claim_lpid(rsvd_lpid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long msr = vcpu->arch.intr_msr;
|
|
|
|
/* If transactional, change to suspend mode on IRQ delivery */
|
|
if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
|
|
msr |= MSR_TS_S;
|
|
else
|
|
msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
|
|
kvmppc_set_msr(vcpu, msr);
|
|
}
|
|
|
|
long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
|
|
long pte_index, unsigned long pteh,
|
|
unsigned long ptel, unsigned long *pte_idx_ret)
|
|
{
|
|
long ret;
|
|
|
|
/* Protect linux PTE lookup from page table destruction */
|
|
rcu_read_lock_sched(); /* this disables preemption too */
|
|
ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
|
|
current->mm->pgd, false, pte_idx_ret);
|
|
rcu_read_unlock_sched();
|
|
if (ret == H_TOO_HARD) {
|
|
/* this can't happen */
|
|
pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
|
|
ret = H_RESOURCE; /* or something */
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
|
|
gva_t eaddr)
|
|
{
|
|
u64 mask;
|
|
int i;
|
|
|
|
for (i = 0; i < vcpu->arch.slb_nr; i++) {
|
|
if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
|
|
continue;
|
|
|
|
if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
|
|
mask = ESID_MASK_1T;
|
|
else
|
|
mask = ESID_MASK;
|
|
|
|
if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
|
|
return &vcpu->arch.slb[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
|
|
unsigned long ea)
|
|
{
|
|
unsigned long ra_mask;
|
|
|
|
ra_mask = hpte_page_size(v, r) - 1;
|
|
return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
|
|
}
|
|
|
|
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
struct kvmppc_pte *gpte, bool data, bool iswrite)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvmppc_slb *slbe;
|
|
unsigned long slb_v;
|
|
unsigned long pp, key;
|
|
unsigned long v, gr;
|
|
__be64 *hptep;
|
|
int index;
|
|
int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
|
|
|
|
/* Get SLB entry */
|
|
if (virtmode) {
|
|
slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
|
|
if (!slbe)
|
|
return -EINVAL;
|
|
slb_v = slbe->origv;
|
|
} else {
|
|
/* real mode access */
|
|
slb_v = vcpu->kvm->arch.vrma_slb_v;
|
|
}
|
|
|
|
preempt_disable();
|
|
/* Find the HPTE in the hash table */
|
|
index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
|
|
HPTE_V_VALID | HPTE_V_ABSENT);
|
|
if (index < 0) {
|
|
preempt_enable();
|
|
return -ENOENT;
|
|
}
|
|
hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
|
|
v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
|
|
gr = kvm->arch.revmap[index].guest_rpte;
|
|
|
|
unlock_hpte(hptep, v);
|
|
preempt_enable();
|
|
|
|
gpte->eaddr = eaddr;
|
|
gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
|
|
|
|
/* Get PP bits and key for permission check */
|
|
pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
|
|
key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
|
|
key &= slb_v;
|
|
|
|
/* Calculate permissions */
|
|
gpte->may_read = hpte_read_permission(pp, key);
|
|
gpte->may_write = hpte_write_permission(pp, key);
|
|
gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
|
|
|
|
/* Storage key permission check for POWER7 */
|
|
if (data && virtmode) {
|
|
int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
|
|
if (amrfield & 1)
|
|
gpte->may_read = 0;
|
|
if (amrfield & 2)
|
|
gpte->may_write = 0;
|
|
}
|
|
|
|
/* Get the guest physical address */
|
|
gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Quick test for whether an instruction is a load or a store.
|
|
* If the instruction is a load or a store, then this will indicate
|
|
* which it is, at least on server processors. (Embedded processors
|
|
* have some external PID instructions that don't follow the rule
|
|
* embodied here.) If the instruction isn't a load or store, then
|
|
* this doesn't return anything useful.
|
|
*/
|
|
static int instruction_is_store(unsigned int instr)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = 0x10000000;
|
|
if ((instr & 0xfc000000) == 0x7c000000)
|
|
mask = 0x100; /* major opcode 31 */
|
|
return (instr & mask) != 0;
|
|
}
|
|
|
|
static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned long gpa, gva_t ea, int is_store)
|
|
{
|
|
u32 last_inst;
|
|
|
|
/*
|
|
* If we fail, we just return to the guest and try executing it again.
|
|
*/
|
|
if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
|
|
EMULATE_DONE)
|
|
return RESUME_GUEST;
|
|
|
|
/*
|
|
* WARNING: We do not know for sure whether the instruction we just
|
|
* read from memory is the same that caused the fault in the first
|
|
* place. If the instruction we read is neither an load or a store,
|
|
* then it can't access memory, so we don't need to worry about
|
|
* enforcing access permissions. So, assuming it is a load or
|
|
* store, we just check that its direction (load or store) is
|
|
* consistent with the original fault, since that's what we
|
|
* checked the access permissions against. If there is a mismatch
|
|
* we just return and retry the instruction.
|
|
*/
|
|
|
|
if (instruction_is_store(last_inst) != !!is_store)
|
|
return RESUME_GUEST;
|
|
|
|
/*
|
|
* Emulated accesses are emulated by looking at the hash for
|
|
* translation once, then performing the access later. The
|
|
* translation could be invalidated in the meantime in which
|
|
* point performing the subsequent memory access on the old
|
|
* physical address could possibly be a security hole for the
|
|
* guest (but not the host).
|
|
*
|
|
* This is less of an issue for MMIO stores since they aren't
|
|
* globally visible. It could be an issue for MMIO loads to
|
|
* a certain extent but we'll ignore it for now.
|
|
*/
|
|
|
|
vcpu->arch.paddr_accessed = gpa;
|
|
vcpu->arch.vaddr_accessed = ea;
|
|
return kvmppc_emulate_mmio(run, vcpu);
|
|
}
|
|
|
|
int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned long ea, unsigned long dsisr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long hpte[3], r;
|
|
__be64 *hptep;
|
|
unsigned long mmu_seq, psize, pte_size;
|
|
unsigned long gpa_base, gfn_base;
|
|
unsigned long gpa, gfn, hva, pfn;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long *rmap;
|
|
struct revmap_entry *rev;
|
|
struct page *page, *pages[1];
|
|
long index, ret, npages;
|
|
bool is_ci;
|
|
unsigned int writing, write_ok;
|
|
struct vm_area_struct *vma;
|
|
unsigned long rcbits;
|
|
|
|
/*
|
|
* Real-mode code has already searched the HPT and found the
|
|
* entry we're interested in. Lock the entry and check that
|
|
* it hasn't changed. If it has, just return and re-execute the
|
|
* instruction.
|
|
*/
|
|
if (ea != vcpu->arch.pgfault_addr)
|
|
return RESUME_GUEST;
|
|
index = vcpu->arch.pgfault_index;
|
|
hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
|
|
rev = &kvm->arch.revmap[index];
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
|
|
hpte[1] = be64_to_cpu(hptep[1]);
|
|
hpte[2] = r = rev->guest_rpte;
|
|
unlock_hpte(hptep, hpte[0]);
|
|
preempt_enable();
|
|
|
|
if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
|
|
hpte[1] != vcpu->arch.pgfault_hpte[1])
|
|
return RESUME_GUEST;
|
|
|
|
/* Translate the logical address and get the page */
|
|
psize = hpte_page_size(hpte[0], r);
|
|
gpa_base = r & HPTE_R_RPN & ~(psize - 1);
|
|
gfn_base = gpa_base >> PAGE_SHIFT;
|
|
gpa = gpa_base | (ea & (psize - 1));
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
|
|
|
|
/* No memslot means it's an emulated MMIO region */
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
|
|
dsisr & DSISR_ISSTORE);
|
|
|
|
/*
|
|
* This should never happen, because of the slot_is_aligned()
|
|
* check in kvmppc_do_h_enter().
|
|
*/
|
|
if (gfn_base < memslot->base_gfn)
|
|
return -EFAULT;
|
|
|
|
/* used to check for invalidations in progress */
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
ret = -EFAULT;
|
|
is_ci = false;
|
|
pfn = 0;
|
|
page = NULL;
|
|
pte_size = PAGE_SIZE;
|
|
writing = (dsisr & DSISR_ISSTORE) != 0;
|
|
/* If writing != 0, then the HPTE must allow writing, if we get here */
|
|
write_ok = writing;
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
npages = get_user_pages_fast(hva, 1, writing, pages);
|
|
if (npages < 1) {
|
|
/* Check if it's an I/O mapping */
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma(current->mm, hva);
|
|
if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
|
|
(vma->vm_flags & VM_PFNMAP)) {
|
|
pfn = vma->vm_pgoff +
|
|
((hva - vma->vm_start) >> PAGE_SHIFT);
|
|
pte_size = psize;
|
|
is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
|
|
write_ok = vma->vm_flags & VM_WRITE;
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
if (!pfn)
|
|
goto out_put;
|
|
} else {
|
|
page = pages[0];
|
|
pfn = page_to_pfn(page);
|
|
if (PageHuge(page)) {
|
|
page = compound_head(page);
|
|
pte_size <<= compound_order(page);
|
|
}
|
|
/* if the guest wants write access, see if that is OK */
|
|
if (!writing && hpte_is_writable(r)) {
|
|
pte_t *ptep, pte;
|
|
unsigned long flags;
|
|
/*
|
|
* We need to protect against page table destruction
|
|
* hugepage split and collapse.
|
|
*/
|
|
local_irq_save(flags);
|
|
ptep = find_linux_pte_or_hugepte(current->mm->pgd,
|
|
hva, NULL, NULL);
|
|
if (ptep) {
|
|
pte = kvmppc_read_update_linux_pte(ptep, 1);
|
|
if (pte_write(pte))
|
|
write_ok = 1;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
|
|
if (psize > pte_size)
|
|
goto out_put;
|
|
|
|
/* Check WIMG vs. the actual page we're accessing */
|
|
if (!hpte_cache_flags_ok(r, is_ci)) {
|
|
if (is_ci)
|
|
goto out_put;
|
|
/*
|
|
* Allow guest to map emulated device memory as
|
|
* uncacheable, but actually make it cacheable.
|
|
*/
|
|
r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
|
|
}
|
|
|
|
/*
|
|
* Set the HPTE to point to pfn.
|
|
* Since the pfn is at PAGE_SIZE granularity, make sure we
|
|
* don't mask out lower-order bits if psize < PAGE_SIZE.
|
|
*/
|
|
if (psize < PAGE_SIZE)
|
|
psize = PAGE_SIZE;
|
|
r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
|
|
if (hpte_is_writable(r) && !write_ok)
|
|
r = hpte_make_readonly(r);
|
|
ret = RESUME_GUEST;
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
|
|
be64_to_cpu(hptep[1]) != hpte[1] ||
|
|
rev->guest_rpte != hpte[2])
|
|
/* HPTE has been changed under us; let the guest retry */
|
|
goto out_unlock;
|
|
hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
|
|
|
|
/* Always put the HPTE in the rmap chain for the page base address */
|
|
rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
|
|
lock_rmap(rmap);
|
|
|
|
/* Check if we might have been invalidated; let the guest retry if so */
|
|
ret = RESUME_GUEST;
|
|
if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
|
|
unlock_rmap(rmap);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
|
|
rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
|
|
r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
|
|
|
|
if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
|
|
/* HPTE was previously valid, so we need to invalidate it */
|
|
unlock_rmap(rmap);
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
kvmppc_invalidate_hpte(kvm, hptep, index);
|
|
/* don't lose previous R and C bits */
|
|
r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
|
|
} else {
|
|
kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
|
|
}
|
|
|
|
hptep[1] = cpu_to_be64(r);
|
|
eieio();
|
|
__unlock_hpte(hptep, hpte[0]);
|
|
asm volatile("ptesync" : : : "memory");
|
|
preempt_enable();
|
|
if (page && hpte_is_writable(r))
|
|
SetPageDirty(page);
|
|
|
|
out_put:
|
|
trace_kvm_page_fault_exit(vcpu, hpte, ret);
|
|
|
|
if (page) {
|
|
/*
|
|
* We drop pages[0] here, not page because page might
|
|
* have been set to the head page of a compound, but
|
|
* we have to drop the reference on the correct tail
|
|
* page to match the get inside gup()
|
|
*/
|
|
put_page(pages[0]);
|
|
}
|
|
return ret;
|
|
|
|
out_unlock:
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
preempt_enable();
|
|
goto out_put;
|
|
}
|
|
|
|
static void kvmppc_rmap_reset(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int srcu_idx;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
/*
|
|
* This assumes it is acceptable to lose reference and
|
|
* change bits across a reset.
|
|
*/
|
|
memset(memslot->arch.rmap, 0,
|
|
memslot->npages * sizeof(*memslot->arch.rmap));
|
|
}
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
}
|
|
|
|
static int kvm_handle_hva_range(struct kvm *kvm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
int (*handler)(struct kvm *kvm,
|
|
unsigned long *rmapp,
|
|
unsigned long gfn))
|
|
{
|
|
int ret;
|
|
int retval = 0;
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn, gfn+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
|
|
for (; gfn < gfn_end; ++gfn) {
|
|
gfn_t gfn_offset = gfn - memslot->base_gfn;
|
|
|
|
ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
|
|
retval |= ret;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
|
|
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn))
|
|
{
|
|
return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
|
|
}
|
|
|
|
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long h, i, j;
|
|
__be64 *hptep;
|
|
unsigned long ptel, psize, rcbits;
|
|
|
|
for (;;) {
|
|
lock_rmap(rmapp);
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* To avoid an ABBA deadlock with the HPTE lock bit,
|
|
* we can't spin on the HPTE lock while holding the
|
|
* rmap chain lock.
|
|
*/
|
|
i = *rmapp & KVMPPC_RMAP_INDEX;
|
|
hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
j = rev[i].forw;
|
|
if (j == i) {
|
|
/* chain is now empty */
|
|
*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
|
|
} else {
|
|
/* remove i from chain */
|
|
h = rev[i].back;
|
|
rev[h].forw = j;
|
|
rev[j].back = h;
|
|
rev[i].forw = rev[i].back = i;
|
|
*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
ptel = rev[i].guest_rpte;
|
|
psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
|
|
if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
|
|
hpte_rpn(ptel, psize) == gfn) {
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
|
/* Harvest R and C */
|
|
rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
|
|
*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
|
|
if (rcbits & HPTE_R_C)
|
|
kvmppc_update_rmap_change(rmapp, psize);
|
|
if (rcbits & ~rev[i].guest_rpte) {
|
|
rev[i].guest_rpte = ptel | rcbits;
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
}
|
|
}
|
|
unlock_rmap(rmapp);
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long *rmapp;
|
|
unsigned long gfn;
|
|
unsigned long n;
|
|
|
|
rmapp = memslot->arch.rmap;
|
|
gfn = memslot->base_gfn;
|
|
for (n = memslot->npages; n; --n) {
|
|
/*
|
|
* Testing the present bit without locking is OK because
|
|
* the memslot has been marked invalid already, and hence
|
|
* no new HPTEs referencing this page can be created,
|
|
* thus the present bit can't go from 0 to 1.
|
|
*/
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT)
|
|
kvm_unmap_rmapp(kvm, rmapp, gfn);
|
|
++rmapp;
|
|
++gfn;
|
|
}
|
|
}
|
|
|
|
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long head, i, j;
|
|
__be64 *hptep;
|
|
int ret = 0;
|
|
|
|
retry:
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED) {
|
|
*rmapp &= ~KVMPPC_RMAP_REFERENCED;
|
|
ret = 1;
|
|
}
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
|
|
j = rev[i].forw;
|
|
|
|
/* If this HPTE isn't referenced, ignore it */
|
|
if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
|
|
continue;
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
|
|
(be64_to_cpu(hptep[1]) & HPTE_R_R)) {
|
|
kvmppc_clear_ref_hpte(kvm, hptep, i);
|
|
if (!(rev[i].guest_rpte & HPTE_R_R)) {
|
|
rev[i].guest_rpte |= HPTE_R_R;
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
}
|
|
ret = 1;
|
|
}
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
} while ((i = j) != head);
|
|
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
|
|
}
|
|
|
|
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long gfn)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long head, i, j;
|
|
unsigned long *hp;
|
|
int ret = 1;
|
|
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
return 1;
|
|
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
goto out;
|
|
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT) {
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
|
|
j = rev[i].forw;
|
|
if (be64_to_cpu(hp[1]) & HPTE_R_R)
|
|
goto out;
|
|
} while ((i = j) != head);
|
|
}
|
|
ret = 0;
|
|
|
|
out:
|
|
unlock_rmap(rmapp);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
|
|
}
|
|
|
|
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
|
|
}
|
|
|
|
static int vcpus_running(struct kvm *kvm)
|
|
{
|
|
return atomic_read(&kvm->arch.vcpus_running) != 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of system pages that are dirty.
|
|
* This can be more than 1 if we find a huge-page HPTE.
|
|
*/
|
|
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
|
|
{
|
|
struct revmap_entry *rev = kvm->arch.revmap;
|
|
unsigned long head, i, j;
|
|
unsigned long n;
|
|
unsigned long v, r;
|
|
__be64 *hptep;
|
|
int npages_dirty = 0;
|
|
|
|
retry:
|
|
lock_rmap(rmapp);
|
|
if (*rmapp & KVMPPC_RMAP_CHANGED) {
|
|
long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
|
|
>> KVMPPC_RMAP_CHG_SHIFT;
|
|
*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
|
|
npages_dirty = 1;
|
|
if (change_order > PAGE_SHIFT)
|
|
npages_dirty = 1ul << (change_order - PAGE_SHIFT);
|
|
}
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
unlock_rmap(rmapp);
|
|
return npages_dirty;
|
|
}
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
do {
|
|
unsigned long hptep1;
|
|
hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
|
|
j = rev[i].forw;
|
|
|
|
/*
|
|
* Checking the C (changed) bit here is racy since there
|
|
* is no guarantee about when the hardware writes it back.
|
|
* If the HPTE is not writable then it is stable since the
|
|
* page can't be written to, and we would have done a tlbie
|
|
* (which forces the hardware to complete any writeback)
|
|
* when making the HPTE read-only.
|
|
* If vcpus are running then this call is racy anyway
|
|
* since the page could get dirtied subsequently, so we
|
|
* expect there to be a further call which would pick up
|
|
* any delayed C bit writeback.
|
|
* Otherwise we need to do the tlbie even if C==0 in
|
|
* order to pick up any delayed writeback of C.
|
|
*/
|
|
hptep1 = be64_to_cpu(hptep[1]);
|
|
if (!(hptep1 & HPTE_R_C) &&
|
|
(!hpte_is_writable(hptep1) || vcpus_running(kvm)))
|
|
continue;
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
unlock_rmap(rmapp);
|
|
while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
|
|
/* Now check and modify the HPTE */
|
|
if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
|
continue;
|
|
}
|
|
|
|
/* need to make it temporarily absent so C is stable */
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
|
v = be64_to_cpu(hptep[0]);
|
|
r = be64_to_cpu(hptep[1]);
|
|
if (r & HPTE_R_C) {
|
|
hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
|
|
if (!(rev[i].guest_rpte & HPTE_R_C)) {
|
|
rev[i].guest_rpte |= HPTE_R_C;
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
}
|
|
n = hpte_page_size(v, r);
|
|
n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (n > npages_dirty)
|
|
npages_dirty = n;
|
|
eieio();
|
|
}
|
|
v &= ~HPTE_V_ABSENT;
|
|
v |= HPTE_V_VALID;
|
|
__unlock_hpte(hptep, v);
|
|
} while ((i = j) != head);
|
|
|
|
unlock_rmap(rmapp);
|
|
return npages_dirty;
|
|
}
|
|
|
|
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
|
|
struct kvm_memory_slot *memslot,
|
|
unsigned long *map)
|
|
{
|
|
unsigned long gfn;
|
|
|
|
if (!vpa->dirty || !vpa->pinned_addr)
|
|
return;
|
|
gfn = vpa->gpa >> PAGE_SHIFT;
|
|
if (gfn < memslot->base_gfn ||
|
|
gfn >= memslot->base_gfn + memslot->npages)
|
|
return;
|
|
|
|
vpa->dirty = false;
|
|
if (map)
|
|
__set_bit_le(gfn - memslot->base_gfn, map);
|
|
}
|
|
|
|
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long *map)
|
|
{
|
|
unsigned long i, j;
|
|
unsigned long *rmapp;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
preempt_disable();
|
|
rmapp = memslot->arch.rmap;
|
|
for (i = 0; i < memslot->npages; ++i) {
|
|
int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
|
|
/*
|
|
* Note that if npages > 0 then i must be a multiple of npages,
|
|
* since we always put huge-page HPTEs in the rmap chain
|
|
* corresponding to their page base address.
|
|
*/
|
|
if (npages && map)
|
|
for (j = i; npages; ++j, --npages)
|
|
__set_bit_le(j, map);
|
|
++rmapp;
|
|
}
|
|
|
|
/* Harvest dirty bits from VPA and DTL updates */
|
|
/* Note: we never modify the SLB shadow buffer areas */
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
|
|
harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
}
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
|
|
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
|
|
unsigned long *nb_ret)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn = gpa >> PAGE_SHIFT;
|
|
struct page *page, *pages[1];
|
|
int npages;
|
|
unsigned long hva, offset;
|
|
int srcu_idx;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
goto err;
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
npages = get_user_pages_fast(hva, 1, 1, pages);
|
|
if (npages < 1)
|
|
goto err;
|
|
page = pages[0];
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
offset = gpa & (PAGE_SIZE - 1);
|
|
if (nb_ret)
|
|
*nb_ret = PAGE_SIZE - offset;
|
|
return page_address(page) + offset;
|
|
|
|
err:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
return NULL;
|
|
}
|
|
|
|
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
|
|
bool dirty)
|
|
{
|
|
struct page *page = virt_to_page(va);
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long gfn;
|
|
unsigned long *rmap;
|
|
int srcu_idx;
|
|
|
|
put_page(page);
|
|
|
|
if (!dirty)
|
|
return;
|
|
|
|
/* We need to mark this page dirty in the rmap chain */
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
if (memslot) {
|
|
rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
lock_rmap(rmap);
|
|
*rmap |= KVMPPC_RMAP_CHANGED;
|
|
unlock_rmap(rmap);
|
|
}
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
}
|
|
|
|
/*
|
|
* Functions for reading and writing the hash table via reads and
|
|
* writes on a file descriptor.
|
|
*
|
|
* Reads return the guest view of the hash table, which has to be
|
|
* pieced together from the real hash table and the guest_rpte
|
|
* values in the revmap array.
|
|
*
|
|
* On writes, each HPTE written is considered in turn, and if it
|
|
* is valid, it is written to the HPT as if an H_ENTER with the
|
|
* exact flag set was done. When the invalid count is non-zero
|
|
* in the header written to the stream, the kernel will make
|
|
* sure that that many HPTEs are invalid, and invalidate them
|
|
* if not.
|
|
*/
|
|
|
|
struct kvm_htab_ctx {
|
|
unsigned long index;
|
|
unsigned long flags;
|
|
struct kvm *kvm;
|
|
int first_pass;
|
|
};
|
|
|
|
#define HPTE_SIZE (2 * sizeof(unsigned long))
|
|
|
|
/*
|
|
* Returns 1 if this HPT entry has been modified or has pending
|
|
* R/C bit changes.
|
|
*/
|
|
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
|
|
{
|
|
unsigned long rcbits_unset;
|
|
|
|
if (revp->guest_rpte & HPTE_GR_MODIFIED)
|
|
return 1;
|
|
|
|
/* Also need to consider changes in reference and changed bits */
|
|
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
|
|
if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
|
|
(be64_to_cpu(hptp[1]) & rcbits_unset))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long record_hpte(unsigned long flags, __be64 *hptp,
|
|
unsigned long *hpte, struct revmap_entry *revp,
|
|
int want_valid, int first_pass)
|
|
{
|
|
unsigned long v, r;
|
|
unsigned long rcbits_unset;
|
|
int ok = 1;
|
|
int valid, dirty;
|
|
|
|
/* Unmodified entries are uninteresting except on the first pass */
|
|
dirty = hpte_dirty(revp, hptp);
|
|
if (!first_pass && !dirty)
|
|
return 0;
|
|
|
|
valid = 0;
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
|
|
valid = 1;
|
|
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
|
|
!(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
|
|
valid = 0;
|
|
}
|
|
if (valid != want_valid)
|
|
return 0;
|
|
|
|
v = r = 0;
|
|
if (valid || dirty) {
|
|
/* lock the HPTE so it's stable and read it */
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = be64_to_cpu(hptp[0]);
|
|
|
|
/* re-evaluate valid and dirty from synchronized HPTE value */
|
|
valid = !!(v & HPTE_V_VALID);
|
|
dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
|
|
|
|
/* Harvest R and C into guest view if necessary */
|
|
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
|
|
if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
|
|
revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
|
|
(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
|
|
dirty = 1;
|
|
}
|
|
|
|
if (v & HPTE_V_ABSENT) {
|
|
v &= ~HPTE_V_ABSENT;
|
|
v |= HPTE_V_VALID;
|
|
valid = 1;
|
|
}
|
|
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
|
|
valid = 0;
|
|
|
|
r = revp->guest_rpte;
|
|
/* only clear modified if this is the right sort of entry */
|
|
if (valid == want_valid && dirty) {
|
|
r &= ~HPTE_GR_MODIFIED;
|
|
revp->guest_rpte = r;
|
|
}
|
|
unlock_hpte(hptp, be64_to_cpu(hptp[0]));
|
|
preempt_enable();
|
|
if (!(valid == want_valid && (first_pass || dirty)))
|
|
ok = 0;
|
|
}
|
|
hpte[0] = cpu_to_be64(v);
|
|
hpte[1] = cpu_to_be64(r);
|
|
return ok;
|
|
}
|
|
|
|
static ssize_t kvm_htab_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct kvm_htab_ctx *ctx = file->private_data;
|
|
struct kvm *kvm = ctx->kvm;
|
|
struct kvm_get_htab_header hdr;
|
|
__be64 *hptp;
|
|
struct revmap_entry *revp;
|
|
unsigned long i, nb, nw;
|
|
unsigned long __user *lbuf;
|
|
struct kvm_get_htab_header __user *hptr;
|
|
unsigned long flags;
|
|
int first_pass;
|
|
unsigned long hpte[2];
|
|
|
|
if (!access_ok(VERIFY_WRITE, buf, count))
|
|
return -EFAULT;
|
|
|
|
first_pass = ctx->first_pass;
|
|
flags = ctx->flags;
|
|
|
|
i = ctx->index;
|
|
hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
|
|
revp = kvm->arch.revmap + i;
|
|
lbuf = (unsigned long __user *)buf;
|
|
|
|
nb = 0;
|
|
while (nb + sizeof(hdr) + HPTE_SIZE < count) {
|
|
/* Initialize header */
|
|
hptr = (struct kvm_get_htab_header __user *)buf;
|
|
hdr.n_valid = 0;
|
|
hdr.n_invalid = 0;
|
|
nw = nb;
|
|
nb += sizeof(hdr);
|
|
lbuf = (unsigned long __user *)(buf + sizeof(hdr));
|
|
|
|
/* Skip uninteresting entries, i.e. clean on not-first pass */
|
|
if (!first_pass) {
|
|
while (i < kvm->arch.hpt_npte &&
|
|
!hpte_dirty(revp, hptp)) {
|
|
++i;
|
|
hptp += 2;
|
|
++revp;
|
|
}
|
|
}
|
|
hdr.index = i;
|
|
|
|
/* Grab a series of valid entries */
|
|
while (i < kvm->arch.hpt_npte &&
|
|
hdr.n_valid < 0xffff &&
|
|
nb + HPTE_SIZE < count &&
|
|
record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
|
|
/* valid entry, write it out */
|
|
++hdr.n_valid;
|
|
if (__put_user(hpte[0], lbuf) ||
|
|
__put_user(hpte[1], lbuf + 1))
|
|
return -EFAULT;
|
|
nb += HPTE_SIZE;
|
|
lbuf += 2;
|
|
++i;
|
|
hptp += 2;
|
|
++revp;
|
|
}
|
|
/* Now skip invalid entries while we can */
|
|
while (i < kvm->arch.hpt_npte &&
|
|
hdr.n_invalid < 0xffff &&
|
|
record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
|
|
/* found an invalid entry */
|
|
++hdr.n_invalid;
|
|
++i;
|
|
hptp += 2;
|
|
++revp;
|
|
}
|
|
|
|
if (hdr.n_valid || hdr.n_invalid) {
|
|
/* write back the header */
|
|
if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
|
|
return -EFAULT;
|
|
nw = nb;
|
|
buf = (char __user *)lbuf;
|
|
} else {
|
|
nb = nw;
|
|
}
|
|
|
|
/* Check if we've wrapped around the hash table */
|
|
if (i >= kvm->arch.hpt_npte) {
|
|
i = 0;
|
|
ctx->first_pass = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctx->index = i;
|
|
|
|
return nb;
|
|
}
|
|
|
|
static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct kvm_htab_ctx *ctx = file->private_data;
|
|
struct kvm *kvm = ctx->kvm;
|
|
struct kvm_get_htab_header hdr;
|
|
unsigned long i, j;
|
|
unsigned long v, r;
|
|
unsigned long __user *lbuf;
|
|
__be64 *hptp;
|
|
unsigned long tmp[2];
|
|
ssize_t nb;
|
|
long int err, ret;
|
|
int hpte_setup;
|
|
|
|
if (!access_ok(VERIFY_READ, buf, count))
|
|
return -EFAULT;
|
|
|
|
/* lock out vcpus from running while we're doing this */
|
|
mutex_lock(&kvm->lock);
|
|
hpte_setup = kvm->arch.hpte_setup_done;
|
|
if (hpte_setup) {
|
|
kvm->arch.hpte_setup_done = 0; /* temporarily */
|
|
/* order hpte_setup_done vs. vcpus_running */
|
|
smp_mb();
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
|
kvm->arch.hpte_setup_done = 1;
|
|
mutex_unlock(&kvm->lock);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
err = 0;
|
|
for (nb = 0; nb + sizeof(hdr) <= count; ) {
|
|
err = -EFAULT;
|
|
if (__copy_from_user(&hdr, buf, sizeof(hdr)))
|
|
break;
|
|
|
|
err = 0;
|
|
if (nb + hdr.n_valid * HPTE_SIZE > count)
|
|
break;
|
|
|
|
nb += sizeof(hdr);
|
|
buf += sizeof(hdr);
|
|
|
|
err = -EINVAL;
|
|
i = hdr.index;
|
|
if (i >= kvm->arch.hpt_npte ||
|
|
i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
|
|
break;
|
|
|
|
hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
|
|
lbuf = (unsigned long __user *)buf;
|
|
for (j = 0; j < hdr.n_valid; ++j) {
|
|
__be64 hpte_v;
|
|
__be64 hpte_r;
|
|
|
|
err = -EFAULT;
|
|
if (__get_user(hpte_v, lbuf) ||
|
|
__get_user(hpte_r, lbuf + 1))
|
|
goto out;
|
|
v = be64_to_cpu(hpte_v);
|
|
r = be64_to_cpu(hpte_r);
|
|
err = -EINVAL;
|
|
if (!(v & HPTE_V_VALID))
|
|
goto out;
|
|
lbuf += 2;
|
|
nb += HPTE_SIZE;
|
|
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
|
|
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
|
|
err = -EIO;
|
|
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
|
|
tmp);
|
|
if (ret != H_SUCCESS) {
|
|
pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
|
|
"r=%lx\n", ret, i, v, r);
|
|
goto out;
|
|
}
|
|
if (!hpte_setup && is_vrma_hpte(v)) {
|
|
unsigned long psize = hpte_base_page_size(v, r);
|
|
unsigned long senc = slb_pgsize_encoding(psize);
|
|
unsigned long lpcr;
|
|
|
|
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
|
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
|
lpcr = senc << (LPCR_VRMASD_SH - 4);
|
|
kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
|
|
hpte_setup = 1;
|
|
}
|
|
++i;
|
|
hptp += 2;
|
|
}
|
|
|
|
for (j = 0; j < hdr.n_invalid; ++j) {
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
|
|
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
|
|
++i;
|
|
hptp += 2;
|
|
}
|
|
err = 0;
|
|
}
|
|
|
|
out:
|
|
/* Order HPTE updates vs. hpte_setup_done */
|
|
smp_wmb();
|
|
kvm->arch.hpte_setup_done = hpte_setup;
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
if (err)
|
|
return err;
|
|
return nb;
|
|
}
|
|
|
|
static int kvm_htab_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_htab_ctx *ctx = filp->private_data;
|
|
|
|
filp->private_data = NULL;
|
|
if (!(ctx->flags & KVM_GET_HTAB_WRITE))
|
|
atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
|
|
kvm_put_kvm(ctx->kvm);
|
|
kfree(ctx);
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations kvm_htab_fops = {
|
|
.read = kvm_htab_read,
|
|
.write = kvm_htab_write,
|
|
.llseek = default_llseek,
|
|
.release = kvm_htab_release,
|
|
};
|
|
|
|
int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
|
|
{
|
|
int ret;
|
|
struct kvm_htab_ctx *ctx;
|
|
int rwflag;
|
|
|
|
/* reject flags we don't recognize */
|
|
if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
|
|
return -EINVAL;
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
kvm_get_kvm(kvm);
|
|
ctx->kvm = kvm;
|
|
ctx->index = ghf->start_index;
|
|
ctx->flags = ghf->flags;
|
|
ctx->first_pass = 1;
|
|
|
|
rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
|
|
ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
|
|
if (ret < 0) {
|
|
kvm_put_kvm(kvm);
|
|
return ret;
|
|
}
|
|
|
|
if (rwflag == O_RDONLY) {
|
|
mutex_lock(&kvm->slots_lock);
|
|
atomic_inc(&kvm->arch.hpte_mod_interest);
|
|
/* make sure kvmppc_do_h_enter etc. see the increment */
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct debugfs_htab_state {
|
|
struct kvm *kvm;
|
|
struct mutex mutex;
|
|
unsigned long hpt_index;
|
|
int chars_left;
|
|
int buf_index;
|
|
char buf[64];
|
|
};
|
|
|
|
static int debugfs_htab_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct kvm *kvm = inode->i_private;
|
|
struct debugfs_htab_state *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
kvm_get_kvm(kvm);
|
|
p->kvm = kvm;
|
|
mutex_init(&p->mutex);
|
|
file->private_data = p;
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static int debugfs_htab_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct debugfs_htab_state *p = file->private_data;
|
|
|
|
kvm_put_kvm(p->kvm);
|
|
kfree(p);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
struct debugfs_htab_state *p = file->private_data;
|
|
ssize_t ret, r;
|
|
unsigned long i, n;
|
|
unsigned long v, hr, gr;
|
|
struct kvm *kvm;
|
|
__be64 *hptp;
|
|
|
|
ret = mutex_lock_interruptible(&p->mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (p->chars_left) {
|
|
n = p->chars_left;
|
|
if (n > len)
|
|
n = len;
|
|
r = copy_to_user(buf, p->buf + p->buf_index, n);
|
|
n -= r;
|
|
p->chars_left -= n;
|
|
p->buf_index += n;
|
|
buf += n;
|
|
len -= n;
|
|
ret = n;
|
|
if (r) {
|
|
if (!n)
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
kvm = p->kvm;
|
|
i = p->hpt_index;
|
|
hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
|
|
for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
|
|
if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
continue;
|
|
|
|
/* lock the HPTE so it's stable and read it */
|
|
preempt_disable();
|
|
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
|
|
cpu_relax();
|
|
v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
|
|
hr = be64_to_cpu(hptp[1]);
|
|
gr = kvm->arch.revmap[i].guest_rpte;
|
|
unlock_hpte(hptp, v);
|
|
preempt_enable();
|
|
|
|
if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
continue;
|
|
|
|
n = scnprintf(p->buf, sizeof(p->buf),
|
|
"%6lx %.16lx %.16lx %.16lx\n",
|
|
i, v, hr, gr);
|
|
p->chars_left = n;
|
|
if (n > len)
|
|
n = len;
|
|
r = copy_to_user(buf, p->buf, n);
|
|
n -= r;
|
|
p->chars_left -= n;
|
|
p->buf_index = n;
|
|
buf += n;
|
|
len -= n;
|
|
ret += n;
|
|
if (r) {
|
|
if (!ret)
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
p->hpt_index = i;
|
|
|
|
out:
|
|
mutex_unlock(&p->mutex);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
return -EACCES;
|
|
}
|
|
|
|
static const struct file_operations debugfs_htab_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = debugfs_htab_open,
|
|
.release = debugfs_htab_release,
|
|
.read = debugfs_htab_read,
|
|
.write = debugfs_htab_write,
|
|
.llseek = generic_file_llseek,
|
|
};
|
|
|
|
void kvmppc_mmu_debugfs_init(struct kvm *kvm)
|
|
{
|
|
kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
|
|
kvm->arch.debugfs_dir, kvm,
|
|
&debugfs_htab_fops);
|
|
}
|
|
|
|
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
|
|
|
|
vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
|
|
|
|
mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
|
|
mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
|
|
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
|
|
}
|