linux/drivers/net/ethernet/intel/fm10k/fm10k_pci.c
Jacob Keller 80043f3bf5 fm10k: add support for extra debug statistics
Add a private ethtool flag to enable display of these statistics, which
are generally less useful. However, sometimes it can be useful for
debugging purposes. The most useful portion is the ability to see what
the PF thinks the VF mailboxes look like.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Tested-by: Krishneil Singh <krishneil.k.singh@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2015-09-22 15:58:27 -07:00

2310 lines
62 KiB
C

/* Intel Ethernet Switch Host Interface Driver
* Copyright(c) 2013 - 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
#include <linux/module.h>
#include <linux/aer.h>
#include "fm10k.h"
static const struct fm10k_info *fm10k_info_tbl[] = {
[fm10k_device_pf] = &fm10k_pf_info,
[fm10k_device_vf] = &fm10k_vf_info,
};
/**
* fm10k_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id fm10k_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
/* required last entry */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
{
struct fm10k_intfc *interface = hw->back;
u16 value = 0;
if (FM10K_REMOVED(hw->hw_addr))
return ~value;
pci_read_config_word(interface->pdev, reg, &value);
if (value == 0xFFFF)
fm10k_write_flush(hw);
return value;
}
u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
{
u32 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
u32 value = 0;
if (FM10K_REMOVED(hw_addr))
return ~value;
value = readl(&hw_addr[reg]);
if (!(~value) && (!reg || !(~readl(hw_addr)))) {
struct fm10k_intfc *interface = hw->back;
struct net_device *netdev = interface->netdev;
hw->hw_addr = NULL;
netif_device_detach(netdev);
netdev_err(netdev, "PCIe link lost, device now detached\n");
}
return value;
}
static int fm10k_hw_ready(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
fm10k_write_flush(hw);
return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
}
void fm10k_service_event_schedule(struct fm10k_intfc *interface)
{
if (!test_bit(__FM10K_SERVICE_DISABLE, &interface->state) &&
!test_and_set_bit(__FM10K_SERVICE_SCHED, &interface->state))
queue_work(fm10k_workqueue, &interface->service_task);
}
static void fm10k_service_event_complete(struct fm10k_intfc *interface)
{
BUG_ON(!test_bit(__FM10K_SERVICE_SCHED, &interface->state));
/* flush memory to make sure state is correct before next watchog */
smp_mb__before_atomic();
clear_bit(__FM10K_SERVICE_SCHED, &interface->state);
}
/**
* fm10k_service_timer - Timer Call-back
* @data: pointer to interface cast into an unsigned long
**/
static void fm10k_service_timer(unsigned long data)
{
struct fm10k_intfc *interface = (struct fm10k_intfc *)data;
/* Reset the timer */
mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
fm10k_service_event_schedule(interface);
}
static void fm10k_detach_subtask(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
/* do nothing if device is still present or hw_addr is set */
if (netif_device_present(netdev) || interface->hw.hw_addr)
return;
rtnl_lock();
if (netif_running(netdev))
dev_close(netdev);
rtnl_unlock();
}
static void fm10k_reinit(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
WARN_ON(in_interrupt());
/* put off any impending NetWatchDogTimeout */
netdev->trans_start = jiffies;
while (test_and_set_bit(__FM10K_RESETTING, &interface->state))
usleep_range(1000, 2000);
rtnl_lock();
fm10k_iov_suspend(interface->pdev);
if (netif_running(netdev))
fm10k_close(netdev);
fm10k_mbx_free_irq(interface);
/* delay any future reset requests */
interface->last_reset = jiffies + (10 * HZ);
/* reset and initialize the hardware so it is in a known state */
err = hw->mac.ops.reset_hw(hw) ? : hw->mac.ops.init_hw(hw);
if (err)
dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
/* reassociate interrupts */
fm10k_mbx_request_irq(interface);
/* update hardware address for VFs if perm_addr has changed */
if (hw->mac.type == fm10k_mac_vf) {
if (is_valid_ether_addr(hw->mac.perm_addr)) {
ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
}
if (hw->mac.vlan_override)
netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
else
netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
}
/* reset clock */
fm10k_ts_reset(interface);
if (netif_running(netdev))
fm10k_open(netdev);
fm10k_iov_resume(interface->pdev);
rtnl_unlock();
clear_bit(__FM10K_RESETTING, &interface->state);
}
static void fm10k_reset_subtask(struct fm10k_intfc *interface)
{
if (!(interface->flags & FM10K_FLAG_RESET_REQUESTED))
return;
interface->flags &= ~FM10K_FLAG_RESET_REQUESTED;
netdev_err(interface->netdev, "Reset interface\n");
fm10k_reinit(interface);
}
/**
* fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
* @interface: board private structure
*
* Configure the SWPRI to PC mapping for the port.
**/
static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int i;
/* clear flag indicating update is needed */
interface->flags &= ~FM10K_FLAG_SWPRI_CONFIG;
/* these registers are only available on the PF */
if (hw->mac.type != fm10k_mac_pf)
return;
/* configure SWPRI to PC map */
for (i = 0; i < FM10K_SWPRI_MAX; i++)
fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
netdev_get_prio_tc_map(netdev, i));
}
/**
* fm10k_watchdog_update_host_state - Update the link status based on host.
* @interface: board private structure
**/
static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
s32 err;
if (test_bit(__FM10K_LINK_DOWN, &interface->state)) {
interface->host_ready = false;
if (time_is_after_jiffies(interface->link_down_event))
return;
clear_bit(__FM10K_LINK_DOWN, &interface->state);
}
if (interface->flags & FM10K_FLAG_SWPRI_CONFIG) {
if (rtnl_trylock()) {
fm10k_configure_swpri_map(interface);
rtnl_unlock();
}
}
/* lock the mailbox for transmit and receive */
fm10k_mbx_lock(interface);
err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
if (err && time_is_before_jiffies(interface->last_reset))
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
/* free the lock */
fm10k_mbx_unlock(interface);
}
/**
* fm10k_mbx_subtask - Process upstream and downstream mailboxes
* @interface: board private structure
*
* This function will process both the upstream and downstream mailboxes.
**/
static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
{
/* process upstream mailbox and update device state */
fm10k_watchdog_update_host_state(interface);
/* process downstream mailboxes */
fm10k_iov_mbx(interface);
}
/**
* fm10k_watchdog_host_is_ready - Update netdev status based on host ready
* @interface: board private structure
**/
static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
/* only continue if link state is currently down */
if (netif_carrier_ok(netdev))
return;
netif_info(interface, drv, netdev, "NIC Link is up\n");
netif_carrier_on(netdev);
netif_tx_wake_all_queues(netdev);
}
/**
* fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
* @interface: board private structure
**/
static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
/* only continue if link state is currently up */
if (!netif_carrier_ok(netdev))
return;
netif_info(interface, drv, netdev, "NIC Link is down\n");
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
}
/**
* fm10k_update_stats - Update the board statistics counters.
* @interface: board private structure
**/
void fm10k_update_stats(struct fm10k_intfc *interface)
{
struct net_device_stats *net_stats = &interface->netdev->stats;
struct fm10k_hw *hw = &interface->hw;
u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
u64 rx_link_errors = 0;
u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
u64 bytes, pkts;
int i;
/* do not allow stats update via service task for next second */
interface->next_stats_update = jiffies + HZ;
/* gather some stats to the interface struct that are per queue */
for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
struct fm10k_ring *tx_ring = interface->tx_ring[i];
restart_queue += tx_ring->tx_stats.restart_queue;
tx_busy += tx_ring->tx_stats.tx_busy;
tx_csum_errors += tx_ring->tx_stats.csum_err;
bytes += tx_ring->stats.bytes;
pkts += tx_ring->stats.packets;
hw_csum_tx_good += tx_ring->tx_stats.csum_good;
}
interface->restart_queue = restart_queue;
interface->tx_busy = tx_busy;
net_stats->tx_bytes = bytes;
net_stats->tx_packets = pkts;
interface->tx_csum_errors = tx_csum_errors;
interface->hw_csum_tx_good = hw_csum_tx_good;
/* gather some stats to the interface struct that are per queue */
for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
struct fm10k_ring *rx_ring = interface->rx_ring[i];
bytes += rx_ring->stats.bytes;
pkts += rx_ring->stats.packets;
alloc_failed += rx_ring->rx_stats.alloc_failed;
rx_csum_errors += rx_ring->rx_stats.csum_err;
rx_errors += rx_ring->rx_stats.errors;
hw_csum_rx_good += rx_ring->rx_stats.csum_good;
rx_switch_errors += rx_ring->rx_stats.switch_errors;
rx_drops += rx_ring->rx_stats.drops;
rx_pp_errors += rx_ring->rx_stats.pp_errors;
rx_link_errors += rx_ring->rx_stats.link_errors;
rx_length_errors += rx_ring->rx_stats.length_errors;
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = pkts;
interface->alloc_failed = alloc_failed;
interface->rx_csum_errors = rx_csum_errors;
interface->hw_csum_rx_good = hw_csum_rx_good;
interface->rx_switch_errors = rx_switch_errors;
interface->rx_drops = rx_drops;
interface->rx_pp_errors = rx_pp_errors;
interface->rx_link_errors = rx_link_errors;
interface->rx_length_errors = rx_length_errors;
hw->mac.ops.update_hw_stats(hw, &interface->stats);
for (i = 0; i < hw->mac.max_queues; i++) {
struct fm10k_hw_stats_q *q = &interface->stats.q[i];
tx_bytes_nic += q->tx_bytes.count;
tx_pkts_nic += q->tx_packets.count;
rx_bytes_nic += q->rx_bytes.count;
rx_pkts_nic += q->rx_packets.count;
rx_drops_nic += q->rx_drops.count;
}
interface->tx_bytes_nic = tx_bytes_nic;
interface->tx_packets_nic = tx_pkts_nic;
interface->rx_bytes_nic = rx_bytes_nic;
interface->rx_packets_nic = rx_pkts_nic;
interface->rx_drops_nic = rx_drops_nic;
/* Fill out the OS statistics structure */
net_stats->rx_errors = rx_errors;
net_stats->rx_dropped = interface->stats.nodesc_drop.count;
}
/**
* fm10k_watchdog_flush_tx - flush queues on host not ready
* @interface - pointer to the device interface structure
**/
static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
{
int some_tx_pending = 0;
int i;
/* nothing to do if carrier is up */
if (netif_carrier_ok(interface->netdev))
return;
for (i = 0; i < interface->num_tx_queues; i++) {
struct fm10k_ring *tx_ring = interface->tx_ring[i];
if (tx_ring->next_to_use != tx_ring->next_to_clean) {
some_tx_pending = 1;
break;
}
}
/* We've lost link, so the controller stops DMA, but we've got
* queued Tx work that's never going to get done, so reset
* controller to flush Tx.
*/
if (some_tx_pending)
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
}
/**
* fm10k_watchdog_subtask - check and bring link up
* @interface - pointer to the device interface structure
**/
static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
{
/* if interface is down do nothing */
if (test_bit(__FM10K_DOWN, &interface->state) ||
test_bit(__FM10K_RESETTING, &interface->state))
return;
if (interface->host_ready)
fm10k_watchdog_host_is_ready(interface);
else
fm10k_watchdog_host_not_ready(interface);
/* update stats only once every second */
if (time_is_before_jiffies(interface->next_stats_update))
fm10k_update_stats(interface);
/* flush any uncompleted work */
fm10k_watchdog_flush_tx(interface);
}
/**
* fm10k_check_hang_subtask - check for hung queues and dropped interrupts
* @interface - pointer to the device interface structure
*
* This function serves two purposes. First it strobes the interrupt lines
* in order to make certain interrupts are occurring. Secondly it sets the
* bits needed to check for TX hangs. As a result we should immediately
* determine if a hang has occurred.
*/
static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
{
int i;
/* If we're down or resetting, just bail */
if (test_bit(__FM10K_DOWN, &interface->state) ||
test_bit(__FM10K_RESETTING, &interface->state))
return;
/* rate limit tx hang checks to only once every 2 seconds */
if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
return;
interface->next_tx_hang_check = jiffies + (2 * HZ);
if (netif_carrier_ok(interface->netdev)) {
/* Force detection of hung controller */
for (i = 0; i < interface->num_tx_queues; i++)
set_check_for_tx_hang(interface->tx_ring[i]);
/* Rearm all in-use q_vectors for immediate firing */
for (i = 0; i < interface->num_q_vectors; i++) {
struct fm10k_q_vector *qv = interface->q_vector[i];
if (!qv->tx.count && !qv->rx.count)
continue;
writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
}
}
}
/**
* fm10k_service_task - manages and runs subtasks
* @work: pointer to work_struct containing our data
**/
static void fm10k_service_task(struct work_struct *work)
{
struct fm10k_intfc *interface;
interface = container_of(work, struct fm10k_intfc, service_task);
/* tasks run even when interface is down */
fm10k_mbx_subtask(interface);
fm10k_detach_subtask(interface);
fm10k_reset_subtask(interface);
/* tasks only run when interface is up */
fm10k_watchdog_subtask(interface);
fm10k_check_hang_subtask(interface);
fm10k_ts_tx_subtask(interface);
/* release lock on service events to allow scheduling next event */
fm10k_service_event_complete(interface);
}
/**
* fm10k_configure_tx_ring - Configure Tx ring after Reset
* @interface: board private structure
* @ring: structure containing ring specific data
*
* Configure the Tx descriptor ring after a reset.
**/
static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
struct fm10k_ring *ring)
{
struct fm10k_hw *hw = &interface->hw;
u64 tdba = ring->dma;
u32 size = ring->count * sizeof(struct fm10k_tx_desc);
u32 txint = FM10K_INT_MAP_DISABLE;
u32 txdctl = FM10K_TXDCTL_ENABLE | (1 << FM10K_TXDCTL_MAX_TIME_SHIFT);
u8 reg_idx = ring->reg_idx;
/* disable queue to avoid issues while updating state */
fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
fm10k_write_flush(hw);
/* possible poll here to verify ring resources have been cleaned */
/* set location and size for descriptor ring */
fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
/* reset head and tail pointers */
fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
/* store tail pointer */
ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
/* reset ntu and ntc to place SW in sync with hardwdare */
ring->next_to_clean = 0;
ring->next_to_use = 0;
/* Map interrupt */
if (ring->q_vector) {
txint = ring->q_vector->v_idx + NON_Q_VECTORS(hw);
txint |= FM10K_INT_MAP_TIMER0;
}
fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
/* enable use of FTAG bit in Tx descriptor, register is RO for VF */
fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
FM10K_PFVTCTL_FTAG_DESC_ENABLE);
/* enable queue */
fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
}
/**
* fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
* @interface: board private structure
* @ring: structure containing ring specific data
*
* Verify the Tx descriptor ring is ready for transmit.
**/
static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
struct fm10k_ring *ring)
{
struct fm10k_hw *hw = &interface->hw;
int wait_loop = 10;
u32 txdctl;
u8 reg_idx = ring->reg_idx;
/* if we are already enabled just exit */
if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
return;
/* poll to verify queue is enabled */
do {
usleep_range(1000, 2000);
txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
} while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
if (!wait_loop)
netif_err(interface, drv, interface->netdev,
"Could not enable Tx Queue %d\n", reg_idx);
}
/**
* fm10k_configure_tx - Configure Transmit Unit after Reset
* @interface: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void fm10k_configure_tx(struct fm10k_intfc *interface)
{
int i;
/* Setup the HW Tx Head and Tail descriptor pointers */
for (i = 0; i < interface->num_tx_queues; i++)
fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
/* poll here to verify that Tx rings are now enabled */
for (i = 0; i < interface->num_tx_queues; i++)
fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
}
/**
* fm10k_configure_rx_ring - Configure Rx ring after Reset
* @interface: board private structure
* @ring: structure containing ring specific data
*
* Configure the Rx descriptor ring after a reset.
**/
static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
struct fm10k_ring *ring)
{
u64 rdba = ring->dma;
struct fm10k_hw *hw = &interface->hw;
u32 size = ring->count * sizeof(union fm10k_rx_desc);
u32 rxqctl = FM10K_RXQCTL_ENABLE | FM10K_RXQCTL_PF;
u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
u32 rxint = FM10K_INT_MAP_DISABLE;
u8 rx_pause = interface->rx_pause;
u8 reg_idx = ring->reg_idx;
/* disable queue to avoid issues while updating state */
fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), 0);
fm10k_write_flush(hw);
/* possible poll here to verify ring resources have been cleaned */
/* set location and size for descriptor ring */
fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
/* reset head and tail pointers */
fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
/* store tail pointer */
ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
/* reset ntu and ntc to place SW in sync with hardwdare */
ring->next_to_clean = 0;
ring->next_to_use = 0;
ring->next_to_alloc = 0;
/* Configure the Rx buffer size for one buff without split */
srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
/* Configure the Rx ring to suppress loopback packets */
srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
/* Enable drop on empty */
#ifdef CONFIG_DCB
if (interface->pfc_en)
rx_pause = interface->pfc_en;
#endif
if (!(rx_pause & (1 << ring->qos_pc)))
rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
/* assign default VLAN to queue */
ring->vid = hw->mac.default_vid;
/* if we have an active VLAN, disable default VID */
if (test_bit(hw->mac.default_vid, interface->active_vlans))
ring->vid |= FM10K_VLAN_CLEAR;
/* Map interrupt */
if (ring->q_vector) {
rxint = ring->q_vector->v_idx + NON_Q_VECTORS(hw);
rxint |= FM10K_INT_MAP_TIMER1;
}
fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
/* enable queue */
fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
/* place buffers on ring for receive data */
fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
}
/**
* fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
* @interface: board private structure
*
* Configure the drop enable bits for the Rx rings.
**/
void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
u8 rx_pause = interface->rx_pause;
int i;
#ifdef CONFIG_DCB
if (interface->pfc_en)
rx_pause = interface->pfc_en;
#endif
for (i = 0; i < interface->num_rx_queues; i++) {
struct fm10k_ring *ring = interface->rx_ring[i];
u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
u8 reg_idx = ring->reg_idx;
if (!(rx_pause & (1 << ring->qos_pc)))
rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
}
}
/**
* fm10k_configure_dglort - Configure Receive DGLORT after reset
* @interface: board private structure
*
* Configure the DGLORT description and RSS tables.
**/
static void fm10k_configure_dglort(struct fm10k_intfc *interface)
{
struct fm10k_dglort_cfg dglort = { 0 };
struct fm10k_hw *hw = &interface->hw;
int i;
u32 mrqc;
/* Fill out hash function seeds */
for (i = 0; i < FM10K_RSSRK_SIZE; i++)
fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
/* Write RETA table to hardware */
for (i = 0; i < FM10K_RETA_SIZE; i++)
fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
/* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
mrqc = FM10K_MRQC_IPV4 |
FM10K_MRQC_TCP_IPV4 |
FM10K_MRQC_IPV6 |
FM10K_MRQC_TCP_IPV6;
if (interface->flags & FM10K_FLAG_RSS_FIELD_IPV4_UDP)
mrqc |= FM10K_MRQC_UDP_IPV4;
if (interface->flags & FM10K_FLAG_RSS_FIELD_IPV6_UDP)
mrqc |= FM10K_MRQC_UDP_IPV6;
fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
/* configure default DGLORT mapping for RSS/DCB */
dglort.inner_rss = 1;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
hw->mac.ops.configure_dglort_map(hw, &dglort);
/* assign GLORT per queue for queue mapped testing */
if (interface->glort_count > 64) {
memset(&dglort, 0, sizeof(dglort));
dglort.inner_rss = 1;
dglort.glort = interface->glort + 64;
dglort.idx = fm10k_dglort_pf_queue;
dglort.queue_l = fls(interface->num_rx_queues - 1);
hw->mac.ops.configure_dglort_map(hw, &dglort);
}
/* assign glort value for RSS/DCB specific to this interface */
memset(&dglort, 0, sizeof(dglort));
dglort.inner_rss = 1;
dglort.glort = interface->glort;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
/* configure DGLORT mapping for RSS/DCB */
dglort.idx = fm10k_dglort_pf_rss;
if (interface->l2_accel)
dglort.shared_l = fls(interface->l2_accel->size);
hw->mac.ops.configure_dglort_map(hw, &dglort);
}
/**
* fm10k_configure_rx - Configure Receive Unit after Reset
* @interface: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void fm10k_configure_rx(struct fm10k_intfc *interface)
{
int i;
/* Configure SWPRI to PC map */
fm10k_configure_swpri_map(interface);
/* Configure RSS and DGLORT map */
fm10k_configure_dglort(interface);
/* Setup the HW Rx Head and Tail descriptor pointers */
for (i = 0; i < interface->num_rx_queues; i++)
fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
/* possible poll here to verify that Rx rings are now enabled */
}
static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
{
struct fm10k_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
q_vector = interface->q_vector[q_idx];
napi_enable(&q_vector->napi);
}
}
static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
{
struct fm10k_q_vector *q_vector = data;
if (q_vector->rx.count || q_vector->tx.count)
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
{
struct fm10k_intfc *interface = data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_mbx_info *mbx = &hw->mbx;
/* re-enable mailbox interrupt and indicate 20us delay */
fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
FM10K_ITR_ENABLE | FM10K_MBX_INT_DELAY);
/* service upstream mailbox */
if (fm10k_mbx_trylock(interface)) {
mbx->ops.process(hw, mbx);
fm10k_mbx_unlock(interface);
}
hw->mac.get_host_state = 1;
fm10k_service_event_schedule(interface);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* fm10k_netpoll - A Polling 'interrupt' handler
* @netdev: network interface device structure
*
* This is used by netconsole to send skbs without having to re-enable
* interrupts. It's not called while the normal interrupt routine is executing.
**/
void fm10k_netpoll(struct net_device *netdev)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
int i;
/* if interface is down do nothing */
if (test_bit(__FM10K_DOWN, &interface->state))
return;
for (i = 0; i < interface->num_q_vectors; i++)
fm10k_msix_clean_rings(0, interface->q_vector[i]);
}
#endif
#define FM10K_ERR_MSG(type) case (type): error = #type; break
static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
struct fm10k_fault *fault)
{
struct pci_dev *pdev = interface->pdev;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_iov_data *iov_data = interface->iov_data;
char *error;
switch (type) {
case FM10K_PCA_FAULT:
switch (fault->type) {
default:
error = "Unknown PCA error";
break;
FM10K_ERR_MSG(PCA_NO_FAULT);
FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
FM10K_ERR_MSG(PCA_POISONED_TLP);
FM10K_ERR_MSG(PCA_TLP_ABORT);
}
break;
case FM10K_THI_FAULT:
switch (fault->type) {
default:
error = "Unknown THI error";
break;
FM10K_ERR_MSG(THI_NO_FAULT);
FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
}
break;
case FM10K_FUM_FAULT:
switch (fault->type) {
default:
error = "Unknown FUM error";
break;
FM10K_ERR_MSG(FUM_NO_FAULT);
FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
FM10K_ERR_MSG(FUM_RO_ERROR);
FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
FM10K_ERR_MSG(FUM_INVALID_TYPE);
FM10K_ERR_MSG(FUM_INVALID_LENGTH);
FM10K_ERR_MSG(FUM_INVALID_BE);
FM10K_ERR_MSG(FUM_INVALID_ALIGN);
}
break;
default:
error = "Undocumented fault";
break;
}
dev_warn(&pdev->dev,
"%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
error, fault->address, fault->specinfo,
PCI_SLOT(fault->func), PCI_FUNC(fault->func));
/* For VF faults, clear out the respective LPORT, reset the queue
* resources, and then reconnect to the mailbox. This allows the
* VF in question to resume behavior. For transient faults that are
* the result of non-malicious behavior this will log the fault and
* allow the VF to resume functionality. Obviously for malicious VFs
* they will be able to attempt malicious behavior again. In this
* case, the system administrator will need to step in and manually
* remove or disable the VF in question.
*/
if (fault->func && iov_data) {
int vf = fault->func - 1;
struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
hw->iov.ops.reset_lport(hw, vf_info);
hw->iov.ops.reset_resources(hw, vf_info);
/* reset_lport disables the VF, so re-enable it */
hw->iov.ops.set_lport(hw, vf_info, vf,
FM10K_VF_FLAG_MULTI_CAPABLE);
/* reset_resources will disconnect from the mbx */
vf_info->mbx.ops.connect(hw, &vf_info->mbx);
}
}
static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
{
struct fm10k_hw *hw = &interface->hw;
struct fm10k_fault fault = { 0 };
int type, err;
for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
eicr;
eicr >>= 1, type += FM10K_FAULT_SIZE) {
/* only check if there is an error reported */
if (!(eicr & 0x1))
continue;
/* retrieve fault info */
err = hw->mac.ops.get_fault(hw, type, &fault);
if (err) {
dev_err(&interface->pdev->dev,
"error reading fault\n");
continue;
}
fm10k_handle_fault(interface, type, &fault);
}
}
static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
{
struct fm10k_hw *hw = &interface->hw;
const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
u32 maxholdq;
int q;
if (!(eicr & FM10K_EICR_MAXHOLDTIME))
return;
maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
if (maxholdq)
fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
for (q = 255;;) {
if (maxholdq & (1 << 31)) {
if (q < FM10K_MAX_QUEUES_PF) {
interface->rx_overrun_pf++;
fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
} else {
interface->rx_overrun_vf++;
}
}
maxholdq *= 2;
if (!maxholdq)
q &= ~(32 - 1);
if (!q)
break;
if (q-- % 32)
continue;
maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
if (maxholdq)
fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
}
}
static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
{
struct fm10k_intfc *interface = data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_mbx_info *mbx = &hw->mbx;
u32 eicr;
/* unmask any set bits related to this interrupt */
eicr = fm10k_read_reg(hw, FM10K_EICR);
fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
FM10K_EICR_SWITCHREADY |
FM10K_EICR_SWITCHNOTREADY));
/* report any faults found to the message log */
fm10k_report_fault(interface, eicr);
/* reset any queues disabled due to receiver overrun */
fm10k_reset_drop_on_empty(interface, eicr);
/* service mailboxes */
if (fm10k_mbx_trylock(interface)) {
mbx->ops.process(hw, mbx);
/* handle VFLRE events */
fm10k_iov_event(interface);
fm10k_mbx_unlock(interface);
}
/* if switch toggled state we should reset GLORTs */
if (eicr & FM10K_EICR_SWITCHNOTREADY) {
/* force link down for at least 4 seconds */
interface->link_down_event = jiffies + (4 * HZ);
set_bit(__FM10K_LINK_DOWN, &interface->state);
/* reset dglort_map back to no config */
hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
}
/* we should validate host state after interrupt event */
hw->mac.get_host_state = 1;
/* validate host state, and handle VF mailboxes in the service task */
fm10k_service_event_schedule(interface);
/* re-enable mailbox interrupt and indicate 20us delay */
fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
FM10K_ITR_ENABLE | FM10K_MBX_INT_DELAY);
return IRQ_HANDLED;
}
void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
{
struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
struct fm10k_hw *hw = &interface->hw;
int itr_reg;
/* disconnect the mailbox */
hw->mbx.ops.disconnect(hw, &hw->mbx);
/* disable Mailbox cause */
if (hw->mac.type == fm10k_mac_pf) {
fm10k_write_reg(hw, FM10K_EIMR,
FM10K_EIMR_DISABLE(PCA_FAULT) |
FM10K_EIMR_DISABLE(FUM_FAULT) |
FM10K_EIMR_DISABLE(MAILBOX) |
FM10K_EIMR_DISABLE(SWITCHREADY) |
FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
FM10K_EIMR_DISABLE(SRAMERROR) |
FM10K_EIMR_DISABLE(VFLR) |
FM10K_EIMR_DISABLE(MAXHOLDTIME));
itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
} else {
itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
}
fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
free_irq(entry->vector, interface);
}
static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
bool vlan_override = hw->mac.vlan_override;
u16 default_vid = hw->mac.default_vid;
struct fm10k_intfc *interface;
s32 err;
err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
if (err)
return err;
interface = container_of(hw, struct fm10k_intfc, hw);
/* MAC was changed so we need reset */
if (is_valid_ether_addr(hw->mac.perm_addr) &&
memcmp(hw->mac.perm_addr, hw->mac.addr, ETH_ALEN))
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
/* VLAN override was changed, or default VLAN changed */
if ((vlan_override != hw->mac.vlan_override) ||
(default_vid != hw->mac.default_vid))
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
return 0;
}
static s32 fm10k_1588_msg_vf(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
struct fm10k_intfc *interface;
u64 timestamp;
s32 err;
err = fm10k_tlv_attr_get_u64(results[FM10K_1588_MSG_TIMESTAMP],
&timestamp);
if (err)
return err;
interface = container_of(hw, struct fm10k_intfc, hw);
fm10k_ts_tx_hwtstamp(interface, 0, timestamp);
return 0;
}
/* generic error handler for mailbox issues */
static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
struct fm10k_intfc *interface;
struct pci_dev *pdev;
interface = container_of(hw, struct fm10k_intfc, hw);
pdev = interface->pdev;
dev_err(&pdev->dev, "Unknown message ID %u\n",
**results & FM10K_TLV_ID_MASK);
return 0;
}
static const struct fm10k_msg_data vf_mbx_data[] = {
FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
FM10K_VF_MSG_1588_HANDLER(fm10k_1588_msg_vf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
};
static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
{
struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
/* Use timer0 for interrupt moderation on the mailbox */
u32 itr = FM10K_INT_MAP_TIMER0 | entry->entry;
/* register mailbox handlers */
err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
if (err)
return err;
/* request the IRQ */
err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
dev->name, interface);
if (err) {
netif_err(interface, probe, dev,
"request_irq for msix_mbx failed: %d\n", err);
return err;
}
/* map all of the interrupt sources */
fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
/* enable interrupt */
fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
return 0;
}
static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_intfc *interface;
u32 dglort_map = hw->mac.dglort_map;
s32 err;
err = fm10k_msg_lport_map_pf(hw, results, mbx);
if (err)
return err;
interface = container_of(hw, struct fm10k_intfc, hw);
/* we need to reset if port count was just updated */
if (dglort_map != hw->mac.dglort_map)
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
return 0;
}
static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
struct fm10k_intfc *interface;
u16 glort, pvid;
u32 pvid_update;
s32 err;
err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
&pvid_update);
if (err)
return err;
/* extract values from the pvid update */
glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
/* if glort is not valid return error */
if (!fm10k_glort_valid_pf(hw, glort))
return FM10K_ERR_PARAM;
/* verify VID is valid */
if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
return FM10K_ERR_PARAM;
interface = container_of(hw, struct fm10k_intfc, hw);
/* check to see if this belongs to one of the VFs */
err = fm10k_iov_update_pvid(interface, glort, pvid);
if (!err)
return 0;
/* we need to reset if default VLAN was just updated */
if (pvid != hw->mac.default_vid)
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
hw->mac.default_vid = pvid;
return 0;
}
static s32 fm10k_1588_msg_pf(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info __always_unused *mbx)
{
struct fm10k_swapi_1588_timestamp timestamp;
struct fm10k_iov_data *iov_data;
struct fm10k_intfc *interface;
u16 sglort, vf_idx;
s32 err;
err = fm10k_tlv_attr_get_le_struct(
results[FM10K_PF_ATTR_ID_1588_TIMESTAMP],
&timestamp, sizeof(timestamp));
if (err)
return err;
interface = container_of(hw, struct fm10k_intfc, hw);
if (timestamp.dglort) {
fm10k_ts_tx_hwtstamp(interface, timestamp.dglort,
le64_to_cpu(timestamp.egress));
return 0;
}
/* either dglort or sglort must be set */
if (!timestamp.sglort)
return FM10K_ERR_PARAM;
/* verify GLORT is at least one of the ones we own */
sglort = le16_to_cpu(timestamp.sglort);
if (!fm10k_glort_valid_pf(hw, sglort))
return FM10K_ERR_PARAM;
if (sglort == interface->glort) {
fm10k_ts_tx_hwtstamp(interface, 0,
le64_to_cpu(timestamp.ingress));
return 0;
}
/* if there is no iov_data then there is no mailboxes to process */
if (!ACCESS_ONCE(interface->iov_data))
return FM10K_ERR_PARAM;
rcu_read_lock();
/* notify VF if this timestamp belongs to it */
iov_data = interface->iov_data;
vf_idx = (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE) - sglort;
if (!iov_data || vf_idx >= iov_data->num_vfs) {
err = FM10K_ERR_PARAM;
goto err_unlock;
}
err = hw->iov.ops.report_timestamp(hw, &iov_data->vf_info[vf_idx],
le64_to_cpu(timestamp.ingress));
err_unlock:
rcu_read_unlock();
return err;
}
static const struct fm10k_msg_data pf_mbx_data[] = {
FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
FM10K_PF_MSG_1588_TIMESTAMP_HANDLER(fm10k_1588_msg_pf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
};
static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
{
struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err;
/* Use timer0 for interrupt moderation on the mailbox */
u32 mbx_itr = FM10K_INT_MAP_TIMER0 | entry->entry;
u32 other_itr = FM10K_INT_MAP_IMMEDIATE | entry->entry;
/* register mailbox handlers */
err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
if (err)
return err;
/* request the IRQ */
err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
dev->name, interface);
if (err) {
netif_err(interface, probe, dev,
"request_irq for msix_mbx failed: %d\n", err);
return err;
}
/* Enable interrupts w/ no moderation for "other" interrupts */
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_PCIeFault), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_SwitchUpDown), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_SRAM), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_MaxHoldTime), other_itr);
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_VFLR), other_itr);
/* Enable interrupts w/ moderation for mailbox */
fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_Mailbox), mbx_itr);
/* Enable individual interrupt causes */
fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
FM10K_EIMR_ENABLE(FUM_FAULT) |
FM10K_EIMR_ENABLE(MAILBOX) |
FM10K_EIMR_ENABLE(SWITCHREADY) |
FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
FM10K_EIMR_ENABLE(SRAMERROR) |
FM10K_EIMR_ENABLE(VFLR) |
FM10K_EIMR_ENABLE(MAXHOLDTIME));
/* enable interrupt */
fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
return 0;
}
int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
int err;
/* enable Mailbox cause */
if (hw->mac.type == fm10k_mac_pf)
err = fm10k_mbx_request_irq_pf(interface);
else
err = fm10k_mbx_request_irq_vf(interface);
/* connect mailbox */
if (!err)
err = hw->mbx.ops.connect(hw, &hw->mbx);
return err;
}
/**
* fm10k_qv_free_irq - release interrupts associated with queue vectors
* @interface: board private structure
*
* Release all interrupts associated with this interface
**/
void fm10k_qv_free_irq(struct fm10k_intfc *interface)
{
int vector = interface->num_q_vectors;
struct fm10k_hw *hw = &interface->hw;
struct msix_entry *entry;
entry = &interface->msix_entries[NON_Q_VECTORS(hw) + vector];
while (vector) {
struct fm10k_q_vector *q_vector;
vector--;
entry--;
q_vector = interface->q_vector[vector];
if (!q_vector->tx.count && !q_vector->rx.count)
continue;
/* disable interrupts */
writel(FM10K_ITR_MASK_SET, q_vector->itr);
free_irq(entry->vector, q_vector);
}
}
/**
* fm10k_qv_request_irq - initialize interrupts for queue vectors
* @interface: board private structure
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
int fm10k_qv_request_irq(struct fm10k_intfc *interface)
{
struct net_device *dev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
struct msix_entry *entry;
int ri = 0, ti = 0;
int vector, err;
entry = &interface->msix_entries[NON_Q_VECTORS(hw)];
for (vector = 0; vector < interface->num_q_vectors; vector++) {
struct fm10k_q_vector *q_vector = interface->q_vector[vector];
/* name the vector */
if (q_vector->tx.count && q_vector->rx.count) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-TxRx-%d", dev->name, ri++);
ti++;
} else if (q_vector->rx.count) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-rx-%d", dev->name, ri++);
} else if (q_vector->tx.count) {
snprintf(q_vector->name, sizeof(q_vector->name) - 1,
"%s-tx-%d", dev->name, ti++);
} else {
/* skip this unused q_vector */
continue;
}
/* Assign ITR register to q_vector */
q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
&interface->uc_addr[FM10K_ITR(entry->entry)] :
&interface->uc_addr[FM10K_VFITR(entry->entry)];
/* request the IRQ */
err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
q_vector->name, q_vector);
if (err) {
netif_err(interface, probe, dev,
"request_irq failed for MSIX interrupt Error: %d\n",
err);
goto err_out;
}
/* Enable q_vector */
writel(FM10K_ITR_ENABLE, q_vector->itr);
entry++;
}
return 0;
err_out:
/* wind through the ring freeing all entries and vectors */
while (vector) {
struct fm10k_q_vector *q_vector;
entry--;
vector--;
q_vector = interface->q_vector[vector];
if (!q_vector->tx.count && !q_vector->rx.count)
continue;
/* disable interrupts */
writel(FM10K_ITR_MASK_SET, q_vector->itr);
free_irq(entry->vector, q_vector);
}
return err;
}
void fm10k_up(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
/* Enable Tx/Rx DMA */
hw->mac.ops.start_hw(hw);
/* configure Tx descriptor rings */
fm10k_configure_tx(interface);
/* configure Rx descriptor rings */
fm10k_configure_rx(interface);
/* configure interrupts */
hw->mac.ops.update_int_moderator(hw);
/* clear down bit to indicate we are ready to go */
clear_bit(__FM10K_DOWN, &interface->state);
/* enable polling cleanups */
fm10k_napi_enable_all(interface);
/* re-establish Rx filters */
fm10k_restore_rx_state(interface);
/* enable transmits */
netif_tx_start_all_queues(interface->netdev);
/* kick off the service timer now */
hw->mac.get_host_state = 1;
mod_timer(&interface->service_timer, jiffies);
}
static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
{
struct fm10k_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
q_vector = interface->q_vector[q_idx];
napi_disable(&q_vector->napi);
}
}
void fm10k_down(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
/* signal that we are down to the interrupt handler and service task */
set_bit(__FM10K_DOWN, &interface->state);
/* call carrier off first to avoid false dev_watchdog timeouts */
netif_carrier_off(netdev);
/* disable transmits */
netif_tx_stop_all_queues(netdev);
netif_tx_disable(netdev);
/* reset Rx filters */
fm10k_reset_rx_state(interface);
/* allow 10ms for device to quiesce */
usleep_range(10000, 20000);
/* disable polling routines */
fm10k_napi_disable_all(interface);
/* capture stats one last time before stopping interface */
fm10k_update_stats(interface);
/* Disable DMA engine for Tx/Rx */
hw->mac.ops.stop_hw(hw);
/* free any buffers still on the rings */
fm10k_clean_all_tx_rings(interface);
fm10k_clean_all_rx_rings(interface);
}
/**
* fm10k_sw_init - Initialize general software structures
* @interface: host interface private structure to initialize
*
* fm10k_sw_init initializes the interface private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int fm10k_sw_init(struct fm10k_intfc *interface,
const struct pci_device_id *ent)
{
const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
struct fm10k_hw *hw = &interface->hw;
struct pci_dev *pdev = interface->pdev;
struct net_device *netdev = interface->netdev;
u32 rss_key[FM10K_RSSRK_SIZE];
unsigned int rss;
int err;
/* initialize back pointer */
hw->back = interface;
hw->hw_addr = interface->uc_addr;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->revision_id = pdev->revision;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
/* Setup hw api */
memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
hw->mac.type = fi->mac;
/* Setup IOV handlers */
if (fi->iov_ops)
memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
/* Set common capability flags and settings */
rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
interface->ring_feature[RING_F_RSS].limit = rss;
fi->get_invariants(hw);
/* pick up the PCIe bus settings for reporting later */
if (hw->mac.ops.get_bus_info)
hw->mac.ops.get_bus_info(hw);
/* limit the usable DMA range */
if (hw->mac.ops.set_dma_mask)
hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
/* update netdev with DMA restrictions */
if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_HIGHDMA;
}
/* delay any future reset requests */
interface->last_reset = jiffies + (10 * HZ);
/* reset and initialize the hardware so it is in a known state */
err = hw->mac.ops.reset_hw(hw) ? : hw->mac.ops.init_hw(hw);
if (err) {
dev_err(&pdev->dev, "init_hw failed: %d\n", err);
return err;
}
/* initialize hardware statistics */
hw->mac.ops.update_hw_stats(hw, &interface->stats);
/* Set upper limit on IOV VFs that can be allocated */
pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
/* Start with random Ethernet address */
eth_random_addr(hw->mac.addr);
/* Initialize MAC address from hardware */
err = hw->mac.ops.read_mac_addr(hw);
if (err) {
dev_warn(&pdev->dev,
"Failed to obtain MAC address defaulting to random\n");
/* tag address assignment as random */
netdev->addr_assign_type |= NET_ADDR_RANDOM;
}
memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
dev_err(&pdev->dev, "Invalid MAC Address\n");
return -EIO;
}
/* assign BAR 4 resources for use with PTP */
if (fm10k_read_reg(hw, FM10K_CTRL) & FM10K_CTRL_BAR4_ALLOWED)
interface->sw_addr = ioremap(pci_resource_start(pdev, 4),
pci_resource_len(pdev, 4));
hw->sw_addr = interface->sw_addr;
/* Only the PF can support VXLAN and NVGRE offloads */
if (hw->mac.type != fm10k_mac_pf) {
netdev->hw_enc_features = 0;
netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
netdev->hw_features &= ~NETIF_F_GSO_UDP_TUNNEL;
}
/* initialize DCBNL interface */
fm10k_dcbnl_set_ops(netdev);
/* Initialize service timer and service task */
set_bit(__FM10K_SERVICE_DISABLE, &interface->state);
setup_timer(&interface->service_timer, &fm10k_service_timer,
(unsigned long)interface);
INIT_WORK(&interface->service_task, fm10k_service_task);
/* kick off service timer now, even when interface is down */
mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
/* Intitialize timestamp data */
fm10k_ts_init(interface);
/* set default ring sizes */
interface->tx_ring_count = FM10K_DEFAULT_TXD;
interface->rx_ring_count = FM10K_DEFAULT_RXD;
/* set default interrupt moderation */
interface->tx_itr = FM10K_ITR_10K;
interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_ITR_20K;
/* initialize vxlan_port list */
INIT_LIST_HEAD(&interface->vxlan_port);
netdev_rss_key_fill(rss_key, sizeof(rss_key));
memcpy(interface->rssrk, rss_key, sizeof(rss_key));
/* Start off interface as being down */
set_bit(__FM10K_DOWN, &interface->state);
return 0;
}
static void fm10k_slot_warn(struct fm10k_intfc *interface)
{
enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
struct fm10k_hw *hw = &interface->hw;
int max_gts = 0, expected_gts = 0;
if (pcie_get_minimum_link(interface->pdev, &speed, &width) ||
speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
dev_warn(&interface->pdev->dev,
"Unable to determine PCI Express bandwidth.\n");
return;
}
switch (speed) {
case PCIE_SPEED_2_5GT:
/* 8b/10b encoding reduces max throughput by 20% */
max_gts = 2 * width;
break;
case PCIE_SPEED_5_0GT:
/* 8b/10b encoding reduces max throughput by 20% */
max_gts = 4 * width;
break;
case PCIE_SPEED_8_0GT:
/* 128b/130b encoding has less than 2% impact on throughput */
max_gts = 8 * width;
break;
default:
dev_warn(&interface->pdev->dev,
"Unable to determine PCI Express bandwidth.\n");
return;
}
dev_info(&interface->pdev->dev,
"PCI Express bandwidth of %dGT/s available\n",
max_gts);
dev_info(&interface->pdev->dev,
"(Speed:%s, Width: x%d, Encoding Loss:%s, Payload:%s)\n",
(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
"Unknown"),
hw->bus.width,
(speed == PCIE_SPEED_2_5GT ? "20%" :
speed == PCIE_SPEED_5_0GT ? "20%" :
speed == PCIE_SPEED_8_0GT ? "<2%" :
"Unknown"),
(hw->bus.payload == fm10k_bus_payload_128 ? "128B" :
hw->bus.payload == fm10k_bus_payload_256 ? "256B" :
hw->bus.payload == fm10k_bus_payload_512 ? "512B" :
"Unknown"));
switch (hw->bus_caps.speed) {
case fm10k_bus_speed_2500:
/* 8b/10b encoding reduces max throughput by 20% */
expected_gts = 2 * hw->bus_caps.width;
break;
case fm10k_bus_speed_5000:
/* 8b/10b encoding reduces max throughput by 20% */
expected_gts = 4 * hw->bus_caps.width;
break;
case fm10k_bus_speed_8000:
/* 128b/130b encoding has less than 2% impact on throughput */
expected_gts = 8 * hw->bus_caps.width;
break;
default:
dev_warn(&interface->pdev->dev,
"Unable to determine expected PCI Express bandwidth.\n");
return;
}
if (max_gts < expected_gts) {
dev_warn(&interface->pdev->dev,
"This device requires %dGT/s of bandwidth for optimal performance.\n",
expected_gts);
dev_warn(&interface->pdev->dev,
"A %sslot with x%d lanes is suggested.\n",
(hw->bus_caps.speed == fm10k_bus_speed_2500 ? "2.5GT/s " :
hw->bus_caps.speed == fm10k_bus_speed_5000 ? "5.0GT/s " :
hw->bus_caps.speed == fm10k_bus_speed_8000 ? "8.0GT/s " : ""),
hw->bus_caps.width);
}
}
/**
* fm10k_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in fm10k_pci_tbl
*
* Returns 0 on success, negative on failure
*
* fm10k_probe initializes an interface identified by a pci_dev structure.
* The OS initialization, configuring of the interface private structure,
* and a hardware reset occur.
**/
static int fm10k_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct fm10k_intfc *interface;
int err;
err = pci_enable_device_mem(pdev);
if (err)
return err;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
if (err)
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"DMA configuration failed: %d\n", err);
goto err_dma;
}
err = pci_request_selected_regions(pdev,
pci_select_bars(pdev,
IORESOURCE_MEM),
fm10k_driver_name);
if (err) {
dev_err(&pdev->dev,
"pci_request_selected_regions failed: %d\n", err);
goto err_pci_reg;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
pci_save_state(pdev);
netdev = fm10k_alloc_netdev();
if (!netdev) {
err = -ENOMEM;
goto err_alloc_netdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
interface = netdev_priv(netdev);
pci_set_drvdata(pdev, interface);
interface->netdev = netdev;
interface->pdev = pdev;
interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
FM10K_UC_ADDR_SIZE);
if (!interface->uc_addr) {
err = -EIO;
goto err_ioremap;
}
err = fm10k_sw_init(interface, ent);
if (err)
goto err_sw_init;
/* enable debugfs support */
fm10k_dbg_intfc_init(interface);
err = fm10k_init_queueing_scheme(interface);
if (err)
goto err_sw_init;
err = fm10k_mbx_request_irq(interface);
if (err)
goto err_mbx_interrupt;
/* final check of hardware state before registering the interface */
err = fm10k_hw_ready(interface);
if (err)
goto err_register;
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
/* stop all the transmit queues from transmitting until link is up */
netif_tx_stop_all_queues(netdev);
/* Register PTP interface */
fm10k_ptp_register(interface);
/* print warning for non-optimal configurations */
fm10k_slot_warn(interface);
/* report MAC address for logging */
dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
/* enable SR-IOV after registering netdev to enforce PF/VF ordering */
fm10k_iov_configure(pdev, 0);
/* clear the service task disable bit to allow service task to start */
clear_bit(__FM10K_SERVICE_DISABLE, &interface->state);
return 0;
err_register:
fm10k_mbx_free_irq(interface);
err_mbx_interrupt:
fm10k_clear_queueing_scheme(interface);
err_sw_init:
if (interface->sw_addr)
iounmap(interface->sw_addr);
iounmap(interface->uc_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_netdev:
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* fm10k_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* fm10k_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void fm10k_remove(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
del_timer_sync(&interface->service_timer);
set_bit(__FM10K_SERVICE_DISABLE, &interface->state);
cancel_work_sync(&interface->service_task);
/* free netdev, this may bounce the interrupts due to setup_tc */
if (netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(netdev);
/* cleanup timestamp handling */
fm10k_ptp_unregister(interface);
/* release VFs */
fm10k_iov_disable(pdev);
/* disable mailbox interrupt */
fm10k_mbx_free_irq(interface);
/* free interrupts */
fm10k_clear_queueing_scheme(interface);
/* remove any debugfs interfaces */
fm10k_dbg_intfc_exit(interface);
if (interface->sw_addr)
iounmap(interface->sw_addr);
iounmap(interface->uc_addr);
free_netdev(netdev);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
#ifdef CONFIG_PM
/**
* fm10k_resume - Restore device to pre-sleep state
* @pdev: PCI device information struct
*
* fm10k_resume is called after the system has powered back up from a sleep
* state and is ready to resume operation. This function is meant to restore
* the device back to its pre-sleep state.
**/
static int fm10k_resume(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
/* pci_restore_state clears dev->state_saved so call
* pci_save_state to restore it.
*/
pci_save_state(pdev);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_wake_from_d3(pdev, false);
/* refresh hw_addr in case it was dropped */
hw->hw_addr = interface->uc_addr;
/* reset hardware to known state */
err = hw->mac.ops.init_hw(&interface->hw);
if (err)
return err;
/* reset statistics starting values */
hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
/* reset clock */
fm10k_ts_reset(interface);
rtnl_lock();
err = fm10k_init_queueing_scheme(interface);
if (!err) {
fm10k_mbx_request_irq(interface);
if (netif_running(netdev))
err = fm10k_open(netdev);
}
rtnl_unlock();
if (err)
return err;
/* assume host is not ready, to prevent race with watchdog in case we
* actually don't have connection to the switch
*/
interface->host_ready = false;
fm10k_watchdog_host_not_ready(interface);
/* clear the service task disable bit to allow service task to start */
clear_bit(__FM10K_SERVICE_DISABLE, &interface->state);
fm10k_service_event_schedule(interface);
/* restore SR-IOV interface */
fm10k_iov_resume(pdev);
netif_device_attach(netdev);
return 0;
}
/**
* fm10k_suspend - Prepare the device for a system sleep state
* @pdev: PCI device information struct
*
* fm10k_suspend is meant to shutdown the device prior to the system entering
* a sleep state. The fm10k hardware does not support wake on lan so the
* driver simply needs to shut down the device so it is in a low power state.
**/
static int fm10k_suspend(struct pci_dev *pdev,
pm_message_t __always_unused state)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
int err = 0;
netif_device_detach(netdev);
fm10k_iov_suspend(pdev);
/* the watchdog tasks may read registers, which will appear like a
* surprise-remove event once the PCI device is disabled. This will
* cause us to close the netdevice, so we don't retain the open/closed
* state post-resume. Prevent this by disabling the service task while
* suspended, until we actually resume.
*/
set_bit(__FM10K_SERVICE_DISABLE, &interface->state);
cancel_work_sync(&interface->service_task);
rtnl_lock();
if (netif_running(netdev))
fm10k_close(netdev);
fm10k_mbx_free_irq(interface);
fm10k_clear_queueing_scheme(interface);
rtnl_unlock();
err = pci_save_state(pdev);
if (err)
return err;
pci_disable_device(pdev);
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
#endif /* CONFIG_PM */
/**
* fm10k_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
fm10k_close(netdev);
fm10k_mbx_free_irq(interface);
pci_disable_device(pdev);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* fm10k_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
*/
static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
pci_ers_result_t result;
if (pci_enable_device_mem(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
/* After second error pci->state_saved is false, this
* resets it so EEH doesn't break.
*/
pci_save_state(pdev);
pci_wake_from_d3(pdev, false);
/* refresh hw_addr in case it was dropped */
interface->hw.hw_addr = interface->uc_addr;
interface->flags |= FM10K_FLAG_RESET_REQUESTED;
fm10k_service_event_schedule(interface);
result = PCI_ERS_RESULT_RECOVERED;
}
pci_cleanup_aer_uncorrect_error_status(pdev);
return result;
}
/**
* fm10k_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation.
*/
static void fm10k_io_resume(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int err = 0;
/* reset hardware to known state */
hw->mac.ops.init_hw(&interface->hw);
/* reset statistics starting values */
hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
/* reassociate interrupts */
fm10k_mbx_request_irq(interface);
/* reset clock */
fm10k_ts_reset(interface);
if (netif_running(netdev))
err = fm10k_open(netdev);
/* final check of hardware state before registering the interface */
err = err ? : fm10k_hw_ready(interface);
if (!err)
netif_device_attach(netdev);
}
static const struct pci_error_handlers fm10k_err_handler = {
.error_detected = fm10k_io_error_detected,
.slot_reset = fm10k_io_slot_reset,
.resume = fm10k_io_resume,
};
static struct pci_driver fm10k_driver = {
.name = fm10k_driver_name,
.id_table = fm10k_pci_tbl,
.probe = fm10k_probe,
.remove = fm10k_remove,
#ifdef CONFIG_PM
.suspend = fm10k_suspend,
.resume = fm10k_resume,
#endif
.sriov_configure = fm10k_iov_configure,
.err_handler = &fm10k_err_handler
};
/**
* fm10k_register_pci_driver - register driver interface
*
* This funciton is called on module load in order to register the driver.
**/
int fm10k_register_pci_driver(void)
{
return pci_register_driver(&fm10k_driver);
}
/**
* fm10k_unregister_pci_driver - unregister driver interface
*
* This funciton is called on module unload in order to remove the driver.
**/
void fm10k_unregister_pci_driver(void)
{
pci_unregister_driver(&fm10k_driver);
}