linux/drivers/net/wireless/rtlwifi/base.c
Tristan Pourcelot e1fa746029 Correcting typos in rtlwifi/base.c
This patch correct some typos in a comment.

Signed-off-by: Tristan Pourcelot <tristan.pourcelot@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-02-22 14:48:49 -05:00

1580 lines
42 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "wifi.h"
#include "rc.h"
#include "base.h"
#include "efuse.h"
#include "cam.h"
#include "ps.h"
#include "regd.h"
#include <linux/ip.h>
#include <linux/module.h>
/*
*NOTICE!!!: This file will be very big, we should
*keep it clear under following roles:
*
*This file include following parts, so, if you add new
*functions into this file, please check which part it
*should includes. or check if you should add new part
*for this file:
*
*1) mac80211 init functions
*2) tx information functions
*3) functions called by core.c
*4) wq & timer callback functions
*5) frame process functions
*6) IOT functions
*7) sysfs functions
*8) ...
*/
/*********************************************************
*
* mac80211 init functions
*
*********************************************************/
static struct ieee80211_channel rtl_channeltable_2g[] = {
{.center_freq = 2412, .hw_value = 1,},
{.center_freq = 2417, .hw_value = 2,},
{.center_freq = 2422, .hw_value = 3,},
{.center_freq = 2427, .hw_value = 4,},
{.center_freq = 2432, .hw_value = 5,},
{.center_freq = 2437, .hw_value = 6,},
{.center_freq = 2442, .hw_value = 7,},
{.center_freq = 2447, .hw_value = 8,},
{.center_freq = 2452, .hw_value = 9,},
{.center_freq = 2457, .hw_value = 10,},
{.center_freq = 2462, .hw_value = 11,},
{.center_freq = 2467, .hw_value = 12,},
{.center_freq = 2472, .hw_value = 13,},
{.center_freq = 2484, .hw_value = 14,},
};
static struct ieee80211_channel rtl_channeltable_5g[] = {
{.center_freq = 5180, .hw_value = 36,},
{.center_freq = 5200, .hw_value = 40,},
{.center_freq = 5220, .hw_value = 44,},
{.center_freq = 5240, .hw_value = 48,},
{.center_freq = 5260, .hw_value = 52,},
{.center_freq = 5280, .hw_value = 56,},
{.center_freq = 5300, .hw_value = 60,},
{.center_freq = 5320, .hw_value = 64,},
{.center_freq = 5500, .hw_value = 100,},
{.center_freq = 5520, .hw_value = 104,},
{.center_freq = 5540, .hw_value = 108,},
{.center_freq = 5560, .hw_value = 112,},
{.center_freq = 5580, .hw_value = 116,},
{.center_freq = 5600, .hw_value = 120,},
{.center_freq = 5620, .hw_value = 124,},
{.center_freq = 5640, .hw_value = 128,},
{.center_freq = 5660, .hw_value = 132,},
{.center_freq = 5680, .hw_value = 136,},
{.center_freq = 5700, .hw_value = 140,},
{.center_freq = 5745, .hw_value = 149,},
{.center_freq = 5765, .hw_value = 153,},
{.center_freq = 5785, .hw_value = 157,},
{.center_freq = 5805, .hw_value = 161,},
{.center_freq = 5825, .hw_value = 165,},
};
static struct ieee80211_rate rtl_ratetable_2g[] = {
{.bitrate = 10, .hw_value = 0x00,},
{.bitrate = 20, .hw_value = 0x01,},
{.bitrate = 55, .hw_value = 0x02,},
{.bitrate = 110, .hw_value = 0x03,},
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static struct ieee80211_rate rtl_ratetable_5g[] = {
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static const struct ieee80211_supported_band rtl_band_2ghz = {
.band = IEEE80211_BAND_2GHZ,
.channels = rtl_channeltable_2g,
.n_channels = ARRAY_SIZE(rtl_channeltable_2g),
.bitrates = rtl_ratetable_2g,
.n_bitrates = ARRAY_SIZE(rtl_ratetable_2g),
.ht_cap = {0},
};
static struct ieee80211_supported_band rtl_band_5ghz = {
.band = IEEE80211_BAND_5GHZ,
.channels = rtl_channeltable_5g,
.n_channels = ARRAY_SIZE(rtl_channeltable_5g),
.bitrates = rtl_ratetable_5g,
.n_bitrates = ARRAY_SIZE(rtl_ratetable_5g),
.ht_cap = {0},
};
static const u8 tid_to_ac[] = {
2, /* IEEE80211_AC_BE */
3, /* IEEE80211_AC_BK */
3, /* IEEE80211_AC_BK */
2, /* IEEE80211_AC_BE */
1, /* IEEE80211_AC_VI */
1, /* IEEE80211_AC_VI */
0, /* IEEE80211_AC_VO */
0, /* IEEE80211_AC_VO */
};
u8 rtl_tid_to_ac(struct ieee80211_hw *hw, u8 tid)
{
return tid_to_ac[tid];
}
static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw,
struct ieee80211_sta_ht_cap *ht_cap)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
ht_cap->ht_supported = true;
ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU;
if (rtlpriv->rtlhal.disable_amsdu_8k)
ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU;
/*
*Maximum length of AMPDU that the STA can receive.
*Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
*/
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
/*Minimum MPDU start spacing , */
ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
/*
*hw->wiphy->bands[IEEE80211_BAND_2GHZ]
*base on ant_num
*rx_mask: RX mask
*if rx_ant =1 rx_mask[0]=0xff;==>MCS0-MCS7
*if rx_ant =2 rx_mask[1]=0xff;==>MCS8-MCS15
*if rx_ant >=3 rx_mask[2]=0xff;
*if BW_40 rx_mask[4]=0x01;
*highest supported RX rate
*/
if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_2T2R) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T2R or 2T2R\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15);
} else if (get_rf_type(rtlphy) == RF_1T1R) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T1R\n");
ht_cap->mcs.rx_mask[0] = 0xFF;
ht_cap->mcs.rx_mask[1] = 0x00;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS7);
}
}
static void _rtl_init_mac80211(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct ieee80211_supported_band *sband;
if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset ==
BAND_ON_BOTH) {
/* 1: 2.4 G bands */
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
/* 2: 5 G bands */
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
} else {
if (rtlhal->current_bandtype == BAND_ON_2_4G) {
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]),
&rtl_band_2ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
} else if (rtlhal->current_bandtype == BAND_ON_5G) {
/* <1> use mac->bands as mem for hw->wiphy->bands */
sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
/* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
* to default value(1T1R) */
memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]),
&rtl_band_5ghz,
sizeof(struct ieee80211_supported_band));
/* <3> init ht cap base on ant_num */
_rtl_init_hw_ht_capab(hw, &sband->ht_cap);
/* <4> set mac->sband to wiphy->sband */
hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Err BAND %d\n",
rtlhal->current_bandtype);
}
}
/* <5> set hw caps */
hw->flags = IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_AMPDU_AGGREGATION |
IEEE80211_HW_CONNECTION_MONITOR |
/* IEEE80211_HW_SUPPORTS_CQM_RSSI | */
IEEE80211_HW_REPORTS_TX_ACK_STATUS | 0;
/* swlps or hwlps has been set in diff chip in init_sw_vars */
if (rtlpriv->psc.swctrl_lps)
hw->flags |= IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK |
/* IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */
0;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
hw->wiphy->rts_threshold = 2347;
hw->queues = AC_MAX;
hw->extra_tx_headroom = RTL_TX_HEADER_SIZE;
/* TODO: Correct this value for our hw */
/* TODO: define these hard code value */
hw->channel_change_time = 100;
hw->max_listen_interval = 10;
hw->max_rate_tries = 4;
/* hw->max_rates = 1; */
hw->sta_data_size = sizeof(struct rtl_sta_info);
/* <6> mac address */
if (is_valid_ether_addr(rtlefuse->dev_addr)) {
SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr);
} else {
u8 rtlmac1[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 };
get_random_bytes((rtlmac1 + (ETH_ALEN - 1)), 1);
SET_IEEE80211_PERM_ADDR(hw, rtlmac1);
}
}
static void _rtl_init_deferred_work(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* <1> timer */
init_timer(&rtlpriv->works.watchdog_timer);
setup_timer(&rtlpriv->works.watchdog_timer,
rtl_watch_dog_timer_callback, (unsigned long)hw);
/* <2> work queue */
rtlpriv->works.hw = hw;
rtlpriv->works.rtl_wq = alloc_workqueue(rtlpriv->cfg->name, 0, 0);
INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq,
(void *)rtl_watchdog_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq,
(void *)rtl_ips_nic_off_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ps_work,
(void *)rtl_swlps_wq_callback);
INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq,
(void *)rtl_swlps_rfon_wq_callback);
}
void rtl_deinit_deferred_work(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
del_timer_sync(&rtlpriv->works.watchdog_timer);
cancel_delayed_work(&rtlpriv->works.watchdog_wq);
cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq);
cancel_delayed_work(&rtlpriv->works.ps_work);
cancel_delayed_work(&rtlpriv->works.ps_rfon_wq);
}
void rtl_init_rfkill(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool radio_state;
bool blocked;
u8 valid = 0;
/*set init state to on */
rtlpriv->rfkill.rfkill_state = true;
wiphy_rfkill_set_hw_state(hw->wiphy, 0);
radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid);
if (valid) {
pr_info("wireless switch is %s\n",
rtlpriv->rfkill.rfkill_state ? "on" : "off");
rtlpriv->rfkill.rfkill_state = radio_state;
blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1;
wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
}
wiphy_rfkill_start_polling(hw->wiphy);
}
EXPORT_SYMBOL(rtl_init_rfkill);
void rtl_deinit_rfkill(struct ieee80211_hw *hw)
{
wiphy_rfkill_stop_polling(hw->wiphy);
}
int rtl_init_core(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
/* <1> init mac80211 */
_rtl_init_mac80211(hw);
rtlmac->hw = hw;
/* <2> rate control register */
hw->rate_control_algorithm = "rtl_rc";
/*
* <3> init CRDA must come after init
* mac80211 hw in _rtl_init_mac80211.
*/
if (rtl_regd_init(hw, rtl_reg_notifier)) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "REGD init failed\n");
return 1;
} else {
/* CRDA regd hint must after init CRDA */
if (regulatory_hint(hw->wiphy, rtlpriv->regd.alpha2)) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"regulatory_hint fail\n");
}
}
/* <4> locks */
mutex_init(&rtlpriv->locks.conf_mutex);
mutex_init(&rtlpriv->locks.ps_mutex);
spin_lock_init(&rtlpriv->locks.ips_lock);
spin_lock_init(&rtlpriv->locks.irq_th_lock);
spin_lock_init(&rtlpriv->locks.h2c_lock);
spin_lock_init(&rtlpriv->locks.rf_ps_lock);
spin_lock_init(&rtlpriv->locks.rf_lock);
spin_lock_init(&rtlpriv->locks.waitq_lock);
spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock);
rtlmac->link_state = MAC80211_NOLINK;
/* <5> init deferred work */
_rtl_init_deferred_work(hw);
return 0;
}
void rtl_deinit_core(struct ieee80211_hw *hw)
{
}
void rtl_init_rx_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf));
}
/*********************************************************
*
* tx information functions
*
*********************************************************/
static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 rate_flag = info->control.rates[0].flags;
tcb_desc->use_shortpreamble = false;
/* 1M can only use Long Preamble. 11B spec */
if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M])
return;
else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
tcb_desc->use_shortpreamble = true;
return;
}
static void _rtl_query_shortgi(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u8 rate_flag = info->control.rates[0].flags;
u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0;
tcb_desc->use_shortgi = false;
if (sta == NULL)
return;
sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
sgi_20 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20;
if (!(sta->ht_cap.ht_supported))
return;
if (!sgi_40 && !sgi_20)
return;
if (mac->opmode == NL80211_IFTYPE_STATION)
bw_40 = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
bw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
if (bw_40 && sgi_40)
tcb_desc->use_shortgi = true;
else if ((bw_40 == false) && sgi_20)
tcb_desc->use_shortgi = true;
if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI))
tcb_desc->use_shortgi = false;
}
static void _rtl_query_protection_mode(struct ieee80211_hw *hw,
struct rtl_tcb_desc *tcb_desc,
struct ieee80211_tx_info *info)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 rate_flag = info->control.rates[0].flags;
/* Common Settings */
tcb_desc->rts_stbc = false;
tcb_desc->cts_enable = false;
tcb_desc->rts_sc = 0;
tcb_desc->rts_bw = false;
tcb_desc->rts_use_shortpreamble = false;
tcb_desc->rts_use_shortgi = false;
if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) {
/* Use CTS-to-SELF in protection mode. */
tcb_desc->rts_enable = true;
tcb_desc->cts_enable = true;
tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
} else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) {
/* Use RTS-CTS in protection mode. */
tcb_desc->rts_enable = true;
tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
}
}
static void _rtl_txrate_selectmode(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u8 ratr_index = 7;
if (sta) {
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
ratr_index = sta_entry->ratr_index;
}
if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) {
if (mac->opmode == NL80211_IFTYPE_STATION) {
tcb_desc->ratr_index = 0;
} else if (mac->opmode == NL80211_IFTYPE_ADHOC) {
if (tcb_desc->multicast || tcb_desc->broadcast) {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M];
tcb_desc->use_driver_rate = 1;
} else {
/* TODO */
}
tcb_desc->ratr_index = ratr_index;
} else if (mac->opmode == NL80211_IFTYPE_AP) {
tcb_desc->ratr_index = ratr_index;
}
}
if (rtlpriv->dm.useramask) {
/* TODO we will differentiate adhoc and station futrue */
if (mac->opmode == NL80211_IFTYPE_STATION) {
tcb_desc->mac_id = 0;
if (mac->mode == WIRELESS_MODE_N_24G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB;
else if (mac->mode == WIRELESS_MODE_N_5G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_NG;
else if (mac->mode & WIRELESS_MODE_G)
tcb_desc->ratr_index = RATR_INX_WIRELESS_GB;
else if (mac->mode & WIRELESS_MODE_B)
tcb_desc->ratr_index = RATR_INX_WIRELESS_B;
else if (mac->mode & WIRELESS_MODE_A)
tcb_desc->ratr_index = RATR_INX_WIRELESS_G;
} else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC) {
if (NULL != sta) {
if (sta->aid > 0)
tcb_desc->mac_id = sta->aid + 1;
else
tcb_desc->mac_id = 1;
} else {
tcb_desc->mac_id = 0;
}
}
}
}
static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
tcb_desc->packet_bw = false;
if (!sta)
return;
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC) {
if (!(sta->ht_cap.ht_supported) ||
!(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40))
return;
} else if (mac->opmode == NL80211_IFTYPE_STATION) {
if (!mac->bw_40 || !(sta->ht_cap.ht_supported))
return;
}
if (tcb_desc->multicast || tcb_desc->broadcast)
return;
/*use legency rate, shall use 20MHz */
if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M])
return;
tcb_desc->packet_bw = true;
}
static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 hw_rate;
if (get_rf_type(rtlphy) == RF_2T2R)
hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15];
else
hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7];
return hw_rate;
}
/* mac80211's rate_idx is like this:
*
* 2.4G band:rx_status->band == IEEE80211_BAND_2GHZ
*
* B/G rate:
* (rx_status->flag & RX_FLAG_HT) = 0,
* DESC92_RATE1M-->DESC92_RATE54M ==> idx is 0-->11,
*
* N rate:
* (rx_status->flag & RX_FLAG_HT) = 1,
* DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
*
* 5G band:rx_status->band == IEEE80211_BAND_5GHZ
* A rate:
* (rx_status->flag & RX_FLAG_HT) = 0,
* DESC92_RATE6M-->DESC92_RATE54M ==> idx is 0-->7,
*
* N rate:
* (rx_status->flag & RX_FLAG_HT) = 1,
* DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
*/
int rtlwifi_rate_mapping(struct ieee80211_hw *hw,
bool isht, u8 desc_rate, bool first_ampdu)
{
int rate_idx;
if (false == isht) {
if (IEEE80211_BAND_2GHZ == hw->conf.channel->band) {
switch (desc_rate) {
case DESC92_RATE1M:
rate_idx = 0;
break;
case DESC92_RATE2M:
rate_idx = 1;
break;
case DESC92_RATE5_5M:
rate_idx = 2;
break;
case DESC92_RATE11M:
rate_idx = 3;
break;
case DESC92_RATE6M:
rate_idx = 4;
break;
case DESC92_RATE9M:
rate_idx = 5;
break;
case DESC92_RATE12M:
rate_idx = 6;
break;
case DESC92_RATE18M:
rate_idx = 7;
break;
case DESC92_RATE24M:
rate_idx = 8;
break;
case DESC92_RATE36M:
rate_idx = 9;
break;
case DESC92_RATE48M:
rate_idx = 10;
break;
case DESC92_RATE54M:
rate_idx = 11;
break;
default:
rate_idx = 0;
break;
}
} else {
switch (desc_rate) {
case DESC92_RATE6M:
rate_idx = 0;
break;
case DESC92_RATE9M:
rate_idx = 1;
break;
case DESC92_RATE12M:
rate_idx = 2;
break;
case DESC92_RATE18M:
rate_idx = 3;
break;
case DESC92_RATE24M:
rate_idx = 4;
break;
case DESC92_RATE36M:
rate_idx = 5;
break;
case DESC92_RATE48M:
rate_idx = 6;
break;
case DESC92_RATE54M:
rate_idx = 7;
break;
default:
rate_idx = 0;
break;
}
}
} else {
switch (desc_rate) {
case DESC92_RATEMCS0:
rate_idx = 0;
break;
case DESC92_RATEMCS1:
rate_idx = 1;
break;
case DESC92_RATEMCS2:
rate_idx = 2;
break;
case DESC92_RATEMCS3:
rate_idx = 3;
break;
case DESC92_RATEMCS4:
rate_idx = 4;
break;
case DESC92_RATEMCS5:
rate_idx = 5;
break;
case DESC92_RATEMCS6:
rate_idx = 6;
break;
case DESC92_RATEMCS7:
rate_idx = 7;
break;
case DESC92_RATEMCS8:
rate_idx = 8;
break;
case DESC92_RATEMCS9:
rate_idx = 9;
break;
case DESC92_RATEMCS10:
rate_idx = 10;
break;
case DESC92_RATEMCS11:
rate_idx = 11;
break;
case DESC92_RATEMCS12:
rate_idx = 12;
break;
case DESC92_RATEMCS13:
rate_idx = 13;
break;
case DESC92_RATEMCS14:
rate_idx = 14;
break;
case DESC92_RATEMCS15:
rate_idx = 15;
break;
default:
rate_idx = 0;
break;
}
}
return rate_idx;
}
EXPORT_SYMBOL(rtlwifi_rate_mapping);
void rtl_get_tcb_desc(struct ieee80211_hw *hw,
struct ieee80211_tx_info *info,
struct ieee80211_sta *sta,
struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
struct ieee80211_rate *txrate;
__le16 fc = hdr->frame_control;
txrate = ieee80211_get_tx_rate(hw, info);
tcb_desc->hw_rate = txrate->hw_value;
if (ieee80211_is_data(fc)) {
/*
*we set data rate INX 0
*in rtl_rc.c if skb is special data or
*mgt which need low data rate.
*/
/*
*So tcb_desc->hw_rate is just used for
*special data and mgt frames
*/
if (info->control.rates[0].idx == 0 ||
ieee80211_is_nullfunc(fc)) {
tcb_desc->use_driver_rate = true;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
tcb_desc->disable_ratefallback = 1;
} else {
/*
*because hw will nerver use hw_rate
*when tcb_desc->use_driver_rate = false
*so we never set highest N rate here,
*and N rate will all be controlled by FW
*when tcb_desc->use_driver_rate = false
*/
if (sta && (sta->ht_cap.ht_supported)) {
tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw);
} else {
if (rtlmac->mode == WIRELESS_MODE_B) {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M];
} else {
tcb_desc->hw_rate =
rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M];
}
}
}
if (is_multicast_ether_addr(ieee80211_get_DA(hdr)))
tcb_desc->multicast = 1;
else if (is_broadcast_ether_addr(ieee80211_get_DA(hdr)))
tcb_desc->broadcast = 1;
_rtl_txrate_selectmode(hw, sta, tcb_desc);
_rtl_query_bandwidth_mode(hw, sta, tcb_desc);
_rtl_qurey_shortpreamble_mode(hw, tcb_desc, info);
_rtl_query_shortgi(hw, sta, tcb_desc, info);
_rtl_query_protection_mode(hw, tcb_desc, info);
} else {
tcb_desc->use_driver_rate = true;
tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
tcb_desc->disable_ratefallback = 1;
tcb_desc->mac_id = 0;
tcb_desc->packet_bw = false;
}
}
EXPORT_SYMBOL(rtl_get_tcb_desc);
bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
struct rtl_priv *rtlpriv = rtl_priv(hw);
__le16 fc = hdr->frame_control;
u8 *act = (u8 *) (((u8 *) skb->data + MAC80211_3ADDR_LEN));
u8 category;
if (!ieee80211_is_action(fc))
return true;
category = *act;
act++;
switch (category) {
case ACT_CAT_BA:
switch (*act) {
case ACT_ADDBAREQ:
if (mac->act_scanning)
return false;
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"%s ACT_ADDBAREQ From :%pM\n",
is_tx ? "Tx" : "Rx", hdr->addr2);
break;
case ACT_ADDBARSP:
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"%s ACT_ADDBARSP From :%pM\n",
is_tx ? "Tx" : "Rx", hdr->addr2);
break;
case ACT_DELBA:
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"ACT_ADDBADEL From :%pM\n", hdr->addr2);
break;
}
break;
default:
break;
}
return true;
}
/*should call before software enc*/
u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
__le16 fc = rtl_get_fc(skb);
u16 ether_type;
u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb);
const struct iphdr *ip;
if (!ieee80211_is_data(fc))
return false;
ip = (struct iphdr *)((u8 *) skb->data + mac_hdr_len +
SNAP_SIZE + PROTOC_TYPE_SIZE);
ether_type = *(u16 *) ((u8 *) skb->data + mac_hdr_len + SNAP_SIZE);
/* ether_type = ntohs(ether_type); */
if (ETH_P_IP == ether_type) {
if (IPPROTO_UDP == ip->protocol) {
struct udphdr *udp = (struct udphdr *)((u8 *) ip +
(ip->ihl << 2));
if (((((u8 *) udp)[1] == 68) &&
(((u8 *) udp)[3] == 67)) ||
((((u8 *) udp)[1] == 67) &&
(((u8 *) udp)[3] == 68))) {
/*
* 68 : UDP BOOTP client
* 67 : UDP BOOTP server
*/
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV),
DBG_DMESG, "dhcp %s !!\n",
is_tx ? "Tx" : "Rx");
if (is_tx) {
rtl_lps_leave(hw);
ppsc->last_delaylps_stamp_jiffies =
jiffies;
}
return true;
}
}
} else if (ETH_P_ARP == ether_type) {
if (is_tx) {
rtl_lps_leave(hw);
ppsc->last_delaylps_stamp_jiffies = jiffies;
}
return true;
} else if (ETH_P_PAE == ether_type) {
RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
"802.1X %s EAPOL pkt!!\n", is_tx ? "Tx" : "Rx");
if (is_tx) {
rtl_lps_leave(hw);
ppsc->last_delaylps_stamp_jiffies = jiffies;
}
return true;
} else if (ETH_P_IPV6 == ether_type) {
/* IPv6 */
return true;
}
return false;
}
/*********************************************************
*
* functions called by core.c
*
*********************************************************/
int rtl_tx_agg_start(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid, u16 *ssn)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tid_data *tid_data;
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
if (!sta_entry)
return -ENXIO;
tid_data = &sta_entry->tids[tid];
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d seq:%d\n",
sta->addr, tid, tid_data->seq_number);
*ssn = tid_data->seq_number;
tid_data->agg.agg_state = RTL_AGG_START;
ieee80211_start_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
return 0;
}
int rtl_tx_agg_stop(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (!sta->addr) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
return -EINVAL;
}
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP;
ieee80211_stop_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
return 0;
}
int rtl_tx_agg_oper(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u16 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_sta_info *sta_entry = NULL;
if (sta == NULL)
return -EINVAL;
if (!sta->addr) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
return -EINVAL;
}
RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
sta->addr, tid);
if (unlikely(tid >= MAX_TID_COUNT))
return -EINVAL;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL;
return 0;
}
/*********************************************************
*
* wq & timer callback functions
*
*********************************************************/
void rtl_watchdog_wq_callback(void *data)
{
struct rtl_works *rtlworks = container_of_dwork_rtl(data,
struct rtl_works,
watchdog_wq);
struct ieee80211_hw *hw = rtlworks->hw;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
bool busytraffic = false;
bool higher_busytraffic = false;
bool higher_busyrxtraffic = false;
u8 idx, tid;
u32 rx_cnt_inp4eriod = 0;
u32 tx_cnt_inp4eriod = 0;
u32 aver_rx_cnt_inperiod = 0;
u32 aver_tx_cnt_inperiod = 0;
u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0};
u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0};
bool enter_ps = false;
if (is_hal_stop(rtlhal))
return;
/* <1> Determine if action frame is allowed */
if (mac->link_state > MAC80211_NOLINK) {
if (mac->cnt_after_linked < 20)
mac->cnt_after_linked++;
} else {
mac->cnt_after_linked = 0;
}
/*
*<2> to check if traffic busy, if
* busytraffic we don't change channel
*/
if (mac->link_state >= MAC80211_LINKED) {
/* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */
for (idx = 0; idx <= 2; idx++) {
rtlpriv->link_info.num_rx_in4period[idx] =
rtlpriv->link_info.num_rx_in4period[idx + 1];
rtlpriv->link_info.num_tx_in4period[idx] =
rtlpriv->link_info.num_tx_in4period[idx + 1];
}
rtlpriv->link_info.num_rx_in4period[3] =
rtlpriv->link_info.num_rx_inperiod;
rtlpriv->link_info.num_tx_in4period[3] =
rtlpriv->link_info.num_tx_inperiod;
for (idx = 0; idx <= 3; idx++) {
rx_cnt_inp4eriod +=
rtlpriv->link_info.num_rx_in4period[idx];
tx_cnt_inp4eriod +=
rtlpriv->link_info.num_tx_in4period[idx];
}
aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4;
aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4;
/* (2) check traffic busy */
if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100)
busytraffic = true;
/* Higher Tx/Rx data. */
if (aver_rx_cnt_inperiod > 4000 ||
aver_tx_cnt_inperiod > 4000) {
higher_busytraffic = true;
/* Extremely high Rx data. */
if (aver_rx_cnt_inperiod > 5000)
higher_busyrxtraffic = true;
}
/* check every tid's tx traffic */
for (tid = 0; tid <= 7; tid++) {
for (idx = 0; idx <= 2; idx++)
rtlpriv->link_info.tidtx_in4period[tid][idx] =
rtlpriv->link_info.tidtx_in4period[tid]
[idx + 1];
rtlpriv->link_info.tidtx_in4period[tid][3] =
rtlpriv->link_info.tidtx_inperiod[tid];
for (idx = 0; idx <= 3; idx++)
tidtx_inp4eriod[tid] +=
rtlpriv->link_info.tidtx_in4period[tid][idx];
aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4;
if (aver_tidtx_inperiod[tid] > 5000)
rtlpriv->link_info.higher_busytxtraffic[tid] =
true;
else
rtlpriv->link_info.higher_busytxtraffic[tid] =
false;
}
if (((rtlpriv->link_info.num_rx_inperiod +
rtlpriv->link_info.num_tx_inperiod) > 8) ||
(rtlpriv->link_info.num_rx_inperiod > 2))
enter_ps = false;
else
enter_ps = true;
/* LeisurePS only work in infra mode. */
if (enter_ps)
rtl_lps_enter(hw);
else
rtl_lps_leave(hw);
}
rtlpriv->link_info.num_rx_inperiod = 0;
rtlpriv->link_info.num_tx_inperiod = 0;
for (tid = 0; tid <= 7; tid++)
rtlpriv->link_info.tidtx_inperiod[tid] = 0;
rtlpriv->link_info.busytraffic = busytraffic;
rtlpriv->link_info.higher_busytraffic = higher_busytraffic;
rtlpriv->link_info.higher_busyrxtraffic = higher_busyrxtraffic;
/* <3> DM */
rtlpriv->cfg->ops->dm_watchdog(hw);
}
void rtl_watch_dog_timer_callback(unsigned long data)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
struct rtl_priv *rtlpriv = rtl_priv(hw);
queue_delayed_work(rtlpriv->works.rtl_wq,
&rtlpriv->works.watchdog_wq, 0);
mod_timer(&rtlpriv->works.watchdog_timer,
jiffies + MSECS(RTL_WATCH_DOG_TIME));
}
/*********************************************************
*
* frame process functions
*
*********************************************************/
u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie)
{
struct ieee80211_mgmt *mgmt = (void *)data;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos + 2 + pos[1] > end)
return NULL;
if (pos[0] == ie)
return pos;
pos += 2 + pos[1];
}
return NULL;
}
/* when we use 2 rx ants we send IEEE80211_SMPS_OFF */
/* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */
static struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw,
enum ieee80211_smps_mode smps, u8 *da, u8 *bssid)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct sk_buff *skb;
struct ieee80211_mgmt *action_frame;
/* 27 = header + category + action + smps mode */
skb = dev_alloc_skb(27 + hw->extra_tx_headroom);
if (!skb)
return NULL;
skb_reserve(skb, hw->extra_tx_headroom);
action_frame = (void *)skb_put(skb, 27);
memset(action_frame, 0, 27);
memcpy(action_frame->da, da, ETH_ALEN);
memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN);
memcpy(action_frame->bssid, bssid, ETH_ALEN);
action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
action_frame->u.action.category = WLAN_CATEGORY_HT;
action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS;
switch (smps) {
case IEEE80211_SMPS_AUTOMATIC:/* 0 */
case IEEE80211_SMPS_NUM_MODES:/* 4 */
WARN_ON(1);
case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_DISABLED;/* 0 */
break;
case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_STATIC;/* 1 */
break;
case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/
action_frame->u.action.u.ht_smps.smps_control =
WLAN_HT_SMPS_CONTROL_DYNAMIC;/* 3 */
break;
}
return skb;
}
int rtl_send_smps_action(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 *da, u8 *bssid,
enum ieee80211_smps_mode smps)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct sk_buff *skb = rtl_make_smps_action(hw, smps, da, bssid);
struct rtl_tcb_desc tcb_desc;
memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
if (rtlpriv->mac80211.act_scanning)
goto err_free;
if (!sta)
goto err_free;
if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON))
goto err_free;
if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status))
goto err_free;
/* this is a type = mgmt * stype = action frame */
if (skb) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct rtl_sta_info *sta_entry =
(struct rtl_sta_info *) sta->drv_priv;
sta_entry->mimo_ps = smps;
rtlpriv->cfg->ops->update_rate_tbl(hw, sta, 0);
info->control.rates[0].idx = 0;
info->control.sta = sta;
info->band = hw->conf.channel->band;
rtlpriv->intf_ops->adapter_tx(hw, skb, &tcb_desc);
}
err_free:
return 0;
}
/*********************************************************
*
* IOT functions
*
*********************************************************/
static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw,
struct octet_string vendor_ie)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool matched = false;
static u8 athcap_1[] = { 0x00, 0x03, 0x7F };
static u8 athcap_2[] = { 0x00, 0x13, 0x74 };
static u8 broadcap_1[] = { 0x00, 0x10, 0x18 };
static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 };
static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 };
static u8 racap[] = { 0x00, 0x0c, 0x43 };
static u8 ciscocap[] = { 0x00, 0x40, 0x96 };
static u8 marvcap[] = { 0x00, 0x50, 0x43 };
if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 ||
memcmp(vendor_ie.octet, athcap_2, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_ATH;
matched = true;
} else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 ||
memcmp(vendor_ie.octet, broadcap_2, 3) == 0 ||
memcmp(vendor_ie.octet, broadcap_3, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_BROAD;
matched = true;
} else if (memcmp(vendor_ie.octet, racap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_RAL;
matched = true;
} else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_CISCO;
matched = true;
} else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) {
rtlpriv->mac80211.vendor = PEER_MARV;
matched = true;
}
return matched;
}
static bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data,
unsigned int len)
{
struct ieee80211_mgmt *mgmt = (void *)data;
struct octet_string vendor_ie;
u8 *pos, *end;
pos = (u8 *)mgmt->u.beacon.variable;
end = data + len;
while (pos < end) {
if (pos[0] == 221) {
vendor_ie.length = pos[1];
vendor_ie.octet = &pos[2];
if (rtl_chk_vendor_ouisub(hw, vendor_ie))
return true;
}
if (pos + 2 + pos[1] > end)
return false;
pos += 2 + pos[1];
}
return false;
}
void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct ieee80211_hdr *hdr = (void *)data;
u32 vendor = PEER_UNKNOWN;
static u8 ap3_1[3] = { 0x00, 0x14, 0xbf };
static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 };
static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e };
static u8 ap4_1[3] = { 0x00, 0x90, 0xcc };
static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e };
static u8 ap4_3[3] = { 0x00, 0x18, 0x02 };
static u8 ap4_4[3] = { 0x00, 0x17, 0x3f };
static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf };
static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 };
static u8 ap5_2[3] = { 0x00, 0x21, 0x91 };
static u8 ap5_3[3] = { 0x00, 0x24, 0x01 };
static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 };
static u8 ap5_5[3] = { 0x00, 0x17, 0x9A };
static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 };
static u8 ap6_1[3] = { 0x00, 0x17, 0x94 };
static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 };
if (mac->opmode != NL80211_IFTYPE_STATION)
return;
if (mac->link_state == MAC80211_NOLINK) {
mac->vendor = PEER_UNKNOWN;
return;
}
if (mac->cnt_after_linked > 2)
return;
/* check if this really is a beacon */
if (!ieee80211_is_beacon(hdr->frame_control))
return;
/* min. beacon length + FCS_LEN */
if (len <= 40 + FCS_LEN)
return;
/* and only beacons from the associated BSSID, please */
if (compare_ether_addr(hdr->addr3, rtlpriv->mac80211.bssid))
return;
if (rtl_find_221_ie(hw, data, len))
vendor = mac->vendor;
if ((memcmp(mac->bssid, ap5_1, 3) == 0) ||
(memcmp(mac->bssid, ap5_2, 3) == 0) ||
(memcmp(mac->bssid, ap5_3, 3) == 0) ||
(memcmp(mac->bssid, ap5_4, 3) == 0) ||
(memcmp(mac->bssid, ap5_5, 3) == 0) ||
(memcmp(mac->bssid, ap5_6, 3) == 0) ||
vendor == PEER_ATH) {
vendor = PEER_ATH;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ath find\n");
} else if ((memcmp(mac->bssid, ap4_4, 3) == 0) ||
(memcmp(mac->bssid, ap4_5, 3) == 0) ||
(memcmp(mac->bssid, ap4_1, 3) == 0) ||
(memcmp(mac->bssid, ap4_2, 3) == 0) ||
(memcmp(mac->bssid, ap4_3, 3) == 0) ||
vendor == PEER_RAL) {
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ral find\n");
vendor = PEER_RAL;
} else if (memcmp(mac->bssid, ap6_1, 3) == 0 ||
vendor == PEER_CISCO) {
vendor = PEER_CISCO;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>cisco find\n");
} else if ((memcmp(mac->bssid, ap3_1, 3) == 0) ||
(memcmp(mac->bssid, ap3_2, 3) == 0) ||
(memcmp(mac->bssid, ap3_3, 3) == 0) ||
vendor == PEER_BROAD) {
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>broad find\n");
vendor = PEER_BROAD;
} else if (memcmp(mac->bssid, ap7_1, 3) == 0 ||
vendor == PEER_MARV) {
vendor = PEER_MARV;
RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>marv find\n");
}
mac->vendor = vendor;
}
/*********************************************************
*
* sysfs functions
*
*********************************************************/
static ssize_t rtl_show_debug_level(struct device *d,
struct device_attribute *attr, char *buf)
{
struct ieee80211_hw *hw = dev_get_drvdata(d);
struct rtl_priv *rtlpriv = rtl_priv(hw);
return sprintf(buf, "0x%08X\n", rtlpriv->dbg.global_debuglevel);
}
static ssize_t rtl_store_debug_level(struct device *d,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ieee80211_hw *hw = dev_get_drvdata(d);
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned long val;
int ret;
ret = strict_strtoul(buf, 0, &val);
if (ret) {
printk(KERN_DEBUG "%s is not in hex or decimal form.\n", buf);
} else {
rtlpriv->dbg.global_debuglevel = val;
printk(KERN_DEBUG "debuglevel:%x\n",
rtlpriv->dbg.global_debuglevel);
}
return strnlen(buf, count);
}
static DEVICE_ATTR(debug_level, S_IWUSR | S_IRUGO,
rtl_show_debug_level, rtl_store_debug_level);
static struct attribute *rtl_sysfs_entries[] = {
&dev_attr_debug_level.attr,
NULL
};
/*
* "name" is folder name witch will be
* put in device directory like :
* sys/devices/pci0000:00/0000:00:1c.4/
* 0000:06:00.0/rtl_sysfs
*/
struct attribute_group rtl_attribute_group = {
.name = "rtlsysfs",
.attrs = rtl_sysfs_entries,
};
MODULE_AUTHOR("lizhaoming <chaoming_li@realsil.com.cn>");
MODULE_AUTHOR("Realtek WlanFAE <wlanfae@realtek.com>");
MODULE_AUTHOR("Larry Finger <Larry.FInger@lwfinger.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core");
static int __init rtl_core_module_init(void)
{
if (rtl_rate_control_register())
pr_err("Unable to register rtl_rc, use default RC !!\n");
return 0;
}
static void __exit rtl_core_module_exit(void)
{
/*RC*/
rtl_rate_control_unregister();
}
module_init(rtl_core_module_init);
module_exit(rtl_core_module_exit);