mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-01 11:24:25 +08:00
4307af730b
Drop the memslot param from virt_pg_map() and virt_map() and shove the hardcoded '0' down to the vm_phy_page_alloc() calls. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210622200529.3650424-13-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1038 lines
26 KiB
C
1038 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* A memslot-related performance benchmark.
|
|
*
|
|
* Copyright (C) 2021 Oracle and/or its affiliates.
|
|
*
|
|
* Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
|
|
*/
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <semaphore.h>
|
|
#include <stdatomic.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <test_util.h>
|
|
#include <kvm_util.h>
|
|
#include <processor.h>
|
|
|
|
#define VCPU_ID 0
|
|
|
|
#define MEM_SIZE ((512U << 20) + 4096)
|
|
#define MEM_SIZE_PAGES (MEM_SIZE / 4096)
|
|
#define MEM_GPA 0x10000000UL
|
|
#define MEM_AUX_GPA MEM_GPA
|
|
#define MEM_SYNC_GPA MEM_AUX_GPA
|
|
#define MEM_TEST_GPA (MEM_AUX_GPA + 4096)
|
|
#define MEM_TEST_SIZE (MEM_SIZE - 4096)
|
|
static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
|
|
static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
|
|
|
|
/*
|
|
* 32 MiB is max size that gets well over 100 iterations on 509 slots.
|
|
* Considering that each slot needs to have at least one page up to
|
|
* 8194 slots in use can then be tested (although with slightly
|
|
* limited resolution).
|
|
*/
|
|
#define MEM_SIZE_MAP ((32U << 20) + 4096)
|
|
#define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096)
|
|
#define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096)
|
|
#define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
|
|
static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
|
|
static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
|
|
static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
|
|
static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");
|
|
|
|
/*
|
|
* 128 MiB is min size that fills 32k slots with at least one page in each
|
|
* while at the same time gets 100+ iterations in such test
|
|
*/
|
|
#define MEM_TEST_UNMAP_SIZE (128U << 20)
|
|
#define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096)
|
|
/* 2 MiB chunk size like a typical huge page */
|
|
#define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12))
|
|
static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
|
|
"invalid unmap test region size");
|
|
static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
|
|
"invalid unmap test region size");
|
|
static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
|
|
(2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
|
|
"invalid unmap test region size");
|
|
|
|
/*
|
|
* For the move active test the middle of the test area is placed on
|
|
* a memslot boundary: half lies in the memslot being moved, half in
|
|
* other memslot(s).
|
|
*
|
|
* When running this test with 32k memslots (32764, really) each memslot
|
|
* contains 4 pages.
|
|
* The last one additionally contains the remaining 21 pages of memory,
|
|
* for the total size of 25 pages.
|
|
* Hence, the maximum size here is 50 pages.
|
|
*/
|
|
#define MEM_TEST_MOVE_SIZE_PAGES (50)
|
|
#define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096)
|
|
#define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE)
|
|
static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
|
|
"invalid move test region size");
|
|
|
|
#define MEM_TEST_VAL_1 0x1122334455667788
|
|
#define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
|
|
|
|
struct vm_data {
|
|
struct kvm_vm *vm;
|
|
pthread_t vcpu_thread;
|
|
uint32_t nslots;
|
|
uint64_t npages;
|
|
uint64_t pages_per_slot;
|
|
void **hva_slots;
|
|
bool mmio_ok;
|
|
uint64_t mmio_gpa_min;
|
|
uint64_t mmio_gpa_max;
|
|
};
|
|
|
|
struct sync_area {
|
|
atomic_bool start_flag;
|
|
atomic_bool exit_flag;
|
|
atomic_bool sync_flag;
|
|
void *move_area_ptr;
|
|
};
|
|
|
|
/*
|
|
* Technically, we need also for the atomic bool to be address-free, which
|
|
* is recommended, but not strictly required, by C11 for lockless
|
|
* implementations.
|
|
* However, in practice both GCC and Clang fulfill this requirement on
|
|
* all KVM-supported platforms.
|
|
*/
|
|
static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
|
|
|
|
static sem_t vcpu_ready;
|
|
|
|
static bool map_unmap_verify;
|
|
|
|
static bool verbose;
|
|
#define pr_info_v(...) \
|
|
do { \
|
|
if (verbose) \
|
|
pr_info(__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static void *vcpu_worker(void *data)
|
|
{
|
|
struct vm_data *vm = data;
|
|
struct kvm_run *run;
|
|
struct ucall uc;
|
|
uint64_t cmd;
|
|
|
|
run = vcpu_state(vm->vm, VCPU_ID);
|
|
while (1) {
|
|
vcpu_run(vm->vm, VCPU_ID);
|
|
|
|
if (run->exit_reason == KVM_EXIT_IO) {
|
|
cmd = get_ucall(vm->vm, VCPU_ID, &uc);
|
|
if (cmd != UCALL_SYNC)
|
|
break;
|
|
|
|
sem_post(&vcpu_ready);
|
|
continue;
|
|
}
|
|
|
|
if (run->exit_reason != KVM_EXIT_MMIO)
|
|
break;
|
|
|
|
TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit");
|
|
TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
|
|
TEST_ASSERT(run->mmio.len == 8,
|
|
"Unexpected exit mmio size = %u", run->mmio.len);
|
|
TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min &&
|
|
run->mmio.phys_addr <= vm->mmio_gpa_max,
|
|
"Unexpected exit mmio address = 0x%llx",
|
|
run->mmio.phys_addr);
|
|
}
|
|
|
|
if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT)
|
|
TEST_FAIL("%s at %s:%ld, val = %lu", (const char *)uc.args[0],
|
|
__FILE__, uc.args[1], uc.args[2]);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void wait_for_vcpu(void)
|
|
{
|
|
struct timespec ts;
|
|
|
|
TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
|
|
"clock_gettime() failed: %d\n", errno);
|
|
|
|
ts.tv_sec += 2;
|
|
TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
|
|
"sem_timedwait() failed: %d\n", errno);
|
|
}
|
|
|
|
static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
|
|
{
|
|
uint64_t gpage, pgoffs;
|
|
uint32_t slot, slotoffs;
|
|
void *base;
|
|
|
|
TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
|
|
TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
|
|
"Too high gpa to translate");
|
|
gpa -= MEM_GPA;
|
|
|
|
gpage = gpa / 4096;
|
|
pgoffs = gpa % 4096;
|
|
slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
|
|
slotoffs = gpage - (slot * data->pages_per_slot);
|
|
|
|
if (rempages) {
|
|
uint64_t slotpages;
|
|
|
|
if (slot == data->nslots - 1)
|
|
slotpages = data->npages - slot * data->pages_per_slot;
|
|
else
|
|
slotpages = data->pages_per_slot;
|
|
|
|
TEST_ASSERT(!pgoffs,
|
|
"Asking for remaining pages in slot but gpa not page aligned");
|
|
*rempages = slotpages - slotoffs;
|
|
}
|
|
|
|
base = data->hva_slots[slot];
|
|
return (uint8_t *)base + slotoffs * 4096 + pgoffs;
|
|
}
|
|
|
|
static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
|
|
{
|
|
TEST_ASSERT(slot < data->nslots, "Too high slot number");
|
|
|
|
return MEM_GPA + slot * data->pages_per_slot * 4096;
|
|
}
|
|
|
|
static struct vm_data *alloc_vm(void)
|
|
{
|
|
struct vm_data *data;
|
|
|
|
data = malloc(sizeof(*data));
|
|
TEST_ASSERT(data, "malloc(vmdata) failed");
|
|
|
|
data->vm = NULL;
|
|
data->hva_slots = NULL;
|
|
|
|
return data;
|
|
}
|
|
|
|
static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
|
|
void *guest_code, uint64_t mempages,
|
|
struct timespec *slot_runtime)
|
|
{
|
|
uint32_t max_mem_slots;
|
|
uint64_t rempages;
|
|
uint64_t guest_addr;
|
|
uint32_t slot;
|
|
struct timespec tstart;
|
|
struct sync_area *sync;
|
|
|
|
max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
|
|
TEST_ASSERT(max_mem_slots > 1,
|
|
"KVM_CAP_NR_MEMSLOTS should be greater than 1");
|
|
TEST_ASSERT(nslots > 1 || nslots == -1,
|
|
"Slot count cap should be greater than 1");
|
|
if (nslots != -1)
|
|
max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
|
|
pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);
|
|
|
|
TEST_ASSERT(mempages > 1,
|
|
"Can't test without any memory");
|
|
|
|
data->npages = mempages;
|
|
data->nslots = max_mem_slots - 1;
|
|
data->pages_per_slot = mempages / data->nslots;
|
|
if (!data->pages_per_slot) {
|
|
*maxslots = mempages + 1;
|
|
return false;
|
|
}
|
|
|
|
rempages = mempages % data->nslots;
|
|
data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
|
|
TEST_ASSERT(data->hva_slots, "malloc() fail");
|
|
|
|
data->vm = vm_create_default(VCPU_ID, mempages, guest_code);
|
|
|
|
pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
|
|
max_mem_slots - 1, data->pages_per_slot, rempages);
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &tstart);
|
|
for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
|
|
uint64_t npages;
|
|
|
|
npages = data->pages_per_slot;
|
|
if (slot == max_mem_slots - 1)
|
|
npages += rempages;
|
|
|
|
vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
|
|
guest_addr, slot, npages,
|
|
0);
|
|
guest_addr += npages * 4096;
|
|
}
|
|
*slot_runtime = timespec_elapsed(tstart);
|
|
|
|
for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
|
|
uint64_t npages;
|
|
uint64_t gpa;
|
|
|
|
npages = data->pages_per_slot;
|
|
if (slot == max_mem_slots - 2)
|
|
npages += rempages;
|
|
|
|
gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
|
|
slot + 1);
|
|
TEST_ASSERT(gpa == guest_addr,
|
|
"vm_phy_pages_alloc() failed\n");
|
|
|
|
data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
|
|
memset(data->hva_slots[slot], 0, npages * 4096);
|
|
|
|
guest_addr += npages * 4096;
|
|
}
|
|
|
|
virt_map(data->vm, MEM_GPA, MEM_GPA, mempages);
|
|
|
|
sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
|
|
atomic_init(&sync->start_flag, false);
|
|
atomic_init(&sync->exit_flag, false);
|
|
atomic_init(&sync->sync_flag, false);
|
|
|
|
data->mmio_ok = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void launch_vm(struct vm_data *data)
|
|
{
|
|
pr_info_v("Launching the test VM\n");
|
|
|
|
pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
|
|
|
|
/* Ensure the guest thread is spun up. */
|
|
wait_for_vcpu();
|
|
}
|
|
|
|
static void free_vm(struct vm_data *data)
|
|
{
|
|
kvm_vm_free(data->vm);
|
|
free(data->hva_slots);
|
|
free(data);
|
|
}
|
|
|
|
static void wait_guest_exit(struct vm_data *data)
|
|
{
|
|
pthread_join(data->vcpu_thread, NULL);
|
|
}
|
|
|
|
static void let_guest_run(struct sync_area *sync)
|
|
{
|
|
atomic_store_explicit(&sync->start_flag, true, memory_order_release);
|
|
}
|
|
|
|
static void guest_spin_until_start(void)
|
|
{
|
|
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
|
|
|
|
while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
|
|
;
|
|
}
|
|
|
|
static void make_guest_exit(struct sync_area *sync)
|
|
{
|
|
atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
|
|
}
|
|
|
|
static bool _guest_should_exit(void)
|
|
{
|
|
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
|
|
|
|
return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
|
|
}
|
|
|
|
#define guest_should_exit() unlikely(_guest_should_exit())
|
|
|
|
/*
|
|
* noinline so we can easily see how much time the host spends waiting
|
|
* for the guest.
|
|
* For the same reason use alarm() instead of polling clock_gettime()
|
|
* to implement a wait timeout.
|
|
*/
|
|
static noinline void host_perform_sync(struct sync_area *sync)
|
|
{
|
|
alarm(2);
|
|
|
|
atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
|
|
while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
|
|
;
|
|
|
|
alarm(0);
|
|
}
|
|
|
|
static bool guest_perform_sync(void)
|
|
{
|
|
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
|
|
bool expected;
|
|
|
|
do {
|
|
if (guest_should_exit())
|
|
return false;
|
|
|
|
expected = true;
|
|
} while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
|
|
&expected, false,
|
|
memory_order_acq_rel,
|
|
memory_order_relaxed));
|
|
|
|
return true;
|
|
}
|
|
|
|
static void guest_code_test_memslot_move(void)
|
|
{
|
|
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
|
|
uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
|
|
|
|
GUEST_SYNC(0);
|
|
|
|
guest_spin_until_start();
|
|
|
|
while (!guest_should_exit()) {
|
|
uintptr_t ptr;
|
|
|
|
for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
|
|
ptr += 4096)
|
|
*(uint64_t *)ptr = MEM_TEST_VAL_1;
|
|
|
|
/*
|
|
* No host sync here since the MMIO exits are so expensive
|
|
* that the host would spend most of its time waiting for
|
|
* the guest and so instead of measuring memslot move
|
|
* performance we would measure the performance and
|
|
* likelihood of MMIO exits
|
|
*/
|
|
}
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void guest_code_test_memslot_map(void)
|
|
{
|
|
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
|
|
|
|
GUEST_SYNC(0);
|
|
|
|
guest_spin_until_start();
|
|
|
|
while (1) {
|
|
uintptr_t ptr;
|
|
|
|
for (ptr = MEM_TEST_GPA;
|
|
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
|
|
*(uint64_t *)ptr = MEM_TEST_VAL_1;
|
|
|
|
if (!guest_perform_sync())
|
|
break;
|
|
|
|
for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
|
|
ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
|
|
*(uint64_t *)ptr = MEM_TEST_VAL_2;
|
|
|
|
if (!guest_perform_sync())
|
|
break;
|
|
}
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void guest_code_test_memslot_unmap(void)
|
|
{
|
|
struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
|
|
|
|
GUEST_SYNC(0);
|
|
|
|
guest_spin_until_start();
|
|
|
|
while (1) {
|
|
uintptr_t ptr = MEM_TEST_GPA;
|
|
|
|
/*
|
|
* We can afford to access (map) just a small number of pages
|
|
* per host sync as otherwise the host will spend
|
|
* a significant amount of its time waiting for the guest
|
|
* (instead of doing unmap operations), so this will
|
|
* effectively turn this test into a map performance test.
|
|
*
|
|
* Just access a single page to be on the safe side.
|
|
*/
|
|
*(uint64_t *)ptr = MEM_TEST_VAL_1;
|
|
|
|
if (!guest_perform_sync())
|
|
break;
|
|
|
|
ptr += MEM_TEST_UNMAP_SIZE / 2;
|
|
*(uint64_t *)ptr = MEM_TEST_VAL_2;
|
|
|
|
if (!guest_perform_sync())
|
|
break;
|
|
}
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void guest_code_test_memslot_rw(void)
|
|
{
|
|
GUEST_SYNC(0);
|
|
|
|
guest_spin_until_start();
|
|
|
|
while (1) {
|
|
uintptr_t ptr;
|
|
|
|
for (ptr = MEM_TEST_GPA;
|
|
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
|
|
*(uint64_t *)ptr = MEM_TEST_VAL_1;
|
|
|
|
if (!guest_perform_sync())
|
|
break;
|
|
|
|
for (ptr = MEM_TEST_GPA + 4096 / 2;
|
|
ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
|
|
uint64_t val = *(uint64_t *)ptr;
|
|
|
|
GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
|
|
*(uint64_t *)ptr = 0;
|
|
}
|
|
|
|
if (!guest_perform_sync())
|
|
break;
|
|
}
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static bool test_memslot_move_prepare(struct vm_data *data,
|
|
struct sync_area *sync,
|
|
uint64_t *maxslots, bool isactive)
|
|
{
|
|
uint64_t movesrcgpa, movetestgpa;
|
|
|
|
movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
|
|
|
|
if (isactive) {
|
|
uint64_t lastpages;
|
|
|
|
vm_gpa2hva(data, movesrcgpa, &lastpages);
|
|
if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
|
|
*maxslots = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
|
|
sync->move_area_ptr = (void *)movetestgpa;
|
|
|
|
if (isactive) {
|
|
data->mmio_ok = true;
|
|
data->mmio_gpa_min = movesrcgpa;
|
|
data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool test_memslot_move_prepare_active(struct vm_data *data,
|
|
struct sync_area *sync,
|
|
uint64_t *maxslots)
|
|
{
|
|
return test_memslot_move_prepare(data, sync, maxslots, true);
|
|
}
|
|
|
|
static bool test_memslot_move_prepare_inactive(struct vm_data *data,
|
|
struct sync_area *sync,
|
|
uint64_t *maxslots)
|
|
{
|
|
return test_memslot_move_prepare(data, sync, maxslots, false);
|
|
}
|
|
|
|
static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
|
|
{
|
|
uint64_t movesrcgpa;
|
|
|
|
movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
|
|
vm_mem_region_move(data->vm, data->nslots - 1 + 1,
|
|
MEM_TEST_MOVE_GPA_DEST);
|
|
vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
|
|
}
|
|
|
|
static void test_memslot_do_unmap(struct vm_data *data,
|
|
uint64_t offsp, uint64_t count)
|
|
{
|
|
uint64_t gpa, ctr;
|
|
|
|
for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
|
|
uint64_t npages;
|
|
void *hva;
|
|
int ret;
|
|
|
|
hva = vm_gpa2hva(data, gpa, &npages);
|
|
TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
|
|
npages = min(npages, count - ctr);
|
|
ret = madvise(hva, npages * 4096, MADV_DONTNEED);
|
|
TEST_ASSERT(!ret,
|
|
"madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
|
|
hva, gpa);
|
|
ctr += npages;
|
|
gpa += npages * 4096;
|
|
}
|
|
TEST_ASSERT(ctr == count,
|
|
"madvise(MADV_DONTNEED) should exactly cover all of the requested area");
|
|
}
|
|
|
|
static void test_memslot_map_unmap_check(struct vm_data *data,
|
|
uint64_t offsp, uint64_t valexp)
|
|
{
|
|
uint64_t gpa;
|
|
uint64_t *val;
|
|
|
|
if (!map_unmap_verify)
|
|
return;
|
|
|
|
gpa = MEM_TEST_GPA + offsp * 4096;
|
|
val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
|
|
TEST_ASSERT(*val == valexp,
|
|
"Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
|
|
*val, valexp, gpa);
|
|
*val = 0;
|
|
}
|
|
|
|
static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
|
|
{
|
|
/*
|
|
* Unmap the second half of the test area while guest writes to (maps)
|
|
* the first half.
|
|
*/
|
|
test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
|
|
MEM_TEST_MAP_SIZE_PAGES / 2);
|
|
|
|
/*
|
|
* Wait for the guest to finish writing the first half of the test
|
|
* area, verify the written value on the first and the last page of
|
|
* this area and then unmap it.
|
|
* Meanwhile, the guest is writing to (mapping) the second half of
|
|
* the test area.
|
|
*/
|
|
host_perform_sync(sync);
|
|
test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
|
|
test_memslot_map_unmap_check(data,
|
|
MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
|
|
MEM_TEST_VAL_1);
|
|
test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);
|
|
|
|
|
|
/*
|
|
* Wait for the guest to finish writing the second half of the test
|
|
* area and verify the written value on the first and the last page
|
|
* of this area.
|
|
* The area will be unmapped at the beginning of the next loop
|
|
* iteration.
|
|
* Meanwhile, the guest is writing to (mapping) the first half of
|
|
* the test area.
|
|
*/
|
|
host_perform_sync(sync);
|
|
test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
|
|
MEM_TEST_VAL_2);
|
|
test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
|
|
MEM_TEST_VAL_2);
|
|
}
|
|
|
|
static void test_memslot_unmap_loop_common(struct vm_data *data,
|
|
struct sync_area *sync,
|
|
uint64_t chunk)
|
|
{
|
|
uint64_t ctr;
|
|
|
|
/*
|
|
* Wait for the guest to finish mapping page(s) in the first half
|
|
* of the test area, verify the written value and then perform unmap
|
|
* of this area.
|
|
* Meanwhile, the guest is writing to (mapping) page(s) in the second
|
|
* half of the test area.
|
|
*/
|
|
host_perform_sync(sync);
|
|
test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
|
|
for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
|
|
test_memslot_do_unmap(data, ctr, chunk);
|
|
|
|
/* Likewise, but for the opposite host / guest areas */
|
|
host_perform_sync(sync);
|
|
test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
|
|
MEM_TEST_VAL_2);
|
|
for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
|
|
ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
|
|
test_memslot_do_unmap(data, ctr, chunk);
|
|
}
|
|
|
|
static void test_memslot_unmap_loop(struct vm_data *data,
|
|
struct sync_area *sync)
|
|
{
|
|
test_memslot_unmap_loop_common(data, sync, 1);
|
|
}
|
|
|
|
static void test_memslot_unmap_loop_chunked(struct vm_data *data,
|
|
struct sync_area *sync)
|
|
{
|
|
test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
|
|
}
|
|
|
|
static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
|
|
{
|
|
uint64_t gptr;
|
|
|
|
for (gptr = MEM_TEST_GPA + 4096 / 2;
|
|
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
|
|
*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
|
|
|
|
host_perform_sync(sync);
|
|
|
|
for (gptr = MEM_TEST_GPA;
|
|
gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
|
|
uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
|
|
uint64_t val = *vptr;
|
|
|
|
TEST_ASSERT(val == MEM_TEST_VAL_1,
|
|
"Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
|
|
val, gptr);
|
|
*vptr = 0;
|
|
}
|
|
|
|
host_perform_sync(sync);
|
|
}
|
|
|
|
struct test_data {
|
|
const char *name;
|
|
uint64_t mem_size;
|
|
void (*guest_code)(void);
|
|
bool (*prepare)(struct vm_data *data, struct sync_area *sync,
|
|
uint64_t *maxslots);
|
|
void (*loop)(struct vm_data *data, struct sync_area *sync);
|
|
};
|
|
|
|
static bool test_execute(int nslots, uint64_t *maxslots,
|
|
unsigned int maxtime,
|
|
const struct test_data *tdata,
|
|
uint64_t *nloops,
|
|
struct timespec *slot_runtime,
|
|
struct timespec *guest_runtime)
|
|
{
|
|
uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
|
|
struct vm_data *data;
|
|
struct sync_area *sync;
|
|
struct timespec tstart;
|
|
bool ret = true;
|
|
|
|
data = alloc_vm();
|
|
if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
|
|
mem_size, slot_runtime)) {
|
|
ret = false;
|
|
goto exit_free;
|
|
}
|
|
|
|
sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
|
|
|
|
if (tdata->prepare &&
|
|
!tdata->prepare(data, sync, maxslots)) {
|
|
ret = false;
|
|
goto exit_free;
|
|
}
|
|
|
|
launch_vm(data);
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &tstart);
|
|
let_guest_run(sync);
|
|
|
|
while (1) {
|
|
*guest_runtime = timespec_elapsed(tstart);
|
|
if (guest_runtime->tv_sec >= maxtime)
|
|
break;
|
|
|
|
tdata->loop(data, sync);
|
|
|
|
(*nloops)++;
|
|
}
|
|
|
|
make_guest_exit(sync);
|
|
wait_guest_exit(data);
|
|
|
|
exit_free:
|
|
free_vm(data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct test_data tests[] = {
|
|
{
|
|
.name = "map",
|
|
.mem_size = MEM_SIZE_MAP_PAGES,
|
|
.guest_code = guest_code_test_memslot_map,
|
|
.loop = test_memslot_map_loop,
|
|
},
|
|
{
|
|
.name = "unmap",
|
|
.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
|
|
.guest_code = guest_code_test_memslot_unmap,
|
|
.loop = test_memslot_unmap_loop,
|
|
},
|
|
{
|
|
.name = "unmap chunked",
|
|
.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
|
|
.guest_code = guest_code_test_memslot_unmap,
|
|
.loop = test_memslot_unmap_loop_chunked,
|
|
},
|
|
{
|
|
.name = "move active area",
|
|
.guest_code = guest_code_test_memslot_move,
|
|
.prepare = test_memslot_move_prepare_active,
|
|
.loop = test_memslot_move_loop,
|
|
},
|
|
{
|
|
.name = "move inactive area",
|
|
.guest_code = guest_code_test_memslot_move,
|
|
.prepare = test_memslot_move_prepare_inactive,
|
|
.loop = test_memslot_move_loop,
|
|
},
|
|
{
|
|
.name = "RW",
|
|
.guest_code = guest_code_test_memslot_rw,
|
|
.loop = test_memslot_rw_loop
|
|
},
|
|
};
|
|
|
|
#define NTESTS ARRAY_SIZE(tests)
|
|
|
|
struct test_args {
|
|
int tfirst;
|
|
int tlast;
|
|
int nslots;
|
|
int seconds;
|
|
int runs;
|
|
};
|
|
|
|
static void help(char *name, struct test_args *targs)
|
|
{
|
|
int ctr;
|
|
|
|
pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
|
|
name);
|
|
pr_info(" -h: print this help screen.\n");
|
|
pr_info(" -v: enable verbose mode (not for benchmarking).\n");
|
|
pr_info(" -d: enable extra debug checks.\n");
|
|
pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
|
|
targs->nslots);
|
|
pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
|
|
targs->tfirst, NTESTS - 1);
|
|
pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
|
|
targs->tlast, NTESTS - 1);
|
|
pr_info(" -l: specify the test length in seconds (currently: %i)\n",
|
|
targs->seconds);
|
|
pr_info(" -r: specify the number of runs per test (currently: %i)\n",
|
|
targs->runs);
|
|
|
|
pr_info("\nAvailable tests:\n");
|
|
for (ctr = 0; ctr < NTESTS; ctr++)
|
|
pr_info("%d: %s\n", ctr, tests[ctr].name);
|
|
}
|
|
|
|
static bool parse_args(int argc, char *argv[],
|
|
struct test_args *targs)
|
|
{
|
|
int opt;
|
|
|
|
while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
|
|
switch (opt) {
|
|
case 'h':
|
|
default:
|
|
help(argv[0], targs);
|
|
return false;
|
|
case 'v':
|
|
verbose = true;
|
|
break;
|
|
case 'd':
|
|
map_unmap_verify = true;
|
|
break;
|
|
case 's':
|
|
targs->nslots = atoi(optarg);
|
|
if (targs->nslots <= 0 && targs->nslots != -1) {
|
|
pr_info("Slot count cap has to be positive or -1 for no cap\n");
|
|
return false;
|
|
}
|
|
break;
|
|
case 'f':
|
|
targs->tfirst = atoi(optarg);
|
|
if (targs->tfirst < 0) {
|
|
pr_info("First test to run has to be non-negative\n");
|
|
return false;
|
|
}
|
|
break;
|
|
case 'e':
|
|
targs->tlast = atoi(optarg);
|
|
if (targs->tlast < 0 || targs->tlast >= NTESTS) {
|
|
pr_info("Last test to run has to be non-negative and less than %zu\n",
|
|
NTESTS);
|
|
return false;
|
|
}
|
|
break;
|
|
case 'l':
|
|
targs->seconds = atoi(optarg);
|
|
if (targs->seconds < 0) {
|
|
pr_info("Test length in seconds has to be non-negative\n");
|
|
return false;
|
|
}
|
|
break;
|
|
case 'r':
|
|
targs->runs = atoi(optarg);
|
|
if (targs->runs <= 0) {
|
|
pr_info("Runs per test has to be positive\n");
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (optind < argc) {
|
|
help(argv[0], targs);
|
|
return false;
|
|
}
|
|
|
|
if (targs->tfirst > targs->tlast) {
|
|
pr_info("First test to run cannot be greater than the last test to run\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct test_result {
|
|
struct timespec slot_runtime, guest_runtime, iter_runtime;
|
|
int64_t slottimens, runtimens;
|
|
uint64_t nloops;
|
|
};
|
|
|
|
static bool test_loop(const struct test_data *data,
|
|
const struct test_args *targs,
|
|
struct test_result *rbestslottime,
|
|
struct test_result *rbestruntime)
|
|
{
|
|
uint64_t maxslots;
|
|
struct test_result result;
|
|
|
|
result.nloops = 0;
|
|
if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
|
|
&result.nloops,
|
|
&result.slot_runtime, &result.guest_runtime)) {
|
|
if (maxslots)
|
|
pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
|
|
maxslots);
|
|
else
|
|
pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
|
|
result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
|
|
result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
|
|
if (!result.nloops) {
|
|
pr_info("No full loops done - too short test time or system too loaded?\n");
|
|
return true;
|
|
}
|
|
|
|
result.iter_runtime = timespec_div(result.guest_runtime,
|
|
result.nloops);
|
|
pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
|
|
result.nloops,
|
|
result.iter_runtime.tv_sec,
|
|
result.iter_runtime.tv_nsec);
|
|
result.slottimens = timespec_to_ns(result.slot_runtime);
|
|
result.runtimens = timespec_to_ns(result.iter_runtime);
|
|
|
|
/*
|
|
* Only rank the slot setup time for tests using the whole test memory
|
|
* area so they are comparable
|
|
*/
|
|
if (!data->mem_size &&
|
|
(!rbestslottime->slottimens ||
|
|
result.slottimens < rbestslottime->slottimens))
|
|
*rbestslottime = result;
|
|
if (!rbestruntime->runtimens ||
|
|
result.runtimens < rbestruntime->runtimens)
|
|
*rbestruntime = result;
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
struct test_args targs = {
|
|
.tfirst = 0,
|
|
.tlast = NTESTS - 1,
|
|
.nslots = -1,
|
|
.seconds = 5,
|
|
.runs = 1,
|
|
};
|
|
struct test_result rbestslottime;
|
|
int tctr;
|
|
|
|
/* Tell stdout not to buffer its content */
|
|
setbuf(stdout, NULL);
|
|
|
|
if (!parse_args(argc, argv, &targs))
|
|
return -1;
|
|
|
|
rbestslottime.slottimens = 0;
|
|
for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
|
|
const struct test_data *data = &tests[tctr];
|
|
unsigned int runctr;
|
|
struct test_result rbestruntime;
|
|
|
|
if (tctr > targs.tfirst)
|
|
pr_info("\n");
|
|
|
|
pr_info("Testing %s performance with %i runs, %d seconds each\n",
|
|
data->name, targs.runs, targs.seconds);
|
|
|
|
rbestruntime.runtimens = 0;
|
|
for (runctr = 0; runctr < targs.runs; runctr++)
|
|
if (!test_loop(data, &targs,
|
|
&rbestslottime, &rbestruntime))
|
|
break;
|
|
|
|
if (rbestruntime.runtimens)
|
|
pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
|
|
rbestruntime.iter_runtime.tv_sec,
|
|
rbestruntime.iter_runtime.tv_nsec,
|
|
rbestruntime.nloops);
|
|
}
|
|
|
|
if (rbestslottime.slottimens)
|
|
pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
|
|
rbestslottime.slot_runtime.tv_sec,
|
|
rbestslottime.slot_runtime.tv_nsec);
|
|
|
|
return 0;
|
|
}
|