linux/drivers/net/ipa/ipa_clock.c
Alex Elder dc6e6072d3 net: ipa: manage endpoints separate from clock
Currently, when (before) the last IPA clock reference is dropped,
all endpoints are suspended.  And whenever the first IPA clock
reference is taken, all endpoints are resumed (or started).

In most cases there's no need to start endpoints when the clock
starts.  So move the calls to ipa_endpoint_suspend() and
ipa_endpoint_resume() out of ipa_clock_put() and ipa_clock_get(),
respectiely.  Instead, only suspend endpoints when handling a system
suspend, and only resume endpoints when handling a system resume.

Signed-off-by: Alex Elder <elder@linaro.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-18 17:47:07 -07:00

314 lines
7.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2020 Linaro Ltd.
*/
#include <linux/refcount.h>
#include <linux/mutex.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interconnect.h>
#include "ipa.h"
#include "ipa_clock.h"
#include "ipa_modem.h"
/**
* DOC: IPA Clocking
*
* The "IPA Clock" manages both the IPA core clock and the interconnects
* (buses) the IPA depends on as a single logical entity. A reference count
* is incremented by "get" operations and decremented by "put" operations.
* Transitions of that count from 0 to 1 result in the clock and interconnects
* being enabled, and transitions of the count from 1 to 0 cause them to be
* disabled. We currently operate the core clock at a fixed clock rate, and
* all buses at a fixed average and peak bandwidth. As more advanced IPA
* features are enabled, we can make better use of clock and bus scaling.
*
* An IPA clock reference must be held for any access to IPA hardware.
*/
#define IPA_CORE_CLOCK_RATE (75UL * 1000 * 1000) /* Hz */
/* Interconnect path bandwidths (each times 1000 bytes per second) */
#define IPA_MEMORY_AVG (80 * 1000) /* 80 MBps */
#define IPA_MEMORY_PEAK (600 * 1000)
#define IPA_IMEM_AVG (80 * 1000)
#define IPA_IMEM_PEAK (350 * 1000)
#define IPA_CONFIG_AVG (40 * 1000)
#define IPA_CONFIG_PEAK (40 * 1000)
/**
* struct ipa_clock - IPA clocking information
* @count: Clocking reference count
* @mutex: Protects clock enable/disable
* @core: IPA core clock
* @memory_path: Memory interconnect
* @imem_path: Internal memory interconnect
* @config_path: Configuration space interconnect
*/
struct ipa_clock {
refcount_t count;
struct mutex mutex; /* protects clock enable/disable */
struct clk *core;
struct icc_path *memory_path;
struct icc_path *imem_path;
struct icc_path *config_path;
};
static struct icc_path *
ipa_interconnect_init_one(struct device *dev, const char *name)
{
struct icc_path *path;
path = of_icc_get(dev, name);
if (IS_ERR(path))
dev_err(dev, "error %ld getting %s interconnect\n",
PTR_ERR(path), name);
return path;
}
/* Initialize interconnects required for IPA operation */
static int ipa_interconnect_init(struct ipa_clock *clock, struct device *dev)
{
struct icc_path *path;
path = ipa_interconnect_init_one(dev, "memory");
if (IS_ERR(path))
goto err_return;
clock->memory_path = path;
path = ipa_interconnect_init_one(dev, "imem");
if (IS_ERR(path))
goto err_memory_path_put;
clock->imem_path = path;
path = ipa_interconnect_init_one(dev, "config");
if (IS_ERR(path))
goto err_imem_path_put;
clock->config_path = path;
return 0;
err_imem_path_put:
icc_put(clock->imem_path);
err_memory_path_put:
icc_put(clock->memory_path);
err_return:
return PTR_ERR(path);
}
/* Inverse of ipa_interconnect_init() */
static void ipa_interconnect_exit(struct ipa_clock *clock)
{
icc_put(clock->config_path);
icc_put(clock->imem_path);
icc_put(clock->memory_path);
}
/* Currently we only use one bandwidth level, so just "enable" interconnects */
static int ipa_interconnect_enable(struct ipa *ipa)
{
struct ipa_clock *clock = ipa->clock;
int ret;
ret = icc_set_bw(clock->memory_path, IPA_MEMORY_AVG, IPA_MEMORY_PEAK);
if (ret)
return ret;
ret = icc_set_bw(clock->imem_path, IPA_IMEM_AVG, IPA_IMEM_PEAK);
if (ret)
goto err_memory_path_disable;
ret = icc_set_bw(clock->config_path, IPA_CONFIG_AVG, IPA_CONFIG_PEAK);
if (ret)
goto err_imem_path_disable;
return 0;
err_imem_path_disable:
(void)icc_set_bw(clock->imem_path, 0, 0);
err_memory_path_disable:
(void)icc_set_bw(clock->memory_path, 0, 0);
return ret;
}
/* To disable an interconnect, we just its bandwidth to 0 */
static int ipa_interconnect_disable(struct ipa *ipa)
{
struct ipa_clock *clock = ipa->clock;
int ret;
ret = icc_set_bw(clock->memory_path, 0, 0);
if (ret)
return ret;
ret = icc_set_bw(clock->imem_path, 0, 0);
if (ret)
goto err_memory_path_reenable;
ret = icc_set_bw(clock->config_path, 0, 0);
if (ret)
goto err_imem_path_reenable;
return 0;
err_imem_path_reenable:
(void)icc_set_bw(clock->imem_path, IPA_IMEM_AVG, IPA_IMEM_PEAK);
err_memory_path_reenable:
(void)icc_set_bw(clock->memory_path, IPA_MEMORY_AVG, IPA_MEMORY_PEAK);
return ret;
}
/* Turn on IPA clocks, including interconnects */
static int ipa_clock_enable(struct ipa *ipa)
{
int ret;
ret = ipa_interconnect_enable(ipa);
if (ret)
return ret;
ret = clk_prepare_enable(ipa->clock->core);
if (ret)
ipa_interconnect_disable(ipa);
return ret;
}
/* Inverse of ipa_clock_enable() */
static void ipa_clock_disable(struct ipa *ipa)
{
clk_disable_unprepare(ipa->clock->core);
(void)ipa_interconnect_disable(ipa);
}
/* Get an IPA clock reference, but only if the reference count is
* already non-zero. Returns true if the additional reference was
* added successfully, or false otherwise.
*/
bool ipa_clock_get_additional(struct ipa *ipa)
{
return refcount_inc_not_zero(&ipa->clock->count);
}
/* Get an IPA clock reference. If the reference count is non-zero, it is
* incremented and return is immediate. Otherwise it is checked again
* under protection of the mutex, and if appropriate the IPA clock
* is enabled.
*
* Incrementing the reference count is intentionally deferred until
* after the clock is running and endpoints are resumed.
*/
void ipa_clock_get(struct ipa *ipa)
{
struct ipa_clock *clock = ipa->clock;
int ret;
/* If the clock is running, just bump the reference count */
if (ipa_clock_get_additional(ipa))
return;
/* Otherwise get the mutex and check again */
mutex_lock(&clock->mutex);
/* A reference might have been added before we got the mutex. */
if (ipa_clock_get_additional(ipa))
goto out_mutex_unlock;
ret = ipa_clock_enable(ipa);
if (ret) {
dev_err(&ipa->pdev->dev, "error %d enabling IPA clock\n", ret);
goto out_mutex_unlock;
}
refcount_set(&clock->count, 1);
out_mutex_unlock:
mutex_unlock(&clock->mutex);
}
/* Attempt to remove an IPA clock reference. If this represents the
* last reference, disable the IPA clock under protection of the mutex.
*/
void ipa_clock_put(struct ipa *ipa)
{
struct ipa_clock *clock = ipa->clock;
/* If this is not the last reference there's nothing more to do */
if (!refcount_dec_and_mutex_lock(&clock->count, &clock->mutex))
return;
ipa_clock_disable(ipa);
mutex_unlock(&clock->mutex);
}
/* Return the current IPA core clock rate */
u32 ipa_clock_rate(struct ipa *ipa)
{
return ipa->clock ? (u32)clk_get_rate(ipa->clock->core) : 0;
}
/* Initialize IPA clocking */
struct ipa_clock *ipa_clock_init(struct device *dev)
{
struct ipa_clock *clock;
struct clk *clk;
int ret;
clk = clk_get(dev, "core");
if (IS_ERR(clk)) {
dev_err(dev, "error %ld getting core clock\n", PTR_ERR(clk));
return ERR_CAST(clk);
}
ret = clk_set_rate(clk, IPA_CORE_CLOCK_RATE);
if (ret) {
dev_err(dev, "error %d setting core clock rate to %lu\n",
ret, IPA_CORE_CLOCK_RATE);
goto err_clk_put;
}
clock = kzalloc(sizeof(*clock), GFP_KERNEL);
if (!clock) {
ret = -ENOMEM;
goto err_clk_put;
}
clock->core = clk;
ret = ipa_interconnect_init(clock, dev);
if (ret)
goto err_kfree;
mutex_init(&clock->mutex);
refcount_set(&clock->count, 0);
return clock;
err_kfree:
kfree(clock);
err_clk_put:
clk_put(clk);
return ERR_PTR(ret);
}
/* Inverse of ipa_clock_init() */
void ipa_clock_exit(struct ipa_clock *clock)
{
struct clk *clk = clock->core;
WARN_ON(refcount_read(&clock->count) != 0);
mutex_destroy(&clock->mutex);
ipa_interconnect_exit(clock);
kfree(clock);
clk_put(clk);
}