mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 12:28:41 +08:00
6e17c6de3d
- Yosry has also eliminated cgroup's atomic rstat flushing. - Nhat Pham adds the new cachestat() syscall. It provides userspace with the ability to query pagecache status - a similar concept to mincore() but more powerful and with improved usability. - Mel Gorman provides more optimizations for compaction, reducing the prevalence of page rescanning. - Lorenzo Stoakes has done some maintanance work on the get_user_pages() interface. - Liam Howlett continues with cleanups and maintenance work to the maple tree code. Peng Zhang also does some work on maple tree. - Johannes Weiner has done some cleanup work on the compaction code. - David Hildenbrand has contributed additional selftests for get_user_pages(). - Thomas Gleixner has contributed some maintenance and optimization work for the vmalloc code. - Baolin Wang has provided some compaction cleanups, - SeongJae Park continues maintenance work on the DAMON code. - Huang Ying has done some maintenance on the swap code's usage of device refcounting. - Christoph Hellwig has some cleanups for the filemap/directio code. - Ryan Roberts provides two patch series which yield some rationalization of the kernel's access to pte entries - use the provided APIs rather than open-coding accesses. - Lorenzo Stoakes has some fixes to the interaction between pagecache and directio access to file mappings. - John Hubbard has a series of fixes to the MM selftesting code. - ZhangPeng continues the folio conversion campaign. - Hugh Dickins has been working on the pagetable handling code, mainly with a view to reducing the load on the mmap_lock. - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from 128 to 8. - Domenico Cerasuolo has improved the zswap reclaim mechanism by reorganizing the LRU management. - Matthew Wilcox provides some fixups to make gfs2 work better with the buffer_head code. - Vishal Moola also has done some folio conversion work. - Matthew Wilcox has removed the remnants of the pagevec code - their functionality is migrated over to struct folio_batch. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh J0qXCzqaaN8+BuEyLGDVPaXur9KirwY= =B7yQ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: - Yosry Ahmed brought back some cgroup v1 stats in OOM logs - Yosry has also eliminated cgroup's atomic rstat flushing - Nhat Pham adds the new cachestat() syscall. It provides userspace with the ability to query pagecache status - a similar concept to mincore() but more powerful and with improved usability - Mel Gorman provides more optimizations for compaction, reducing the prevalence of page rescanning - Lorenzo Stoakes has done some maintanance work on the get_user_pages() interface - Liam Howlett continues with cleanups and maintenance work to the maple tree code. Peng Zhang also does some work on maple tree - Johannes Weiner has done some cleanup work on the compaction code - David Hildenbrand has contributed additional selftests for get_user_pages() - Thomas Gleixner has contributed some maintenance and optimization work for the vmalloc code - Baolin Wang has provided some compaction cleanups, - SeongJae Park continues maintenance work on the DAMON code - Huang Ying has done some maintenance on the swap code's usage of device refcounting - Christoph Hellwig has some cleanups for the filemap/directio code - Ryan Roberts provides two patch series which yield some rationalization of the kernel's access to pte entries - use the provided APIs rather than open-coding accesses - Lorenzo Stoakes has some fixes to the interaction between pagecache and directio access to file mappings - John Hubbard has a series of fixes to the MM selftesting code - ZhangPeng continues the folio conversion campaign - Hugh Dickins has been working on the pagetable handling code, mainly with a view to reducing the load on the mmap_lock - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from 128 to 8 - Domenico Cerasuolo has improved the zswap reclaim mechanism by reorganizing the LRU management - Matthew Wilcox provides some fixups to make gfs2 work better with the buffer_head code - Vishal Moola also has done some folio conversion work - Matthew Wilcox has removed the remnants of the pagevec code - their functionality is migrated over to struct folio_batch * tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits) mm/hugetlb: remove hugetlb_set_page_subpool() mm: nommu: correct the range of mmap_sem_read_lock in task_mem() hugetlb: revert use of page_cache_next_miss() Revert "page cache: fix page_cache_next/prev_miss off by one" mm/vmscan: fix root proactive reclaim unthrottling unbalanced node mm: memcg: rename and document global_reclaim() mm: kill [add|del]_page_to_lru_list() mm: compaction: convert to use a folio in isolate_migratepages_block() mm: zswap: fix double invalidate with exclusive loads mm: remove unnecessary pagevec includes mm: remove references to pagevec mm: rename invalidate_mapping_pagevec to mapping_try_invalidate mm: remove struct pagevec net: convert sunrpc from pagevec to folio_batch i915: convert i915_gpu_error to use a folio_batch pagevec: rename fbatch_count() mm: remove check_move_unevictable_pages() drm: convert drm_gem_put_pages() to use a folio_batch i915: convert shmem_sg_free_table() to use a folio_batch scatterlist: add sg_set_folio() ...
2730 lines
62 KiB
C
2730 lines
62 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2021, Microsoft Corporation.
|
|
*
|
|
* Authors:
|
|
* Beau Belgrave <beaub@linux.microsoft.com>
|
|
*/
|
|
|
|
#include <linux/bitmap.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/list.h>
|
|
#include <linux/io.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/ioctl.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/trace_events.h>
|
|
#include <linux/tracefs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/user_events.h>
|
|
#include "trace_dynevent.h"
|
|
#include "trace_output.h"
|
|
#include "trace.h"
|
|
|
|
#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
|
|
|
|
#define FIELD_DEPTH_TYPE 0
|
|
#define FIELD_DEPTH_NAME 1
|
|
#define FIELD_DEPTH_SIZE 2
|
|
|
|
/* Limit how long of an event name plus args within the subsystem. */
|
|
#define MAX_EVENT_DESC 512
|
|
#define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
|
|
#define MAX_FIELD_ARRAY_SIZE 1024
|
|
|
|
/*
|
|
* Internal bits (kernel side only) to keep track of connected probes:
|
|
* These are used when status is requested in text form about an event. These
|
|
* bits are compared against an internal byte on the event to determine which
|
|
* probes to print out to the user.
|
|
*
|
|
* These do not reflect the mapped bytes between the user and kernel space.
|
|
*/
|
|
#define EVENT_STATUS_FTRACE BIT(0)
|
|
#define EVENT_STATUS_PERF BIT(1)
|
|
#define EVENT_STATUS_OTHER BIT(7)
|
|
|
|
/*
|
|
* User register flags are not allowed yet, keep them here until we are
|
|
* ready to expose them out to the user ABI.
|
|
*/
|
|
enum user_reg_flag {
|
|
/* Event will not delete upon last reference closing */
|
|
USER_EVENT_REG_PERSIST = 1U << 0,
|
|
|
|
/* This value or above is currently non-ABI */
|
|
USER_EVENT_REG_MAX = 1U << 1,
|
|
};
|
|
|
|
/*
|
|
* Stores the system name, tables, and locks for a group of events. This
|
|
* allows isolation for events by various means.
|
|
*/
|
|
struct user_event_group {
|
|
char *system_name;
|
|
struct hlist_node node;
|
|
struct mutex reg_mutex;
|
|
DECLARE_HASHTABLE(register_table, 8);
|
|
};
|
|
|
|
/* Group for init_user_ns mapping, top-most group */
|
|
static struct user_event_group *init_group;
|
|
|
|
/* Max allowed events for the whole system */
|
|
static unsigned int max_user_events = 32768;
|
|
|
|
/* Current number of events on the whole system */
|
|
static unsigned int current_user_events;
|
|
|
|
/*
|
|
* Stores per-event properties, as users register events
|
|
* within a file a user_event might be created if it does not
|
|
* already exist. These are globally used and their lifetime
|
|
* is tied to the refcnt member. These cannot go away until the
|
|
* refcnt reaches one.
|
|
*/
|
|
struct user_event {
|
|
struct user_event_group *group;
|
|
struct tracepoint tracepoint;
|
|
struct trace_event_call call;
|
|
struct trace_event_class class;
|
|
struct dyn_event devent;
|
|
struct hlist_node node;
|
|
struct list_head fields;
|
|
struct list_head validators;
|
|
struct work_struct put_work;
|
|
refcount_t refcnt;
|
|
int min_size;
|
|
int reg_flags;
|
|
char status;
|
|
};
|
|
|
|
/*
|
|
* Stores per-mm/event properties that enable an address to be
|
|
* updated properly for each task. As tasks are forked, we use
|
|
* these to track enablement sites that are tied to an event.
|
|
*/
|
|
struct user_event_enabler {
|
|
struct list_head mm_enablers_link;
|
|
struct user_event *event;
|
|
unsigned long addr;
|
|
|
|
/* Track enable bit, flags, etc. Aligned for bitops. */
|
|
unsigned long values;
|
|
};
|
|
|
|
/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
|
|
#define ENABLE_VAL_BIT_MASK 0x3F
|
|
|
|
/* Bit 6 is for faulting status of enablement */
|
|
#define ENABLE_VAL_FAULTING_BIT 6
|
|
|
|
/* Bit 7 is for freeing status of enablement */
|
|
#define ENABLE_VAL_FREEING_BIT 7
|
|
|
|
/* Only duplicate the bit value */
|
|
#define ENABLE_VAL_DUP_MASK ENABLE_VAL_BIT_MASK
|
|
|
|
#define ENABLE_BITOPS(e) (&(e)->values)
|
|
|
|
#define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
|
|
|
|
/* Used for asynchronous faulting in of pages */
|
|
struct user_event_enabler_fault {
|
|
struct work_struct work;
|
|
struct user_event_mm *mm;
|
|
struct user_event_enabler *enabler;
|
|
int attempt;
|
|
};
|
|
|
|
static struct kmem_cache *fault_cache;
|
|
|
|
/* Global list of memory descriptors using user_events */
|
|
static LIST_HEAD(user_event_mms);
|
|
static DEFINE_SPINLOCK(user_event_mms_lock);
|
|
|
|
/*
|
|
* Stores per-file events references, as users register events
|
|
* within a file this structure is modified and freed via RCU.
|
|
* The lifetime of this struct is tied to the lifetime of the file.
|
|
* These are not shared and only accessible by the file that created it.
|
|
*/
|
|
struct user_event_refs {
|
|
struct rcu_head rcu;
|
|
int count;
|
|
struct user_event *events[];
|
|
};
|
|
|
|
struct user_event_file_info {
|
|
struct user_event_group *group;
|
|
struct user_event_refs *refs;
|
|
};
|
|
|
|
#define VALIDATOR_ENSURE_NULL (1 << 0)
|
|
#define VALIDATOR_REL (1 << 1)
|
|
|
|
struct user_event_validator {
|
|
struct list_head user_event_link;
|
|
int offset;
|
|
int flags;
|
|
};
|
|
|
|
typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
|
|
void *tpdata, bool *faulted);
|
|
|
|
static int user_event_parse(struct user_event_group *group, char *name,
|
|
char *args, char *flags,
|
|
struct user_event **newuser, int reg_flags);
|
|
|
|
static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
|
|
static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
|
|
static void user_event_mm_put(struct user_event_mm *mm);
|
|
static int destroy_user_event(struct user_event *user);
|
|
|
|
static u32 user_event_key(char *name)
|
|
{
|
|
return jhash(name, strlen(name), 0);
|
|
}
|
|
|
|
static struct user_event *user_event_get(struct user_event *user)
|
|
{
|
|
refcount_inc(&user->refcnt);
|
|
|
|
return user;
|
|
}
|
|
|
|
static void delayed_destroy_user_event(struct work_struct *work)
|
|
{
|
|
struct user_event *user = container_of(
|
|
work, struct user_event, put_work);
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
if (!refcount_dec_and_test(&user->refcnt))
|
|
goto out;
|
|
|
|
if (destroy_user_event(user)) {
|
|
/*
|
|
* The only reason this would fail here is if we cannot
|
|
* update the visibility of the event. In this case the
|
|
* event stays in the hashtable, waiting for someone to
|
|
* attempt to delete it later.
|
|
*/
|
|
pr_warn("user_events: Unable to delete event\n");
|
|
refcount_set(&user->refcnt, 1);
|
|
}
|
|
out:
|
|
mutex_unlock(&event_mutex);
|
|
}
|
|
|
|
static void user_event_put(struct user_event *user, bool locked)
|
|
{
|
|
bool delete;
|
|
|
|
if (unlikely(!user))
|
|
return;
|
|
|
|
/*
|
|
* When the event is not enabled for auto-delete there will always
|
|
* be at least 1 reference to the event. During the event creation
|
|
* we initially set the refcnt to 2 to achieve this. In those cases
|
|
* the caller must acquire event_mutex and after decrement check if
|
|
* the refcnt is 1, meaning this is the last reference. When auto
|
|
* delete is enabled, there will only be 1 ref, IE: refcnt will be
|
|
* only set to 1 during creation to allow the below checks to go
|
|
* through upon the last put. The last put must always be done with
|
|
* the event mutex held.
|
|
*/
|
|
if (!locked) {
|
|
lockdep_assert_not_held(&event_mutex);
|
|
delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
|
|
} else {
|
|
lockdep_assert_held(&event_mutex);
|
|
delete = refcount_dec_and_test(&user->refcnt);
|
|
}
|
|
|
|
if (!delete)
|
|
return;
|
|
|
|
/*
|
|
* We now have the event_mutex in all cases, which ensures that
|
|
* no new references will be taken until event_mutex is released.
|
|
* New references come through find_user_event(), which requires
|
|
* the event_mutex to be held.
|
|
*/
|
|
|
|
if (user->reg_flags & USER_EVENT_REG_PERSIST) {
|
|
/* We should not get here when persist flag is set */
|
|
pr_alert("BUG: Auto-delete engaged on persistent event\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Unfortunately we have to attempt the actual destroy in a work
|
|
* queue. This is because not all cases handle a trace_event_call
|
|
* being removed within the class->reg() operation for unregister.
|
|
*/
|
|
INIT_WORK(&user->put_work, delayed_destroy_user_event);
|
|
|
|
/*
|
|
* Since the event is still in the hashtable, we have to re-inc
|
|
* the ref count to 1. This count will be decremented and checked
|
|
* in the work queue to ensure it's still the last ref. This is
|
|
* needed because a user-process could register the same event in
|
|
* between the time of event_mutex release and the work queue
|
|
* running the delayed destroy. If we removed the item now from
|
|
* the hashtable, this would result in a timing window where a
|
|
* user process would fail a register because the trace_event_call
|
|
* register would fail in the tracing layers.
|
|
*/
|
|
refcount_set(&user->refcnt, 1);
|
|
|
|
if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
|
|
/*
|
|
* If we fail we must wait for an admin to attempt delete or
|
|
* another register/close of the event, whichever is first.
|
|
*/
|
|
pr_warn("user_events: Unable to queue delayed destroy\n");
|
|
}
|
|
out:
|
|
/* Ensure if we didn't have event_mutex before we unlock it */
|
|
if (!locked)
|
|
mutex_unlock(&event_mutex);
|
|
}
|
|
|
|
static void user_event_group_destroy(struct user_event_group *group)
|
|
{
|
|
kfree(group->system_name);
|
|
kfree(group);
|
|
}
|
|
|
|
static char *user_event_group_system_name(void)
|
|
{
|
|
char *system_name;
|
|
int len = sizeof(USER_EVENTS_SYSTEM) + 1;
|
|
|
|
system_name = kmalloc(len, GFP_KERNEL);
|
|
|
|
if (!system_name)
|
|
return NULL;
|
|
|
|
snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
|
|
|
|
return system_name;
|
|
}
|
|
|
|
static struct user_event_group *current_user_event_group(void)
|
|
{
|
|
return init_group;
|
|
}
|
|
|
|
static struct user_event_group *user_event_group_create(void)
|
|
{
|
|
struct user_event_group *group;
|
|
|
|
group = kzalloc(sizeof(*group), GFP_KERNEL);
|
|
|
|
if (!group)
|
|
return NULL;
|
|
|
|
group->system_name = user_event_group_system_name();
|
|
|
|
if (!group->system_name)
|
|
goto error;
|
|
|
|
mutex_init(&group->reg_mutex);
|
|
hash_init(group->register_table);
|
|
|
|
return group;
|
|
error:
|
|
if (group)
|
|
user_event_group_destroy(group);
|
|
|
|
return NULL;
|
|
};
|
|
|
|
static void user_event_enabler_destroy(struct user_event_enabler *enabler,
|
|
bool locked)
|
|
{
|
|
list_del_rcu(&enabler->mm_enablers_link);
|
|
|
|
/* No longer tracking the event via the enabler */
|
|
user_event_put(enabler->event, locked);
|
|
|
|
kfree(enabler);
|
|
}
|
|
|
|
static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
|
|
int attempt)
|
|
{
|
|
bool unlocked;
|
|
int ret;
|
|
|
|
/*
|
|
* Normally this is low, ensure that it cannot be taken advantage of by
|
|
* bad user processes to cause excessive looping.
|
|
*/
|
|
if (attempt > 10)
|
|
return -EFAULT;
|
|
|
|
mmap_read_lock(mm->mm);
|
|
|
|
/* Ensure MM has tasks, cannot use after exit_mm() */
|
|
if (refcount_read(&mm->tasks) == 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
|
|
&unlocked);
|
|
out:
|
|
mmap_read_unlock(mm->mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int user_event_enabler_write(struct user_event_mm *mm,
|
|
struct user_event_enabler *enabler,
|
|
bool fixup_fault, int *attempt);
|
|
|
|
static void user_event_enabler_fault_fixup(struct work_struct *work)
|
|
{
|
|
struct user_event_enabler_fault *fault = container_of(
|
|
work, struct user_event_enabler_fault, work);
|
|
struct user_event_enabler *enabler = fault->enabler;
|
|
struct user_event_mm *mm = fault->mm;
|
|
unsigned long uaddr = enabler->addr;
|
|
int attempt = fault->attempt;
|
|
int ret;
|
|
|
|
ret = user_event_mm_fault_in(mm, uaddr, attempt);
|
|
|
|
if (ret && ret != -ENOENT) {
|
|
struct user_event *user = enabler->event;
|
|
|
|
pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
|
|
mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
|
|
}
|
|
|
|
/* Prevent state changes from racing */
|
|
mutex_lock(&event_mutex);
|
|
|
|
/* User asked for enabler to be removed during fault */
|
|
if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
|
|
user_event_enabler_destroy(enabler, true);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If we managed to get the page, re-issue the write. We do not
|
|
* want to get into a possible infinite loop, which is why we only
|
|
* attempt again directly if the page came in. If we couldn't get
|
|
* the page here, then we will try again the next time the event is
|
|
* enabled/disabled.
|
|
*/
|
|
clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
|
|
|
|
if (!ret) {
|
|
mmap_read_lock(mm->mm);
|
|
user_event_enabler_write(mm, enabler, true, &attempt);
|
|
mmap_read_unlock(mm->mm);
|
|
}
|
|
out:
|
|
mutex_unlock(&event_mutex);
|
|
|
|
/* In all cases we no longer need the mm or fault */
|
|
user_event_mm_put(mm);
|
|
kmem_cache_free(fault_cache, fault);
|
|
}
|
|
|
|
static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
|
|
struct user_event_enabler *enabler,
|
|
int attempt)
|
|
{
|
|
struct user_event_enabler_fault *fault;
|
|
|
|
fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
|
|
|
|
if (!fault)
|
|
return false;
|
|
|
|
INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
|
|
fault->mm = user_event_mm_get(mm);
|
|
fault->enabler = enabler;
|
|
fault->attempt = attempt;
|
|
|
|
/* Don't try to queue in again while we have a pending fault */
|
|
set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
|
|
|
|
if (!schedule_work(&fault->work)) {
|
|
/* Allow another attempt later */
|
|
clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
|
|
|
|
user_event_mm_put(mm);
|
|
kmem_cache_free(fault_cache, fault);
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int user_event_enabler_write(struct user_event_mm *mm,
|
|
struct user_event_enabler *enabler,
|
|
bool fixup_fault, int *attempt)
|
|
{
|
|
unsigned long uaddr = enabler->addr;
|
|
unsigned long *ptr;
|
|
struct page *page;
|
|
void *kaddr;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&event_mutex);
|
|
mmap_assert_locked(mm->mm);
|
|
|
|
*attempt += 1;
|
|
|
|
/* Ensure MM has tasks, cannot use after exit_mm() */
|
|
if (refcount_read(&mm->tasks) == 0)
|
|
return -ENOENT;
|
|
|
|
if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
|
|
test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
|
|
return -EBUSY;
|
|
|
|
ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
|
|
&page, NULL);
|
|
|
|
if (unlikely(ret <= 0)) {
|
|
if (!fixup_fault)
|
|
return -EFAULT;
|
|
|
|
if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
|
|
pr_warn("user_events: Unable to queue fault handler\n");
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
kaddr = kmap_local_page(page);
|
|
ptr = kaddr + (uaddr & ~PAGE_MASK);
|
|
|
|
/* Update bit atomically, user tracers must be atomic as well */
|
|
if (enabler->event && enabler->event->status)
|
|
set_bit(ENABLE_BIT(enabler), ptr);
|
|
else
|
|
clear_bit(ENABLE_BIT(enabler), ptr);
|
|
|
|
kunmap_local(kaddr);
|
|
unpin_user_pages_dirty_lock(&page, 1, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool user_event_enabler_exists(struct user_event_mm *mm,
|
|
unsigned long uaddr, unsigned char bit)
|
|
{
|
|
struct user_event_enabler *enabler;
|
|
|
|
list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
|
|
if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void user_event_enabler_update(struct user_event *user)
|
|
{
|
|
struct user_event_enabler *enabler;
|
|
struct user_event_mm *next;
|
|
struct user_event_mm *mm;
|
|
int attempt;
|
|
|
|
lockdep_assert_held(&event_mutex);
|
|
|
|
/*
|
|
* We need to build a one-shot list of all the mms that have an
|
|
* enabler for the user_event passed in. This list is only valid
|
|
* while holding the event_mutex. The only reason for this is due
|
|
* to the global mm list being RCU protected and we use methods
|
|
* which can wait (mmap_read_lock and pin_user_pages_remote).
|
|
*
|
|
* NOTE: user_event_mm_get_all() increments the ref count of each
|
|
* mm that is added to the list to prevent removal timing windows.
|
|
* We must always put each mm after they are used, which may wait.
|
|
*/
|
|
mm = user_event_mm_get_all(user);
|
|
|
|
while (mm) {
|
|
next = mm->next;
|
|
mmap_read_lock(mm->mm);
|
|
|
|
list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
|
|
if (enabler->event == user) {
|
|
attempt = 0;
|
|
user_event_enabler_write(mm, enabler, true, &attempt);
|
|
}
|
|
}
|
|
|
|
mmap_read_unlock(mm->mm);
|
|
user_event_mm_put(mm);
|
|
mm = next;
|
|
}
|
|
}
|
|
|
|
static bool user_event_enabler_dup(struct user_event_enabler *orig,
|
|
struct user_event_mm *mm)
|
|
{
|
|
struct user_event_enabler *enabler;
|
|
|
|
/* Skip pending frees */
|
|
if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
|
|
return true;
|
|
|
|
enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
|
|
|
|
if (!enabler)
|
|
return false;
|
|
|
|
enabler->event = user_event_get(orig->event);
|
|
enabler->addr = orig->addr;
|
|
|
|
/* Only dup part of value (ignore future flags, etc) */
|
|
enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
|
|
|
|
/* Enablers not exposed yet, RCU not required */
|
|
list_add(&enabler->mm_enablers_link, &mm->enablers);
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
|
|
{
|
|
refcount_inc(&mm->refcnt);
|
|
|
|
return mm;
|
|
}
|
|
|
|
static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
|
|
{
|
|
struct user_event_mm *found = NULL;
|
|
struct user_event_enabler *enabler;
|
|
struct user_event_mm *mm;
|
|
|
|
/*
|
|
* We use the mm->next field to build a one-shot list from the global
|
|
* RCU protected list. To build this list the event_mutex must be held.
|
|
* This lets us build a list without requiring allocs that could fail
|
|
* when user based events are most wanted for diagnostics.
|
|
*/
|
|
lockdep_assert_held(&event_mutex);
|
|
|
|
/*
|
|
* We do not want to block fork/exec while enablements are being
|
|
* updated, so we use RCU to walk the current tasks that have used
|
|
* user_events ABI for 1 or more events. Each enabler found in each
|
|
* task that matches the event being updated has a write to reflect
|
|
* the kernel state back into the process. Waits/faults must not occur
|
|
* during this. So we scan the list under RCU for all the mm that have
|
|
* the event within it. This is needed because mm_read_lock() can wait.
|
|
* Each user mm returned has a ref inc to handle remove RCU races.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
|
|
list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
|
|
if (enabler->event == user) {
|
|
mm->next = found;
|
|
found = user_event_mm_get(mm);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return found;
|
|
}
|
|
|
|
static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
|
|
{
|
|
struct user_event_mm *user_mm;
|
|
|
|
user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!user_mm)
|
|
return NULL;
|
|
|
|
user_mm->mm = t->mm;
|
|
INIT_LIST_HEAD(&user_mm->enablers);
|
|
refcount_set(&user_mm->refcnt, 1);
|
|
refcount_set(&user_mm->tasks, 1);
|
|
|
|
/*
|
|
* The lifetime of the memory descriptor can slightly outlast
|
|
* the task lifetime if a ref to the user_event_mm is taken
|
|
* between list_del_rcu() and call_rcu(). Therefore we need
|
|
* to take a reference to it to ensure it can live this long
|
|
* under this corner case. This can also occur in clones that
|
|
* outlast the parent.
|
|
*/
|
|
mmgrab(user_mm->mm);
|
|
|
|
return user_mm;
|
|
}
|
|
|
|
static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&user_event_mms_lock, flags);
|
|
list_add_rcu(&user_mm->mms_link, &user_event_mms);
|
|
spin_unlock_irqrestore(&user_event_mms_lock, flags);
|
|
|
|
t->user_event_mm = user_mm;
|
|
}
|
|
|
|
static struct user_event_mm *current_user_event_mm(void)
|
|
{
|
|
struct user_event_mm *user_mm = current->user_event_mm;
|
|
|
|
if (user_mm)
|
|
goto inc;
|
|
|
|
user_mm = user_event_mm_alloc(current);
|
|
|
|
if (!user_mm)
|
|
goto error;
|
|
|
|
user_event_mm_attach(user_mm, current);
|
|
inc:
|
|
refcount_inc(&user_mm->refcnt);
|
|
error:
|
|
return user_mm;
|
|
}
|
|
|
|
static void user_event_mm_destroy(struct user_event_mm *mm)
|
|
{
|
|
struct user_event_enabler *enabler, *next;
|
|
|
|
list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
|
|
user_event_enabler_destroy(enabler, false);
|
|
|
|
mmdrop(mm->mm);
|
|
kfree(mm);
|
|
}
|
|
|
|
static void user_event_mm_put(struct user_event_mm *mm)
|
|
{
|
|
if (mm && refcount_dec_and_test(&mm->refcnt))
|
|
user_event_mm_destroy(mm);
|
|
}
|
|
|
|
static void delayed_user_event_mm_put(struct work_struct *work)
|
|
{
|
|
struct user_event_mm *mm;
|
|
|
|
mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
|
|
user_event_mm_put(mm);
|
|
}
|
|
|
|
void user_event_mm_remove(struct task_struct *t)
|
|
{
|
|
struct user_event_mm *mm;
|
|
unsigned long flags;
|
|
|
|
might_sleep();
|
|
|
|
mm = t->user_event_mm;
|
|
t->user_event_mm = NULL;
|
|
|
|
/* Clone will increment the tasks, only remove if last clone */
|
|
if (!refcount_dec_and_test(&mm->tasks))
|
|
return;
|
|
|
|
/* Remove the mm from the list, so it can no longer be enabled */
|
|
spin_lock_irqsave(&user_event_mms_lock, flags);
|
|
list_del_rcu(&mm->mms_link);
|
|
spin_unlock_irqrestore(&user_event_mms_lock, flags);
|
|
|
|
/*
|
|
* We need to wait for currently occurring writes to stop within
|
|
* the mm. This is required since exit_mm() snaps the current rss
|
|
* stats and clears them. On the final mmdrop(), check_mm() will
|
|
* report a bug if these increment.
|
|
*
|
|
* All writes/pins are done under mmap_read lock, take the write
|
|
* lock to ensure in-progress faults have completed. Faults that
|
|
* are pending but yet to run will check the task count and skip
|
|
* the fault since the mm is going away.
|
|
*/
|
|
mmap_write_lock(mm->mm);
|
|
mmap_write_unlock(mm->mm);
|
|
|
|
/*
|
|
* Put for mm must be done after RCU delay to handle new refs in
|
|
* between the list_del_rcu() and now. This ensures any get refs
|
|
* during rcu_read_lock() are accounted for during list removal.
|
|
*
|
|
* CPU A | CPU B
|
|
* ---------------------------------------------------------------
|
|
* user_event_mm_remove() | rcu_read_lock();
|
|
* list_del_rcu() | list_for_each_entry_rcu();
|
|
* call_rcu() | refcount_inc();
|
|
* . | rcu_read_unlock();
|
|
* schedule_work() | .
|
|
* user_event_mm_put() | .
|
|
*
|
|
* mmdrop() cannot be called in the softirq context of call_rcu()
|
|
* so we use a work queue after call_rcu() to run within.
|
|
*/
|
|
INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
|
|
queue_rcu_work(system_wq, &mm->put_rwork);
|
|
}
|
|
|
|
void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
|
|
{
|
|
struct user_event_mm *mm = user_event_mm_alloc(t);
|
|
struct user_event_enabler *enabler;
|
|
|
|
if (!mm)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
|
|
if (!user_event_enabler_dup(enabler, mm))
|
|
goto error;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
user_event_mm_attach(mm, t);
|
|
return;
|
|
error:
|
|
rcu_read_unlock();
|
|
user_event_mm_destroy(mm);
|
|
}
|
|
|
|
static bool current_user_event_enabler_exists(unsigned long uaddr,
|
|
unsigned char bit)
|
|
{
|
|
struct user_event_mm *user_mm = current_user_event_mm();
|
|
bool exists;
|
|
|
|
if (!user_mm)
|
|
return false;
|
|
|
|
exists = user_event_enabler_exists(user_mm, uaddr, bit);
|
|
|
|
user_event_mm_put(user_mm);
|
|
|
|
return exists;
|
|
}
|
|
|
|
static struct user_event_enabler
|
|
*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
|
|
int *write_result)
|
|
{
|
|
struct user_event_enabler *enabler;
|
|
struct user_event_mm *user_mm;
|
|
unsigned long uaddr = (unsigned long)reg->enable_addr;
|
|
int attempt = 0;
|
|
|
|
user_mm = current_user_event_mm();
|
|
|
|
if (!user_mm)
|
|
return NULL;
|
|
|
|
enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!enabler)
|
|
goto out;
|
|
|
|
enabler->event = user;
|
|
enabler->addr = uaddr;
|
|
enabler->values = reg->enable_bit;
|
|
retry:
|
|
/* Prevents state changes from racing with new enablers */
|
|
mutex_lock(&event_mutex);
|
|
|
|
/* Attempt to reflect the current state within the process */
|
|
mmap_read_lock(user_mm->mm);
|
|
*write_result = user_event_enabler_write(user_mm, enabler, false,
|
|
&attempt);
|
|
mmap_read_unlock(user_mm->mm);
|
|
|
|
/*
|
|
* If the write works, then we will track the enabler. A ref to the
|
|
* underlying user_event is held by the enabler to prevent it going
|
|
* away while the enabler is still in use by a process. The ref is
|
|
* removed when the enabler is destroyed. This means a event cannot
|
|
* be forcefully deleted from the system until all tasks using it
|
|
* exit or run exec(), which includes forks and clones.
|
|
*/
|
|
if (!*write_result) {
|
|
user_event_get(user);
|
|
list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
|
|
}
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
if (*write_result) {
|
|
/* Attempt to fault-in and retry if it worked */
|
|
if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
|
|
goto retry;
|
|
|
|
kfree(enabler);
|
|
enabler = NULL;
|
|
}
|
|
out:
|
|
user_event_mm_put(user_mm);
|
|
|
|
return enabler;
|
|
}
|
|
|
|
static __always_inline __must_check
|
|
bool user_event_last_ref(struct user_event *user)
|
|
{
|
|
int last = 0;
|
|
|
|
if (user->reg_flags & USER_EVENT_REG_PERSIST)
|
|
last = 1;
|
|
|
|
return refcount_read(&user->refcnt) == last;
|
|
}
|
|
|
|
static __always_inline __must_check
|
|
size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
size_t ret;
|
|
|
|
pagefault_disable();
|
|
|
|
ret = copy_from_iter_nocache(addr, bytes, i);
|
|
|
|
pagefault_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct list_head *user_event_get_fields(struct trace_event_call *call)
|
|
{
|
|
struct user_event *user = (struct user_event *)call->data;
|
|
|
|
return &user->fields;
|
|
}
|
|
|
|
/*
|
|
* Parses a register command for user_events
|
|
* Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
|
|
*
|
|
* Example event named 'test' with a 20 char 'msg' field with an unsigned int
|
|
* 'id' field after:
|
|
* test char[20] msg;unsigned int id
|
|
*
|
|
* NOTE: Offsets are from the user data perspective, they are not from the
|
|
* trace_entry/buffer perspective. We automatically add the common properties
|
|
* sizes to the offset for the user.
|
|
*
|
|
* Upon success user_event has its ref count increased by 1.
|
|
*/
|
|
static int user_event_parse_cmd(struct user_event_group *group,
|
|
char *raw_command, struct user_event **newuser,
|
|
int reg_flags)
|
|
{
|
|
char *name = raw_command;
|
|
char *args = strpbrk(name, " ");
|
|
char *flags;
|
|
|
|
if (args)
|
|
*args++ = '\0';
|
|
|
|
flags = strpbrk(name, ":");
|
|
|
|
if (flags)
|
|
*flags++ = '\0';
|
|
|
|
return user_event_parse(group, name, args, flags, newuser, reg_flags);
|
|
}
|
|
|
|
static int user_field_array_size(const char *type)
|
|
{
|
|
const char *start = strchr(type, '[');
|
|
char val[8];
|
|
char *bracket;
|
|
int size = 0;
|
|
|
|
if (start == NULL)
|
|
return -EINVAL;
|
|
|
|
if (strscpy(val, start + 1, sizeof(val)) <= 0)
|
|
return -EINVAL;
|
|
|
|
bracket = strchr(val, ']');
|
|
|
|
if (!bracket)
|
|
return -EINVAL;
|
|
|
|
*bracket = '\0';
|
|
|
|
if (kstrtouint(val, 0, &size))
|
|
return -EINVAL;
|
|
|
|
if (size > MAX_FIELD_ARRAY_SIZE)
|
|
return -EINVAL;
|
|
|
|
return size;
|
|
}
|
|
|
|
static int user_field_size(const char *type)
|
|
{
|
|
/* long is not allowed from a user, since it's ambigious in size */
|
|
if (strcmp(type, "s64") == 0)
|
|
return sizeof(s64);
|
|
if (strcmp(type, "u64") == 0)
|
|
return sizeof(u64);
|
|
if (strcmp(type, "s32") == 0)
|
|
return sizeof(s32);
|
|
if (strcmp(type, "u32") == 0)
|
|
return sizeof(u32);
|
|
if (strcmp(type, "int") == 0)
|
|
return sizeof(int);
|
|
if (strcmp(type, "unsigned int") == 0)
|
|
return sizeof(unsigned int);
|
|
if (strcmp(type, "s16") == 0)
|
|
return sizeof(s16);
|
|
if (strcmp(type, "u16") == 0)
|
|
return sizeof(u16);
|
|
if (strcmp(type, "short") == 0)
|
|
return sizeof(short);
|
|
if (strcmp(type, "unsigned short") == 0)
|
|
return sizeof(unsigned short);
|
|
if (strcmp(type, "s8") == 0)
|
|
return sizeof(s8);
|
|
if (strcmp(type, "u8") == 0)
|
|
return sizeof(u8);
|
|
if (strcmp(type, "char") == 0)
|
|
return sizeof(char);
|
|
if (strcmp(type, "unsigned char") == 0)
|
|
return sizeof(unsigned char);
|
|
if (str_has_prefix(type, "char["))
|
|
return user_field_array_size(type);
|
|
if (str_has_prefix(type, "unsigned char["))
|
|
return user_field_array_size(type);
|
|
if (str_has_prefix(type, "__data_loc "))
|
|
return sizeof(u32);
|
|
if (str_has_prefix(type, "__rel_loc "))
|
|
return sizeof(u32);
|
|
|
|
/* Uknown basic type, error */
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void user_event_destroy_validators(struct user_event *user)
|
|
{
|
|
struct user_event_validator *validator, *next;
|
|
struct list_head *head = &user->validators;
|
|
|
|
list_for_each_entry_safe(validator, next, head, user_event_link) {
|
|
list_del(&validator->user_event_link);
|
|
kfree(validator);
|
|
}
|
|
}
|
|
|
|
static void user_event_destroy_fields(struct user_event *user)
|
|
{
|
|
struct ftrace_event_field *field, *next;
|
|
struct list_head *head = &user->fields;
|
|
|
|
list_for_each_entry_safe(field, next, head, link) {
|
|
list_del(&field->link);
|
|
kfree(field);
|
|
}
|
|
}
|
|
|
|
static int user_event_add_field(struct user_event *user, const char *type,
|
|
const char *name, int offset, int size,
|
|
int is_signed, int filter_type)
|
|
{
|
|
struct user_event_validator *validator;
|
|
struct ftrace_event_field *field;
|
|
int validator_flags = 0;
|
|
|
|
field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!field)
|
|
return -ENOMEM;
|
|
|
|
if (str_has_prefix(type, "__data_loc "))
|
|
goto add_validator;
|
|
|
|
if (str_has_prefix(type, "__rel_loc ")) {
|
|
validator_flags |= VALIDATOR_REL;
|
|
goto add_validator;
|
|
}
|
|
|
|
goto add_field;
|
|
|
|
add_validator:
|
|
if (strstr(type, "char") != NULL)
|
|
validator_flags |= VALIDATOR_ENSURE_NULL;
|
|
|
|
validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!validator) {
|
|
kfree(field);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
validator->flags = validator_flags;
|
|
validator->offset = offset;
|
|
|
|
/* Want sequential access when validating */
|
|
list_add_tail(&validator->user_event_link, &user->validators);
|
|
|
|
add_field:
|
|
field->type = type;
|
|
field->name = name;
|
|
field->offset = offset;
|
|
field->size = size;
|
|
field->is_signed = is_signed;
|
|
field->filter_type = filter_type;
|
|
|
|
if (filter_type == FILTER_OTHER)
|
|
field->filter_type = filter_assign_type(type);
|
|
|
|
list_add(&field->link, &user->fields);
|
|
|
|
/*
|
|
* Min size from user writes that are required, this does not include
|
|
* the size of trace_entry (common fields).
|
|
*/
|
|
user->min_size = (offset + size) - sizeof(struct trace_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Parses the values of a field within the description
|
|
* Format: type name [size]
|
|
*/
|
|
static int user_event_parse_field(char *field, struct user_event *user,
|
|
u32 *offset)
|
|
{
|
|
char *part, *type, *name;
|
|
u32 depth = 0, saved_offset = *offset;
|
|
int len, size = -EINVAL;
|
|
bool is_struct = false;
|
|
|
|
field = skip_spaces(field);
|
|
|
|
if (*field == '\0')
|
|
return 0;
|
|
|
|
/* Handle types that have a space within */
|
|
len = str_has_prefix(field, "unsigned ");
|
|
if (len)
|
|
goto skip_next;
|
|
|
|
len = str_has_prefix(field, "struct ");
|
|
if (len) {
|
|
is_struct = true;
|
|
goto skip_next;
|
|
}
|
|
|
|
len = str_has_prefix(field, "__data_loc unsigned ");
|
|
if (len)
|
|
goto skip_next;
|
|
|
|
len = str_has_prefix(field, "__data_loc ");
|
|
if (len)
|
|
goto skip_next;
|
|
|
|
len = str_has_prefix(field, "__rel_loc unsigned ");
|
|
if (len)
|
|
goto skip_next;
|
|
|
|
len = str_has_prefix(field, "__rel_loc ");
|
|
if (len)
|
|
goto skip_next;
|
|
|
|
goto parse;
|
|
skip_next:
|
|
type = field;
|
|
field = strpbrk(field + len, " ");
|
|
|
|
if (field == NULL)
|
|
return -EINVAL;
|
|
|
|
*field++ = '\0';
|
|
depth++;
|
|
parse:
|
|
name = NULL;
|
|
|
|
while ((part = strsep(&field, " ")) != NULL) {
|
|
switch (depth++) {
|
|
case FIELD_DEPTH_TYPE:
|
|
type = part;
|
|
break;
|
|
case FIELD_DEPTH_NAME:
|
|
name = part;
|
|
break;
|
|
case FIELD_DEPTH_SIZE:
|
|
if (!is_struct)
|
|
return -EINVAL;
|
|
|
|
if (kstrtou32(part, 10, &size))
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (depth < FIELD_DEPTH_SIZE || !name)
|
|
return -EINVAL;
|
|
|
|
if (depth == FIELD_DEPTH_SIZE)
|
|
size = user_field_size(type);
|
|
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
if (size < 0)
|
|
return size;
|
|
|
|
*offset = saved_offset + size;
|
|
|
|
return user_event_add_field(user, type, name, saved_offset, size,
|
|
type[0] != 'u', FILTER_OTHER);
|
|
}
|
|
|
|
static int user_event_parse_fields(struct user_event *user, char *args)
|
|
{
|
|
char *field;
|
|
u32 offset = sizeof(struct trace_entry);
|
|
int ret = -EINVAL;
|
|
|
|
if (args == NULL)
|
|
return 0;
|
|
|
|
while ((field = strsep(&args, ";")) != NULL) {
|
|
ret = user_event_parse_field(field, user, &offset);
|
|
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct trace_event_fields user_event_fields_array[1];
|
|
|
|
static const char *user_field_format(const char *type)
|
|
{
|
|
if (strcmp(type, "s64") == 0)
|
|
return "%lld";
|
|
if (strcmp(type, "u64") == 0)
|
|
return "%llu";
|
|
if (strcmp(type, "s32") == 0)
|
|
return "%d";
|
|
if (strcmp(type, "u32") == 0)
|
|
return "%u";
|
|
if (strcmp(type, "int") == 0)
|
|
return "%d";
|
|
if (strcmp(type, "unsigned int") == 0)
|
|
return "%u";
|
|
if (strcmp(type, "s16") == 0)
|
|
return "%d";
|
|
if (strcmp(type, "u16") == 0)
|
|
return "%u";
|
|
if (strcmp(type, "short") == 0)
|
|
return "%d";
|
|
if (strcmp(type, "unsigned short") == 0)
|
|
return "%u";
|
|
if (strcmp(type, "s8") == 0)
|
|
return "%d";
|
|
if (strcmp(type, "u8") == 0)
|
|
return "%u";
|
|
if (strcmp(type, "char") == 0)
|
|
return "%d";
|
|
if (strcmp(type, "unsigned char") == 0)
|
|
return "%u";
|
|
if (strstr(type, "char[") != NULL)
|
|
return "%s";
|
|
|
|
/* Unknown, likely struct, allowed treat as 64-bit */
|
|
return "%llu";
|
|
}
|
|
|
|
static bool user_field_is_dyn_string(const char *type, const char **str_func)
|
|
{
|
|
if (str_has_prefix(type, "__data_loc ")) {
|
|
*str_func = "__get_str";
|
|
goto check;
|
|
}
|
|
|
|
if (str_has_prefix(type, "__rel_loc ")) {
|
|
*str_func = "__get_rel_str";
|
|
goto check;
|
|
}
|
|
|
|
return false;
|
|
check:
|
|
return strstr(type, "char") != NULL;
|
|
}
|
|
|
|
#define LEN_OR_ZERO (len ? len - pos : 0)
|
|
static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
|
|
char *buf, int len, bool *colon)
|
|
{
|
|
int pos = 0, i = *iout;
|
|
|
|
*colon = false;
|
|
|
|
for (; i < argc; ++i) {
|
|
if (i != *iout)
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
|
|
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
|
|
|
|
if (strchr(argv[i], ';')) {
|
|
++i;
|
|
*colon = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Actual set, advance i */
|
|
if (len != 0)
|
|
*iout = i;
|
|
|
|
return pos + 1;
|
|
}
|
|
|
|
static int user_field_set_string(struct ftrace_event_field *field,
|
|
char *buf, int len, bool colon)
|
|
{
|
|
int pos = 0;
|
|
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
|
|
|
|
if (colon)
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
|
|
|
|
return pos + 1;
|
|
}
|
|
|
|
static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
|
|
{
|
|
struct ftrace_event_field *field, *next;
|
|
struct list_head *head = &user->fields;
|
|
int pos = 0, depth = 0;
|
|
const char *str_func;
|
|
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
|
|
|
|
list_for_each_entry_safe_reverse(field, next, head, link) {
|
|
if (depth != 0)
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
|
|
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
|
|
field->name, user_field_format(field->type));
|
|
|
|
depth++;
|
|
}
|
|
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
|
|
|
|
list_for_each_entry_safe_reverse(field, next, head, link) {
|
|
if (user_field_is_dyn_string(field->type, &str_func))
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO,
|
|
", %s(%s)", str_func, field->name);
|
|
else
|
|
pos += snprintf(buf + pos, LEN_OR_ZERO,
|
|
", REC->%s", field->name);
|
|
}
|
|
|
|
return pos + 1;
|
|
}
|
|
#undef LEN_OR_ZERO
|
|
|
|
static int user_event_create_print_fmt(struct user_event *user)
|
|
{
|
|
char *print_fmt;
|
|
int len;
|
|
|
|
len = user_event_set_print_fmt(user, NULL, 0);
|
|
|
|
print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!print_fmt)
|
|
return -ENOMEM;
|
|
|
|
user_event_set_print_fmt(user, print_fmt, len);
|
|
|
|
user->call.print_fmt = print_fmt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
|
|
int flags,
|
|
struct trace_event *event)
|
|
{
|
|
return print_event_fields(iter, event);
|
|
}
|
|
|
|
static struct trace_event_functions user_event_funcs = {
|
|
.trace = user_event_print_trace,
|
|
};
|
|
|
|
static int user_event_set_call_visible(struct user_event *user, bool visible)
|
|
{
|
|
int ret;
|
|
const struct cred *old_cred;
|
|
struct cred *cred;
|
|
|
|
cred = prepare_creds();
|
|
|
|
if (!cred)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* While by default tracefs is locked down, systems can be configured
|
|
* to allow user_event files to be less locked down. The extreme case
|
|
* being "other" has read/write access to user_events_data/status.
|
|
*
|
|
* When not locked down, processes may not have permissions to
|
|
* add/remove calls themselves to tracefs. We need to temporarily
|
|
* switch to root file permission to allow for this scenario.
|
|
*/
|
|
cred->fsuid = GLOBAL_ROOT_UID;
|
|
|
|
old_cred = override_creds(cred);
|
|
|
|
if (visible)
|
|
ret = trace_add_event_call(&user->call);
|
|
else
|
|
ret = trace_remove_event_call(&user->call);
|
|
|
|
revert_creds(old_cred);
|
|
put_cred(cred);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int destroy_user_event(struct user_event *user)
|
|
{
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&event_mutex);
|
|
|
|
/* Must destroy fields before call removal */
|
|
user_event_destroy_fields(user);
|
|
|
|
ret = user_event_set_call_visible(user, false);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
dyn_event_remove(&user->devent);
|
|
hash_del(&user->node);
|
|
|
|
user_event_destroy_validators(user);
|
|
kfree(user->call.print_fmt);
|
|
kfree(EVENT_NAME(user));
|
|
kfree(user);
|
|
|
|
if (current_user_events > 0)
|
|
current_user_events--;
|
|
else
|
|
pr_alert("BUG: Bad current_user_events\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct user_event *find_user_event(struct user_event_group *group,
|
|
char *name, u32 *outkey)
|
|
{
|
|
struct user_event *user;
|
|
u32 key = user_event_key(name);
|
|
|
|
*outkey = key;
|
|
|
|
hash_for_each_possible(group->register_table, user, node, key)
|
|
if (!strcmp(EVENT_NAME(user), name))
|
|
return user_event_get(user);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int user_event_validate(struct user_event *user, void *data, int len)
|
|
{
|
|
struct list_head *head = &user->validators;
|
|
struct user_event_validator *validator;
|
|
void *pos, *end = data + len;
|
|
u32 loc, offset, size;
|
|
|
|
list_for_each_entry(validator, head, user_event_link) {
|
|
pos = data + validator->offset;
|
|
|
|
/* Already done min_size check, no bounds check here */
|
|
loc = *(u32 *)pos;
|
|
offset = loc & 0xffff;
|
|
size = loc >> 16;
|
|
|
|
if (likely(validator->flags & VALIDATOR_REL))
|
|
pos += offset + sizeof(loc);
|
|
else
|
|
pos = data + offset;
|
|
|
|
pos += size;
|
|
|
|
if (unlikely(pos > end))
|
|
return -EFAULT;
|
|
|
|
if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
|
|
if (unlikely(*(char *)(pos - 1) != '\0'))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Writes the user supplied payload out to a trace file.
|
|
*/
|
|
static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
|
|
void *tpdata, bool *faulted)
|
|
{
|
|
struct trace_event_file *file;
|
|
struct trace_entry *entry;
|
|
struct trace_event_buffer event_buffer;
|
|
size_t size = sizeof(*entry) + i->count;
|
|
|
|
file = (struct trace_event_file *)tpdata;
|
|
|
|
if (!file ||
|
|
!(file->flags & EVENT_FILE_FL_ENABLED) ||
|
|
trace_trigger_soft_disabled(file))
|
|
return;
|
|
|
|
/* Allocates and fills trace_entry, + 1 of this is data payload */
|
|
entry = trace_event_buffer_reserve(&event_buffer, file, size);
|
|
|
|
if (unlikely(!entry))
|
|
return;
|
|
|
|
if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
|
|
goto discard;
|
|
|
|
if (!list_empty(&user->validators) &&
|
|
unlikely(user_event_validate(user, entry, size)))
|
|
goto discard;
|
|
|
|
trace_event_buffer_commit(&event_buffer);
|
|
|
|
return;
|
|
discard:
|
|
*faulted = true;
|
|
__trace_event_discard_commit(event_buffer.buffer,
|
|
event_buffer.event);
|
|
}
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
/*
|
|
* Writes the user supplied payload out to perf ring buffer.
|
|
*/
|
|
static void user_event_perf(struct user_event *user, struct iov_iter *i,
|
|
void *tpdata, bool *faulted)
|
|
{
|
|
struct hlist_head *perf_head;
|
|
|
|
perf_head = this_cpu_ptr(user->call.perf_events);
|
|
|
|
if (perf_head && !hlist_empty(perf_head)) {
|
|
struct trace_entry *perf_entry;
|
|
struct pt_regs *regs;
|
|
size_t size = sizeof(*perf_entry) + i->count;
|
|
int context;
|
|
|
|
perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
|
|
®s, &context);
|
|
|
|
if (unlikely(!perf_entry))
|
|
return;
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
|
|
if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
|
|
goto discard;
|
|
|
|
if (!list_empty(&user->validators) &&
|
|
unlikely(user_event_validate(user, perf_entry, size)))
|
|
goto discard;
|
|
|
|
perf_trace_buf_submit(perf_entry, size, context,
|
|
user->call.event.type, 1, regs,
|
|
perf_head, NULL);
|
|
|
|
return;
|
|
discard:
|
|
*faulted = true;
|
|
perf_swevent_put_recursion_context(context);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Update the enabled bit among all user processes.
|
|
*/
|
|
static void update_enable_bit_for(struct user_event *user)
|
|
{
|
|
struct tracepoint *tp = &user->tracepoint;
|
|
char status = 0;
|
|
|
|
if (atomic_read(&tp->key.enabled) > 0) {
|
|
struct tracepoint_func *probe_func_ptr;
|
|
user_event_func_t probe_func;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
probe_func_ptr = rcu_dereference_sched(tp->funcs);
|
|
|
|
if (probe_func_ptr) {
|
|
do {
|
|
probe_func = probe_func_ptr->func;
|
|
|
|
if (probe_func == user_event_ftrace)
|
|
status |= EVENT_STATUS_FTRACE;
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
else if (probe_func == user_event_perf)
|
|
status |= EVENT_STATUS_PERF;
|
|
#endif
|
|
else
|
|
status |= EVENT_STATUS_OTHER;
|
|
} while ((++probe_func_ptr)->func);
|
|
}
|
|
|
|
rcu_read_unlock_sched();
|
|
}
|
|
|
|
user->status = status;
|
|
|
|
user_event_enabler_update(user);
|
|
}
|
|
|
|
/*
|
|
* Register callback for our events from tracing sub-systems.
|
|
*/
|
|
static int user_event_reg(struct trace_event_call *call,
|
|
enum trace_reg type,
|
|
void *data)
|
|
{
|
|
struct user_event *user = (struct user_event *)call->data;
|
|
int ret = 0;
|
|
|
|
if (!user)
|
|
return -ENOENT;
|
|
|
|
switch (type) {
|
|
case TRACE_REG_REGISTER:
|
|
ret = tracepoint_probe_register(call->tp,
|
|
call->class->probe,
|
|
data);
|
|
if (!ret)
|
|
goto inc;
|
|
break;
|
|
|
|
case TRACE_REG_UNREGISTER:
|
|
tracepoint_probe_unregister(call->tp,
|
|
call->class->probe,
|
|
data);
|
|
goto dec;
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
case TRACE_REG_PERF_REGISTER:
|
|
ret = tracepoint_probe_register(call->tp,
|
|
call->class->perf_probe,
|
|
data);
|
|
if (!ret)
|
|
goto inc;
|
|
break;
|
|
|
|
case TRACE_REG_PERF_UNREGISTER:
|
|
tracepoint_probe_unregister(call->tp,
|
|
call->class->perf_probe,
|
|
data);
|
|
goto dec;
|
|
|
|
case TRACE_REG_PERF_OPEN:
|
|
case TRACE_REG_PERF_CLOSE:
|
|
case TRACE_REG_PERF_ADD:
|
|
case TRACE_REG_PERF_DEL:
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
return ret;
|
|
inc:
|
|
user_event_get(user);
|
|
update_enable_bit_for(user);
|
|
return 0;
|
|
dec:
|
|
update_enable_bit_for(user);
|
|
user_event_put(user, true);
|
|
return 0;
|
|
}
|
|
|
|
static int user_event_create(const char *raw_command)
|
|
{
|
|
struct user_event_group *group;
|
|
struct user_event *user;
|
|
char *name;
|
|
int ret;
|
|
|
|
if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
|
|
return -ECANCELED;
|
|
|
|
raw_command += USER_EVENTS_PREFIX_LEN;
|
|
raw_command = skip_spaces(raw_command);
|
|
|
|
name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
|
|
group = current_user_event_group();
|
|
|
|
if (!group) {
|
|
kfree(name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
mutex_lock(&group->reg_mutex);
|
|
|
|
/* Dyn events persist, otherwise they would cleanup immediately */
|
|
ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
|
|
|
|
if (!ret)
|
|
user_event_put(user, false);
|
|
|
|
mutex_unlock(&group->reg_mutex);
|
|
|
|
if (ret)
|
|
kfree(name);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int user_event_show(struct seq_file *m, struct dyn_event *ev)
|
|
{
|
|
struct user_event *user = container_of(ev, struct user_event, devent);
|
|
struct ftrace_event_field *field, *next;
|
|
struct list_head *head;
|
|
int depth = 0;
|
|
|
|
seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
|
|
|
|
head = trace_get_fields(&user->call);
|
|
|
|
list_for_each_entry_safe_reverse(field, next, head, link) {
|
|
if (depth == 0)
|
|
seq_puts(m, " ");
|
|
else
|
|
seq_puts(m, "; ");
|
|
|
|
seq_printf(m, "%s %s", field->type, field->name);
|
|
|
|
if (str_has_prefix(field->type, "struct "))
|
|
seq_printf(m, " %d", field->size);
|
|
|
|
depth++;
|
|
}
|
|
|
|
seq_puts(m, "\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool user_event_is_busy(struct dyn_event *ev)
|
|
{
|
|
struct user_event *user = container_of(ev, struct user_event, devent);
|
|
|
|
return !user_event_last_ref(user);
|
|
}
|
|
|
|
static int user_event_free(struct dyn_event *ev)
|
|
{
|
|
struct user_event *user = container_of(ev, struct user_event, devent);
|
|
|
|
if (!user_event_last_ref(user))
|
|
return -EBUSY;
|
|
|
|
return destroy_user_event(user);
|
|
}
|
|
|
|
static bool user_field_match(struct ftrace_event_field *field, int argc,
|
|
const char **argv, int *iout)
|
|
{
|
|
char *field_name = NULL, *dyn_field_name = NULL;
|
|
bool colon = false, match = false;
|
|
int dyn_len, len;
|
|
|
|
if (*iout >= argc)
|
|
return false;
|
|
|
|
dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
|
|
0, &colon);
|
|
|
|
len = user_field_set_string(field, field_name, 0, colon);
|
|
|
|
if (dyn_len != len)
|
|
return false;
|
|
|
|
dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
|
|
field_name = kmalloc(len, GFP_KERNEL);
|
|
|
|
if (!dyn_field_name || !field_name)
|
|
goto out;
|
|
|
|
user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
|
|
dyn_len, &colon);
|
|
|
|
user_field_set_string(field, field_name, len, colon);
|
|
|
|
match = strcmp(dyn_field_name, field_name) == 0;
|
|
out:
|
|
kfree(dyn_field_name);
|
|
kfree(field_name);
|
|
|
|
return match;
|
|
}
|
|
|
|
static bool user_fields_match(struct user_event *user, int argc,
|
|
const char **argv)
|
|
{
|
|
struct ftrace_event_field *field, *next;
|
|
struct list_head *head = &user->fields;
|
|
int i = 0;
|
|
|
|
list_for_each_entry_safe_reverse(field, next, head, link)
|
|
if (!user_field_match(field, argc, argv, &i))
|
|
return false;
|
|
|
|
if (i != argc)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool user_event_match(const char *system, const char *event,
|
|
int argc, const char **argv, struct dyn_event *ev)
|
|
{
|
|
struct user_event *user = container_of(ev, struct user_event, devent);
|
|
bool match;
|
|
|
|
match = strcmp(EVENT_NAME(user), event) == 0 &&
|
|
(!system || strcmp(system, USER_EVENTS_SYSTEM) == 0);
|
|
|
|
if (match && argc > 0)
|
|
match = user_fields_match(user, argc, argv);
|
|
else if (match && argc == 0)
|
|
match = list_empty(&user->fields);
|
|
|
|
return match;
|
|
}
|
|
|
|
static struct dyn_event_operations user_event_dops = {
|
|
.create = user_event_create,
|
|
.show = user_event_show,
|
|
.is_busy = user_event_is_busy,
|
|
.free = user_event_free,
|
|
.match = user_event_match,
|
|
};
|
|
|
|
static int user_event_trace_register(struct user_event *user)
|
|
{
|
|
int ret;
|
|
|
|
ret = register_trace_event(&user->call.event);
|
|
|
|
if (!ret)
|
|
return -ENODEV;
|
|
|
|
ret = user_event_set_call_visible(user, true);
|
|
|
|
if (ret)
|
|
unregister_trace_event(&user->call.event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Parses the event name, arguments and flags then registers if successful.
|
|
* The name buffer lifetime is owned by this method for success cases only.
|
|
* Upon success the returned user_event has its ref count increased by 1.
|
|
*/
|
|
static int user_event_parse(struct user_event_group *group, char *name,
|
|
char *args, char *flags,
|
|
struct user_event **newuser, int reg_flags)
|
|
{
|
|
int ret;
|
|
u32 key;
|
|
struct user_event *user;
|
|
int argc = 0;
|
|
char **argv;
|
|
|
|
/* User register flags are not ready yet */
|
|
if (reg_flags != 0 || flags != NULL)
|
|
return -EINVAL;
|
|
|
|
/* Prevent dyn_event from racing */
|
|
mutex_lock(&event_mutex);
|
|
user = find_user_event(group, name, &key);
|
|
mutex_unlock(&event_mutex);
|
|
|
|
if (user) {
|
|
if (args) {
|
|
argv = argv_split(GFP_KERNEL, args, &argc);
|
|
if (!argv) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
ret = user_fields_match(user, argc, (const char **)argv);
|
|
argv_free(argv);
|
|
|
|
} else
|
|
ret = list_empty(&user->fields);
|
|
|
|
if (ret) {
|
|
*newuser = user;
|
|
/*
|
|
* Name is allocated by caller, free it since it already exists.
|
|
* Caller only worries about failure cases for freeing.
|
|
*/
|
|
kfree(name);
|
|
} else {
|
|
ret = -EADDRINUSE;
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
user_event_put(user, false);
|
|
return ret;
|
|
}
|
|
|
|
user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!user)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&user->class.fields);
|
|
INIT_LIST_HEAD(&user->fields);
|
|
INIT_LIST_HEAD(&user->validators);
|
|
|
|
user->group = group;
|
|
user->tracepoint.name = name;
|
|
|
|
ret = user_event_parse_fields(user, args);
|
|
|
|
if (ret)
|
|
goto put_user;
|
|
|
|
ret = user_event_create_print_fmt(user);
|
|
|
|
if (ret)
|
|
goto put_user;
|
|
|
|
user->call.data = user;
|
|
user->call.class = &user->class;
|
|
user->call.name = name;
|
|
user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
|
|
user->call.tp = &user->tracepoint;
|
|
user->call.event.funcs = &user_event_funcs;
|
|
user->class.system = group->system_name;
|
|
|
|
user->class.fields_array = user_event_fields_array;
|
|
user->class.get_fields = user_event_get_fields;
|
|
user->class.reg = user_event_reg;
|
|
user->class.probe = user_event_ftrace;
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
user->class.perf_probe = user_event_perf;
|
|
#endif
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
if (current_user_events >= max_user_events) {
|
|
ret = -EMFILE;
|
|
goto put_user_lock;
|
|
}
|
|
|
|
ret = user_event_trace_register(user);
|
|
|
|
if (ret)
|
|
goto put_user_lock;
|
|
|
|
user->reg_flags = reg_flags;
|
|
|
|
if (user->reg_flags & USER_EVENT_REG_PERSIST) {
|
|
/* Ensure we track self ref and caller ref (2) */
|
|
refcount_set(&user->refcnt, 2);
|
|
} else {
|
|
/* Ensure we track only caller ref (1) */
|
|
refcount_set(&user->refcnt, 1);
|
|
}
|
|
|
|
dyn_event_init(&user->devent, &user_event_dops);
|
|
dyn_event_add(&user->devent, &user->call);
|
|
hash_add(group->register_table, &user->node, key);
|
|
current_user_events++;
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
*newuser = user;
|
|
return 0;
|
|
put_user_lock:
|
|
mutex_unlock(&event_mutex);
|
|
put_user:
|
|
user_event_destroy_fields(user);
|
|
user_event_destroy_validators(user);
|
|
kfree(user->call.print_fmt);
|
|
kfree(user);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Deletes a previously created event if it is no longer being used.
|
|
*/
|
|
static int delete_user_event(struct user_event_group *group, char *name)
|
|
{
|
|
u32 key;
|
|
struct user_event *user = find_user_event(group, name, &key);
|
|
|
|
if (!user)
|
|
return -ENOENT;
|
|
|
|
user_event_put(user, true);
|
|
|
|
if (!user_event_last_ref(user))
|
|
return -EBUSY;
|
|
|
|
return destroy_user_event(user);
|
|
}
|
|
|
|
/*
|
|
* Validates the user payload and writes via iterator.
|
|
*/
|
|
static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
|
|
{
|
|
struct user_event_file_info *info = file->private_data;
|
|
struct user_event_refs *refs;
|
|
struct user_event *user = NULL;
|
|
struct tracepoint *tp;
|
|
ssize_t ret = i->count;
|
|
int idx;
|
|
|
|
if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
|
|
return -EFAULT;
|
|
|
|
if (idx < 0)
|
|
return -EINVAL;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
refs = rcu_dereference_sched(info->refs);
|
|
|
|
/*
|
|
* The refs->events array is protected by RCU, and new items may be
|
|
* added. But the user retrieved from indexing into the events array
|
|
* shall be immutable while the file is opened.
|
|
*/
|
|
if (likely(refs && idx < refs->count))
|
|
user = refs->events[idx];
|
|
|
|
rcu_read_unlock_sched();
|
|
|
|
if (unlikely(user == NULL))
|
|
return -ENOENT;
|
|
|
|
if (unlikely(i->count < user->min_size))
|
|
return -EINVAL;
|
|
|
|
tp = &user->tracepoint;
|
|
|
|
/*
|
|
* It's possible key.enabled disables after this check, however
|
|
* we don't mind if a few events are included in this condition.
|
|
*/
|
|
if (likely(atomic_read(&tp->key.enabled) > 0)) {
|
|
struct tracepoint_func *probe_func_ptr;
|
|
user_event_func_t probe_func;
|
|
struct iov_iter copy;
|
|
void *tpdata;
|
|
bool faulted;
|
|
|
|
if (unlikely(fault_in_iov_iter_readable(i, i->count)))
|
|
return -EFAULT;
|
|
|
|
faulted = false;
|
|
|
|
rcu_read_lock_sched();
|
|
|
|
probe_func_ptr = rcu_dereference_sched(tp->funcs);
|
|
|
|
if (probe_func_ptr) {
|
|
do {
|
|
copy = *i;
|
|
probe_func = probe_func_ptr->func;
|
|
tpdata = probe_func_ptr->data;
|
|
probe_func(user, ©, tpdata, &faulted);
|
|
} while ((++probe_func_ptr)->func);
|
|
}
|
|
|
|
rcu_read_unlock_sched();
|
|
|
|
if (unlikely(faulted))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int user_events_open(struct inode *node, struct file *file)
|
|
{
|
|
struct user_event_group *group;
|
|
struct user_event_file_info *info;
|
|
|
|
group = current_user_event_group();
|
|
|
|
if (!group)
|
|
return -ENOENT;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->group = group;
|
|
|
|
file->private_data = info;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t user_events_write(struct file *file, const char __user *ubuf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct iovec iov;
|
|
struct iov_iter i;
|
|
|
|
if (unlikely(*ppos != 0))
|
|
return -EFAULT;
|
|
|
|
if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf,
|
|
count, &iov, &i)))
|
|
return -EFAULT;
|
|
|
|
return user_events_write_core(file, &i);
|
|
}
|
|
|
|
static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
|
|
{
|
|
return user_events_write_core(kp->ki_filp, i);
|
|
}
|
|
|
|
static int user_events_ref_add(struct user_event_file_info *info,
|
|
struct user_event *user)
|
|
{
|
|
struct user_event_group *group = info->group;
|
|
struct user_event_refs *refs, *new_refs;
|
|
int i, size, count = 0;
|
|
|
|
refs = rcu_dereference_protected(info->refs,
|
|
lockdep_is_held(&group->reg_mutex));
|
|
|
|
if (refs) {
|
|
count = refs->count;
|
|
|
|
for (i = 0; i < count; ++i)
|
|
if (refs->events[i] == user)
|
|
return i;
|
|
}
|
|
|
|
size = struct_size(refs, events, count + 1);
|
|
|
|
new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
|
|
|
|
if (!new_refs)
|
|
return -ENOMEM;
|
|
|
|
new_refs->count = count + 1;
|
|
|
|
for (i = 0; i < count; ++i)
|
|
new_refs->events[i] = refs->events[i];
|
|
|
|
new_refs->events[i] = user_event_get(user);
|
|
|
|
rcu_assign_pointer(info->refs, new_refs);
|
|
|
|
if (refs)
|
|
kfree_rcu(refs, rcu);
|
|
|
|
return i;
|
|
}
|
|
|
|
static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
|
|
{
|
|
u32 size;
|
|
long ret;
|
|
|
|
ret = get_user(size, &ureg->size);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (size > PAGE_SIZE)
|
|
return -E2BIG;
|
|
|
|
if (size < offsetofend(struct user_reg, write_index))
|
|
return -EINVAL;
|
|
|
|
ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure only valid flags */
|
|
if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
|
|
return -EINVAL;
|
|
|
|
/* Ensure supported size */
|
|
switch (kreg->enable_size) {
|
|
case 4:
|
|
/* 32-bit */
|
|
break;
|
|
#if BITS_PER_LONG >= 64
|
|
case 8:
|
|
/* 64-bit */
|
|
break;
|
|
#endif
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure natural alignment */
|
|
if (kreg->enable_addr % kreg->enable_size)
|
|
return -EINVAL;
|
|
|
|
/* Ensure bit range for size */
|
|
if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
|
|
return -EINVAL;
|
|
|
|
/* Ensure accessible */
|
|
if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
|
|
kreg->enable_size))
|
|
return -EFAULT;
|
|
|
|
kreg->size = size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Registers a user_event on behalf of a user process.
|
|
*/
|
|
static long user_events_ioctl_reg(struct user_event_file_info *info,
|
|
unsigned long uarg)
|
|
{
|
|
struct user_reg __user *ureg = (struct user_reg __user *)uarg;
|
|
struct user_reg reg;
|
|
struct user_event *user;
|
|
struct user_event_enabler *enabler;
|
|
char *name;
|
|
long ret;
|
|
int write_result;
|
|
|
|
ret = user_reg_get(ureg, ®);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Prevent users from using the same address and bit multiple times
|
|
* within the same mm address space. This can cause unexpected behavior
|
|
* for user processes that is far easier to debug if this is explictly
|
|
* an error upon registering.
|
|
*/
|
|
if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
|
|
reg.enable_bit))
|
|
return -EADDRINUSE;
|
|
|
|
name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
|
|
MAX_EVENT_DESC);
|
|
|
|
if (IS_ERR(name)) {
|
|
ret = PTR_ERR(name);
|
|
return ret;
|
|
}
|
|
|
|
ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
|
|
|
|
if (ret) {
|
|
kfree(name);
|
|
return ret;
|
|
}
|
|
|
|
ret = user_events_ref_add(info, user);
|
|
|
|
/* No longer need parse ref, ref_add either worked or not */
|
|
user_event_put(user, false);
|
|
|
|
/* Positive number is index and valid */
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* user_events_ref_add succeeded:
|
|
* At this point we have a user_event, it's lifetime is bound by the
|
|
* reference count, not this file. If anything fails, the user_event
|
|
* still has a reference until the file is released. During release
|
|
* any remaining references (from user_events_ref_add) are decremented.
|
|
*
|
|
* Attempt to create an enabler, which too has a lifetime tied in the
|
|
* same way for the event. Once the task that caused the enabler to be
|
|
* created exits or issues exec() then the enablers it has created
|
|
* will be destroyed and the ref to the event will be decremented.
|
|
*/
|
|
enabler = user_event_enabler_create(®, user, &write_result);
|
|
|
|
if (!enabler)
|
|
return -ENOMEM;
|
|
|
|
/* Write failed/faulted, give error back to caller */
|
|
if (write_result)
|
|
return write_result;
|
|
|
|
put_user((u32)ret, &ureg->write_index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deletes a user_event on behalf of a user process.
|
|
*/
|
|
static long user_events_ioctl_del(struct user_event_file_info *info,
|
|
unsigned long uarg)
|
|
{
|
|
void __user *ubuf = (void __user *)uarg;
|
|
char *name;
|
|
long ret;
|
|
|
|
name = strndup_user(ubuf, MAX_EVENT_DESC);
|
|
|
|
if (IS_ERR(name))
|
|
return PTR_ERR(name);
|
|
|
|
/* event_mutex prevents dyn_event from racing */
|
|
mutex_lock(&event_mutex);
|
|
ret = delete_user_event(info->group, name);
|
|
mutex_unlock(&event_mutex);
|
|
|
|
kfree(name);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long user_unreg_get(struct user_unreg __user *ureg,
|
|
struct user_unreg *kreg)
|
|
{
|
|
u32 size;
|
|
long ret;
|
|
|
|
ret = get_user(size, &ureg->size);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (size > PAGE_SIZE)
|
|
return -E2BIG;
|
|
|
|
if (size < offsetofend(struct user_unreg, disable_addr))
|
|
return -EINVAL;
|
|
|
|
ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
|
|
|
|
/* Ensure no reserved values, since we don't support any yet */
|
|
if (kreg->__reserved || kreg->__reserved2)
|
|
return -EINVAL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
|
|
unsigned long uaddr, unsigned char bit)
|
|
{
|
|
struct user_event_enabler enabler;
|
|
int result;
|
|
int attempt = 0;
|
|
|
|
memset(&enabler, 0, sizeof(enabler));
|
|
enabler.addr = uaddr;
|
|
enabler.values = bit;
|
|
retry:
|
|
/* Prevents state changes from racing with new enablers */
|
|
mutex_lock(&event_mutex);
|
|
|
|
/* Force the bit to be cleared, since no event is attached */
|
|
mmap_read_lock(user_mm->mm);
|
|
result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
|
|
mmap_read_unlock(user_mm->mm);
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
if (result) {
|
|
/* Attempt to fault-in and retry if it worked */
|
|
if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
|
|
goto retry;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Unregisters an enablement address/bit within a task/user mm.
|
|
*/
|
|
static long user_events_ioctl_unreg(unsigned long uarg)
|
|
{
|
|
struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
|
|
struct user_event_mm *mm = current->user_event_mm;
|
|
struct user_event_enabler *enabler, *next;
|
|
struct user_unreg reg;
|
|
long ret;
|
|
|
|
ret = user_unreg_get(ureg, ®);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!mm)
|
|
return -ENOENT;
|
|
|
|
ret = -ENOENT;
|
|
|
|
/*
|
|
* Flags freeing and faulting are used to indicate if the enabler is in
|
|
* use at all. When faulting is set a page-fault is occurring asyncly.
|
|
* During async fault if freeing is set, the enabler will be destroyed.
|
|
* If no async fault is happening, we can destroy it now since we hold
|
|
* the event_mutex during these checks.
|
|
*/
|
|
mutex_lock(&event_mutex);
|
|
|
|
list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
|
|
if (enabler->addr == reg.disable_addr &&
|
|
ENABLE_BIT(enabler) == reg.disable_bit) {
|
|
set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
|
|
|
|
if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
|
|
user_event_enabler_destroy(enabler, true);
|
|
|
|
/* Removed at least one */
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
/* Ensure bit is now cleared for user, regardless of event status */
|
|
if (!ret)
|
|
ret = user_event_mm_clear_bit(mm, reg.disable_addr,
|
|
reg.disable_bit);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Handles the ioctl from user mode to register or alter operations.
|
|
*/
|
|
static long user_events_ioctl(struct file *file, unsigned int cmd,
|
|
unsigned long uarg)
|
|
{
|
|
struct user_event_file_info *info = file->private_data;
|
|
struct user_event_group *group = info->group;
|
|
long ret = -ENOTTY;
|
|
|
|
switch (cmd) {
|
|
case DIAG_IOCSREG:
|
|
mutex_lock(&group->reg_mutex);
|
|
ret = user_events_ioctl_reg(info, uarg);
|
|
mutex_unlock(&group->reg_mutex);
|
|
break;
|
|
|
|
case DIAG_IOCSDEL:
|
|
mutex_lock(&group->reg_mutex);
|
|
ret = user_events_ioctl_del(info, uarg);
|
|
mutex_unlock(&group->reg_mutex);
|
|
break;
|
|
|
|
case DIAG_IOCSUNREG:
|
|
mutex_lock(&group->reg_mutex);
|
|
ret = user_events_ioctl_unreg(uarg);
|
|
mutex_unlock(&group->reg_mutex);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Handles the final close of the file from user mode.
|
|
*/
|
|
static int user_events_release(struct inode *node, struct file *file)
|
|
{
|
|
struct user_event_file_info *info = file->private_data;
|
|
struct user_event_group *group;
|
|
struct user_event_refs *refs;
|
|
int i;
|
|
|
|
if (!info)
|
|
return -EINVAL;
|
|
|
|
group = info->group;
|
|
|
|
/*
|
|
* Ensure refs cannot change under any situation by taking the
|
|
* register mutex during the final freeing of the references.
|
|
*/
|
|
mutex_lock(&group->reg_mutex);
|
|
|
|
refs = info->refs;
|
|
|
|
if (!refs)
|
|
goto out;
|
|
|
|
/*
|
|
* The lifetime of refs has reached an end, it's tied to this file.
|
|
* The underlying user_events are ref counted, and cannot be freed.
|
|
* After this decrement, the user_events may be freed elsewhere.
|
|
*/
|
|
for (i = 0; i < refs->count; ++i)
|
|
user_event_put(refs->events[i], false);
|
|
|
|
out:
|
|
file->private_data = NULL;
|
|
|
|
mutex_unlock(&group->reg_mutex);
|
|
|
|
kfree(refs);
|
|
kfree(info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations user_data_fops = {
|
|
.open = user_events_open,
|
|
.write = user_events_write,
|
|
.write_iter = user_events_write_iter,
|
|
.unlocked_ioctl = user_events_ioctl,
|
|
.release = user_events_release,
|
|
};
|
|
|
|
static void *user_seq_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
if (*pos)
|
|
return NULL;
|
|
|
|
return (void *)1;
|
|
}
|
|
|
|
static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return NULL;
|
|
}
|
|
|
|
static void user_seq_stop(struct seq_file *m, void *p)
|
|
{
|
|
}
|
|
|
|
static int user_seq_show(struct seq_file *m, void *p)
|
|
{
|
|
struct user_event_group *group = m->private;
|
|
struct user_event *user;
|
|
char status;
|
|
int i, active = 0, busy = 0;
|
|
|
|
if (!group)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&group->reg_mutex);
|
|
|
|
hash_for_each(group->register_table, i, user, node) {
|
|
status = user->status;
|
|
|
|
seq_printf(m, "%s", EVENT_NAME(user));
|
|
|
|
if (status != 0)
|
|
seq_puts(m, " #");
|
|
|
|
if (status != 0) {
|
|
seq_puts(m, " Used by");
|
|
if (status & EVENT_STATUS_FTRACE)
|
|
seq_puts(m, " ftrace");
|
|
if (status & EVENT_STATUS_PERF)
|
|
seq_puts(m, " perf");
|
|
if (status & EVENT_STATUS_OTHER)
|
|
seq_puts(m, " other");
|
|
busy++;
|
|
}
|
|
|
|
seq_puts(m, "\n");
|
|
active++;
|
|
}
|
|
|
|
mutex_unlock(&group->reg_mutex);
|
|
|
|
seq_puts(m, "\n");
|
|
seq_printf(m, "Active: %d\n", active);
|
|
seq_printf(m, "Busy: %d\n", busy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations user_seq_ops = {
|
|
.start = user_seq_start,
|
|
.next = user_seq_next,
|
|
.stop = user_seq_stop,
|
|
.show = user_seq_show,
|
|
};
|
|
|
|
static int user_status_open(struct inode *node, struct file *file)
|
|
{
|
|
struct user_event_group *group;
|
|
int ret;
|
|
|
|
group = current_user_event_group();
|
|
|
|
if (!group)
|
|
return -ENOENT;
|
|
|
|
ret = seq_open(file, &user_seq_ops);
|
|
|
|
if (!ret) {
|
|
/* Chain group to seq_file */
|
|
struct seq_file *m = file->private_data;
|
|
|
|
m->private = group;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct file_operations user_status_fops = {
|
|
.open = user_status_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
/*
|
|
* Creates a set of tracefs files to allow user mode interactions.
|
|
*/
|
|
static int create_user_tracefs(void)
|
|
{
|
|
struct dentry *edata, *emmap;
|
|
|
|
edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
|
|
NULL, NULL, &user_data_fops);
|
|
|
|
if (!edata) {
|
|
pr_warn("Could not create tracefs 'user_events_data' entry\n");
|
|
goto err;
|
|
}
|
|
|
|
emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
|
|
NULL, NULL, &user_status_fops);
|
|
|
|
if (!emmap) {
|
|
tracefs_remove(edata);
|
|
pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int set_max_user_events_sysctl(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
ret = proc_douintvec(table, write, buffer, lenp, ppos);
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct ctl_table user_event_sysctls[] = {
|
|
{
|
|
.procname = "user_events_max",
|
|
.data = &max_user_events,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = set_max_user_events_sysctl,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static int __init trace_events_user_init(void)
|
|
{
|
|
int ret;
|
|
|
|
fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
|
|
|
|
if (!fault_cache)
|
|
return -ENOMEM;
|
|
|
|
init_group = user_event_group_create();
|
|
|
|
if (!init_group) {
|
|
kmem_cache_destroy(fault_cache);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = create_user_tracefs();
|
|
|
|
if (ret) {
|
|
pr_warn("user_events could not register with tracefs\n");
|
|
user_event_group_destroy(init_group);
|
|
kmem_cache_destroy(fault_cache);
|
|
init_group = NULL;
|
|
return ret;
|
|
}
|
|
|
|
if (dyn_event_register(&user_event_dops))
|
|
pr_warn("user_events could not register with dyn_events\n");
|
|
|
|
register_sysctl_init("kernel", user_event_sysctls);
|
|
|
|
return 0;
|
|
}
|
|
|
|
fs_initcall(trace_events_user_init);
|