mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 10:04:12 +08:00
61e6ae711a
The DT of_device.h and of_platform.h date back to the separate of_platform_bus_type before it as merged into the regular platform bus. As part of that merge prepping Arm DT support 13 years ago, they "temporarily" include each other. They also include platform_device.h and of.h. As a result, there's a pretty much random mix of those include files used throughout the tree. In order to detangle these headers and replace the implicit includes with struct declarations, users need to explicitly include the correct includes. Signed-off-by: Rob Herring <robh@kernel.org> Signed-off-by: Damien Le Moal <dlemoal@kernel.org>
1253 lines
34 KiB
C
1253 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* drivers/ata/sata_dwc_460ex.c
|
|
*
|
|
* Synopsys DesignWare Cores (DWC) SATA host driver
|
|
*
|
|
* Author: Mark Miesfeld <mmiesfeld@amcc.com>
|
|
*
|
|
* Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
|
|
* Copyright 2008 DENX Software Engineering
|
|
*
|
|
* Based on versions provided by AMCC and Synopsys which are:
|
|
* Copyright 2006 Applied Micro Circuits Corporation
|
|
* COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/phy/phy.h>
|
|
#include <linux/libata.h>
|
|
#include <linux/slab.h>
|
|
#include <trace/events/libata.h>
|
|
|
|
#include "libata.h"
|
|
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
|
|
/* These two are defined in "libata.h" */
|
|
#undef DRV_NAME
|
|
#undef DRV_VERSION
|
|
|
|
#define DRV_NAME "sata-dwc"
|
|
#define DRV_VERSION "1.3"
|
|
|
|
#define sata_dwc_writel(a, v) writel_relaxed(v, a)
|
|
#define sata_dwc_readl(a) readl_relaxed(a)
|
|
|
|
#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */
|
|
|
|
enum {
|
|
SATA_DWC_MAX_PORTS = 1,
|
|
|
|
SATA_DWC_SCR_OFFSET = 0x24,
|
|
SATA_DWC_REG_OFFSET = 0x64,
|
|
};
|
|
|
|
/* DWC SATA Registers */
|
|
struct sata_dwc_regs {
|
|
u32 fptagr; /* 1st party DMA tag */
|
|
u32 fpbor; /* 1st party DMA buffer offset */
|
|
u32 fptcr; /* 1st party DMA Xfr count */
|
|
u32 dmacr; /* DMA Control */
|
|
u32 dbtsr; /* DMA Burst Transac size */
|
|
u32 intpr; /* Interrupt Pending */
|
|
u32 intmr; /* Interrupt Mask */
|
|
u32 errmr; /* Error Mask */
|
|
u32 llcr; /* Link Layer Control */
|
|
u32 phycr; /* PHY Control */
|
|
u32 physr; /* PHY Status */
|
|
u32 rxbistpd; /* Recvd BIST pattern def register */
|
|
u32 rxbistpd1; /* Recvd BIST data dword1 */
|
|
u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
|
|
u32 txbistpd; /* Trans BIST pattern def register */
|
|
u32 txbistpd1; /* Trans BIST data dword1 */
|
|
u32 txbistpd2; /* Trans BIST data dword2 */
|
|
u32 bistcr; /* BIST Control Register */
|
|
u32 bistfctr; /* BIST FIS Count Register */
|
|
u32 bistsr; /* BIST Status Register */
|
|
u32 bistdecr; /* BIST Dword Error count register */
|
|
u32 res[15]; /* Reserved locations */
|
|
u32 testr; /* Test Register */
|
|
u32 versionr; /* Version Register */
|
|
u32 idr; /* ID Register */
|
|
u32 unimpl[192]; /* Unimplemented */
|
|
u32 dmadr[256]; /* FIFO Locations in DMA Mode */
|
|
};
|
|
|
|
enum {
|
|
SCR_SCONTROL_DET_ENABLE = 0x00000001,
|
|
SCR_SSTATUS_DET_PRESENT = 0x00000001,
|
|
SCR_SERROR_DIAG_X = 0x04000000,
|
|
/* DWC SATA Register Operations */
|
|
SATA_DWC_TXFIFO_DEPTH = 0x01FF,
|
|
SATA_DWC_RXFIFO_DEPTH = 0x01FF,
|
|
SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
|
|
SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
|
|
SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
|
|
SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
|
|
SATA_DWC_INTPR_DMAT = 0x00000001,
|
|
SATA_DWC_INTPR_NEWFP = 0x00000002,
|
|
SATA_DWC_INTPR_PMABRT = 0x00000004,
|
|
SATA_DWC_INTPR_ERR = 0x00000008,
|
|
SATA_DWC_INTPR_NEWBIST = 0x00000010,
|
|
SATA_DWC_INTPR_IPF = 0x10000000,
|
|
SATA_DWC_INTMR_DMATM = 0x00000001,
|
|
SATA_DWC_INTMR_NEWFPM = 0x00000002,
|
|
SATA_DWC_INTMR_PMABRTM = 0x00000004,
|
|
SATA_DWC_INTMR_ERRM = 0x00000008,
|
|
SATA_DWC_INTMR_NEWBISTM = 0x00000010,
|
|
SATA_DWC_LLCR_SCRAMEN = 0x00000001,
|
|
SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
|
|
SATA_DWC_LLCR_RPDEN = 0x00000004,
|
|
/* This is all error bits, zero's are reserved fields. */
|
|
SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
|
|
};
|
|
|
|
#define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
|
|
#define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
|
|
SATA_DWC_DMACR_TMOD_TXCHEN)
|
|
#define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
|
|
SATA_DWC_DMACR_TMOD_TXCHEN)
|
|
#define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
|
|
#define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
|
|
<< 16)
|
|
struct sata_dwc_device {
|
|
struct device *dev; /* generic device struct */
|
|
struct ata_probe_ent *pe; /* ptr to probe-ent */
|
|
struct ata_host *host;
|
|
struct sata_dwc_regs __iomem *sata_dwc_regs; /* DW SATA specific */
|
|
u32 sactive_issued;
|
|
u32 sactive_queued;
|
|
struct phy *phy;
|
|
phys_addr_t dmadr;
|
|
#ifdef CONFIG_SATA_DWC_OLD_DMA
|
|
struct dw_dma_chip *dma;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Allow one extra special slot for commands and DMA management
|
|
* to account for libata internal commands.
|
|
*/
|
|
#define SATA_DWC_QCMD_MAX (ATA_MAX_QUEUE + 1)
|
|
|
|
struct sata_dwc_device_port {
|
|
struct sata_dwc_device *hsdev;
|
|
int cmd_issued[SATA_DWC_QCMD_MAX];
|
|
int dma_pending[SATA_DWC_QCMD_MAX];
|
|
|
|
/* DMA info */
|
|
struct dma_chan *chan;
|
|
struct dma_async_tx_descriptor *desc[SATA_DWC_QCMD_MAX];
|
|
u32 dma_interrupt_count;
|
|
};
|
|
|
|
/*
|
|
* Commonly used DWC SATA driver macros
|
|
*/
|
|
#define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)(host)->private_data)
|
|
#define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)(ap)->host->private_data)
|
|
#define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)(ap)->private_data)
|
|
#define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)(qc)->ap->host->private_data)
|
|
#define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)(p)->hsdev)
|
|
|
|
enum {
|
|
SATA_DWC_CMD_ISSUED_NOT = 0,
|
|
SATA_DWC_CMD_ISSUED_PEND = 1,
|
|
SATA_DWC_CMD_ISSUED_EXEC = 2,
|
|
SATA_DWC_CMD_ISSUED_NODATA = 3,
|
|
|
|
SATA_DWC_DMA_PENDING_NONE = 0,
|
|
SATA_DWC_DMA_PENDING_TX = 1,
|
|
SATA_DWC_DMA_PENDING_RX = 2,
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
|
|
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc);
|
|
static void sata_dwc_dma_xfer_complete(struct ata_port *ap);
|
|
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
|
|
|
|
#ifdef CONFIG_SATA_DWC_OLD_DMA
|
|
|
|
#include <linux/platform_data/dma-dw.h>
|
|
#include <linux/dma/dw.h>
|
|
|
|
static struct dw_dma_slave sata_dwc_dma_dws = {
|
|
.src_id = 0,
|
|
.dst_id = 0,
|
|
.m_master = 1,
|
|
.p_master = 0,
|
|
};
|
|
|
|
static bool sata_dwc_dma_filter(struct dma_chan *chan, void *param)
|
|
{
|
|
struct dw_dma_slave *dws = &sata_dwc_dma_dws;
|
|
|
|
if (dws->dma_dev != chan->device->dev)
|
|
return false;
|
|
|
|
chan->private = dws;
|
|
return true;
|
|
}
|
|
|
|
static int sata_dwc_dma_get_channel_old(struct sata_dwc_device_port *hsdevp)
|
|
{
|
|
struct sata_dwc_device *hsdev = hsdevp->hsdev;
|
|
struct dw_dma_slave *dws = &sata_dwc_dma_dws;
|
|
struct device *dev = hsdev->dev;
|
|
dma_cap_mask_t mask;
|
|
|
|
dws->dma_dev = dev;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
/* Acquire DMA channel */
|
|
hsdevp->chan = dma_request_channel(mask, sata_dwc_dma_filter, hsdevp);
|
|
if (!hsdevp->chan) {
|
|
dev_err(dev, "%s: dma channel unavailable\n", __func__);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sata_dwc_dma_init_old(struct platform_device *pdev,
|
|
struct sata_dwc_device *hsdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
|
|
hsdev->dma = devm_kzalloc(dev, sizeof(*hsdev->dma), GFP_KERNEL);
|
|
if (!hsdev->dma)
|
|
return -ENOMEM;
|
|
|
|
hsdev->dma->dev = dev;
|
|
hsdev->dma->id = pdev->id;
|
|
|
|
/* Get SATA DMA interrupt number */
|
|
hsdev->dma->irq = irq_of_parse_and_map(np, 1);
|
|
if (!hsdev->dma->irq) {
|
|
dev_err(dev, "no SATA DMA irq\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Get physical SATA DMA register base address */
|
|
hsdev->dma->regs = devm_platform_ioremap_resource(pdev, 1);
|
|
if (IS_ERR(hsdev->dma->regs))
|
|
return PTR_ERR(hsdev->dma->regs);
|
|
|
|
/* Initialize AHB DMAC */
|
|
return dw_dma_probe(hsdev->dma);
|
|
}
|
|
|
|
static void sata_dwc_dma_exit_old(struct sata_dwc_device *hsdev)
|
|
{
|
|
if (!hsdev->dma)
|
|
return;
|
|
|
|
dw_dma_remove(hsdev->dma);
|
|
}
|
|
|
|
#endif
|
|
|
|
static const char *get_prot_descript(u8 protocol)
|
|
{
|
|
switch (protocol) {
|
|
case ATA_PROT_NODATA:
|
|
return "ATA no data";
|
|
case ATA_PROT_PIO:
|
|
return "ATA PIO";
|
|
case ATA_PROT_DMA:
|
|
return "ATA DMA";
|
|
case ATA_PROT_NCQ:
|
|
return "ATA NCQ";
|
|
case ATA_PROT_NCQ_NODATA:
|
|
return "ATA NCQ no data";
|
|
case ATAPI_PROT_NODATA:
|
|
return "ATAPI no data";
|
|
case ATAPI_PROT_PIO:
|
|
return "ATAPI PIO";
|
|
case ATAPI_PROT_DMA:
|
|
return "ATAPI DMA";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
static void dma_dwc_xfer_done(void *hsdev_instance)
|
|
{
|
|
unsigned long flags;
|
|
struct sata_dwc_device *hsdev = hsdev_instance;
|
|
struct ata_host *host = (struct ata_host *)hsdev->host;
|
|
struct ata_port *ap;
|
|
struct sata_dwc_device_port *hsdevp;
|
|
u8 tag = 0;
|
|
unsigned int port = 0;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
ap = host->ports[port];
|
|
hsdevp = HSDEVP_FROM_AP(ap);
|
|
tag = ap->link.active_tag;
|
|
|
|
/*
|
|
* Each DMA command produces 2 interrupts. Only
|
|
* complete the command after both interrupts have been
|
|
* seen. (See sata_dwc_isr())
|
|
*/
|
|
hsdevp->dma_interrupt_count++;
|
|
sata_dwc_clear_dmacr(hsdevp, tag);
|
|
|
|
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
|
|
dev_err(ap->dev, "DMA not pending tag=0x%02x pending=%d\n",
|
|
tag, hsdevp->dma_pending[tag]);
|
|
}
|
|
|
|
if ((hsdevp->dma_interrupt_count % 2) == 0)
|
|
sata_dwc_dma_xfer_complete(ap);
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *dma_dwc_xfer_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
|
|
struct dma_slave_config sconf;
|
|
struct dma_async_tx_descriptor *desc;
|
|
|
|
if (qc->dma_dir == DMA_DEV_TO_MEM) {
|
|
sconf.src_addr = hsdev->dmadr;
|
|
sconf.device_fc = false;
|
|
} else { /* DMA_MEM_TO_DEV */
|
|
sconf.dst_addr = hsdev->dmadr;
|
|
sconf.device_fc = false;
|
|
}
|
|
|
|
sconf.direction = qc->dma_dir;
|
|
sconf.src_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */
|
|
sconf.dst_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */
|
|
sconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
sconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
dmaengine_slave_config(hsdevp->chan, &sconf);
|
|
|
|
/* Convert SG list to linked list of items (LLIs) for AHB DMA */
|
|
desc = dmaengine_prep_slave_sg(hsdevp->chan, qc->sg, qc->n_elem,
|
|
qc->dma_dir,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
desc->callback = dma_dwc_xfer_done;
|
|
desc->callback_param = hsdev;
|
|
|
|
dev_dbg(hsdev->dev, "%s sg: 0x%p, count: %d addr: %pa\n", __func__,
|
|
qc->sg, qc->n_elem, &hsdev->dmadr);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
|
|
{
|
|
if (scr > SCR_NOTIFICATION) {
|
|
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
|
|
__func__, scr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*val = sata_dwc_readl(link->ap->ioaddr.scr_addr + (scr * 4));
|
|
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__,
|
|
link->ap->print_id, scr, *val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
|
|
{
|
|
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__,
|
|
link->ap->print_id, scr, val);
|
|
if (scr > SCR_NOTIFICATION) {
|
|
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
|
|
__func__, scr);
|
|
return -EINVAL;
|
|
}
|
|
sata_dwc_writel(link->ap->ioaddr.scr_addr + (scr * 4), val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void clear_serror(struct ata_port *ap)
|
|
{
|
|
u32 val;
|
|
sata_dwc_scr_read(&ap->link, SCR_ERROR, &val);
|
|
sata_dwc_scr_write(&ap->link, SCR_ERROR, val);
|
|
}
|
|
|
|
static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
|
|
{
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->intpr,
|
|
sata_dwc_readl(&hsdev->sata_dwc_regs->intpr));
|
|
}
|
|
|
|
static u32 qcmd_tag_to_mask(u8 tag)
|
|
{
|
|
return 0x00000001 << (tag & 0x1f);
|
|
}
|
|
|
|
/* See ahci.c */
|
|
static void sata_dwc_error_intr(struct ata_port *ap,
|
|
struct sata_dwc_device *hsdev, uint intpr)
|
|
{
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
unsigned int err_mask = 0, action = 0;
|
|
struct ata_queued_cmd *qc;
|
|
u32 serror;
|
|
u8 status, tag;
|
|
|
|
ata_ehi_clear_desc(ehi);
|
|
|
|
sata_dwc_scr_read(&ap->link, SCR_ERROR, &serror);
|
|
status = ap->ops->sff_check_status(ap);
|
|
|
|
tag = ap->link.active_tag;
|
|
|
|
dev_err(ap->dev,
|
|
"%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x dma_intp=%d pending=%d issued=%d",
|
|
__func__, serror, intpr, status, hsdevp->dma_interrupt_count,
|
|
hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag]);
|
|
|
|
/* Clear error register and interrupt bit */
|
|
clear_serror(ap);
|
|
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
|
|
|
|
/* This is the only error happening now. TODO check for exact error */
|
|
|
|
err_mask |= AC_ERR_HOST_BUS;
|
|
action |= ATA_EH_RESET;
|
|
|
|
/* Pass this on to EH */
|
|
ehi->serror |= serror;
|
|
ehi->action |= action;
|
|
|
|
qc = ata_qc_from_tag(ap, tag);
|
|
if (qc)
|
|
qc->err_mask |= err_mask;
|
|
else
|
|
ehi->err_mask |= err_mask;
|
|
|
|
ata_port_abort(ap);
|
|
}
|
|
|
|
/*
|
|
* Function : sata_dwc_isr
|
|
* arguments : irq, void *dev_instance, struct pt_regs *regs
|
|
* Return value : irqreturn_t - status of IRQ
|
|
* This Interrupt handler called via port ops registered function.
|
|
* .irq_handler = sata_dwc_isr
|
|
*/
|
|
static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
|
|
{
|
|
struct ata_host *host = (struct ata_host *)dev_instance;
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
|
|
struct ata_port *ap;
|
|
struct ata_queued_cmd *qc;
|
|
unsigned long flags;
|
|
u8 status, tag;
|
|
int handled, port = 0;
|
|
uint intpr, sactive, sactive2, tag_mask;
|
|
struct sata_dwc_device_port *hsdevp;
|
|
hsdev->sactive_issued = 0;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
/* Read the interrupt register */
|
|
intpr = sata_dwc_readl(&hsdev->sata_dwc_regs->intpr);
|
|
|
|
ap = host->ports[port];
|
|
hsdevp = HSDEVP_FROM_AP(ap);
|
|
|
|
dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
|
|
ap->link.active_tag);
|
|
|
|
/* Check for error interrupt */
|
|
if (intpr & SATA_DWC_INTPR_ERR) {
|
|
sata_dwc_error_intr(ap, hsdev, intpr);
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
|
|
/* Check for DMA SETUP FIS (FP DMA) interrupt */
|
|
if (intpr & SATA_DWC_INTPR_NEWFP) {
|
|
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
|
|
|
|
tag = (u8)(sata_dwc_readl(&hsdev->sata_dwc_regs->fptagr));
|
|
dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
|
|
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
|
|
dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
|
|
|
|
hsdev->sactive_issued |= qcmd_tag_to_mask(tag);
|
|
|
|
qc = ata_qc_from_tag(ap, tag);
|
|
if (unlikely(!qc)) {
|
|
dev_err(ap->dev, "failed to get qc");
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
/*
|
|
* Start FP DMA for NCQ command. At this point the tag is the
|
|
* active tag. It is the tag that matches the command about to
|
|
* be completed.
|
|
*/
|
|
trace_ata_bmdma_start(ap, &qc->tf, tag);
|
|
qc->ap->link.active_tag = tag;
|
|
sata_dwc_bmdma_start_by_tag(qc, tag);
|
|
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
|
|
tag_mask = (hsdev->sactive_issued | sactive) ^ sactive;
|
|
|
|
/* If no sactive issued and tag_mask is zero then this is not NCQ */
|
|
if (hsdev->sactive_issued == 0 && tag_mask == 0) {
|
|
if (ap->link.active_tag == ATA_TAG_POISON)
|
|
tag = 0;
|
|
else
|
|
tag = ap->link.active_tag;
|
|
qc = ata_qc_from_tag(ap, tag);
|
|
|
|
/* DEV interrupt w/ no active qc? */
|
|
if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
|
|
dev_err(ap->dev,
|
|
"%s interrupt with no active qc qc=%p\n",
|
|
__func__, qc);
|
|
ap->ops->sff_check_status(ap);
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
status = ap->ops->sff_check_status(ap);
|
|
|
|
qc->ap->link.active_tag = tag;
|
|
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
|
|
|
|
if (status & ATA_ERR) {
|
|
dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
|
|
sata_dwc_qc_complete(ap, qc);
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
|
|
dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
|
|
__func__, get_prot_descript(qc->tf.protocol));
|
|
DRVSTILLBUSY:
|
|
if (ata_is_dma(qc->tf.protocol)) {
|
|
/*
|
|
* Each DMA transaction produces 2 interrupts. The DMAC
|
|
* transfer complete interrupt and the SATA controller
|
|
* operation done interrupt. The command should be
|
|
* completed only after both interrupts are seen.
|
|
*/
|
|
hsdevp->dma_interrupt_count++;
|
|
if (hsdevp->dma_pending[tag] == \
|
|
SATA_DWC_DMA_PENDING_NONE) {
|
|
dev_err(ap->dev,
|
|
"%s: DMA not pending intpr=0x%08x status=0x%08x pending=%d\n",
|
|
__func__, intpr, status,
|
|
hsdevp->dma_pending[tag]);
|
|
}
|
|
|
|
if ((hsdevp->dma_interrupt_count % 2) == 0)
|
|
sata_dwc_dma_xfer_complete(ap);
|
|
} else if (ata_is_pio(qc->tf.protocol)) {
|
|
ata_sff_hsm_move(ap, qc, status, 0);
|
|
handled = 1;
|
|
goto DONE;
|
|
} else {
|
|
if (unlikely(sata_dwc_qc_complete(ap, qc)))
|
|
goto DRVSTILLBUSY;
|
|
}
|
|
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
|
|
/*
|
|
* This is a NCQ command. At this point we need to figure out for which
|
|
* tags we have gotten a completion interrupt. One interrupt may serve
|
|
* as completion for more than one operation when commands are queued
|
|
* (NCQ). We need to process each completed command.
|
|
*/
|
|
|
|
/* process completed commands */
|
|
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
|
|
tag_mask = (hsdev->sactive_issued | sactive) ^ sactive;
|
|
|
|
if (sactive != 0 || hsdev->sactive_issued > 1 || tag_mask > 1) {
|
|
dev_dbg(ap->dev,
|
|
"%s NCQ:sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n",
|
|
__func__, sactive, hsdev->sactive_issued, tag_mask);
|
|
}
|
|
|
|
if ((tag_mask | hsdev->sactive_issued) != hsdev->sactive_issued) {
|
|
dev_warn(ap->dev,
|
|
"Bad tag mask? sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n",
|
|
sactive, hsdev->sactive_issued, tag_mask);
|
|
}
|
|
|
|
/* read just to clear ... not bad if currently still busy */
|
|
status = ap->ops->sff_check_status(ap);
|
|
dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
|
|
|
|
tag = 0;
|
|
while (tag_mask) {
|
|
while (!(tag_mask & 0x00000001)) {
|
|
tag++;
|
|
tag_mask <<= 1;
|
|
}
|
|
|
|
tag_mask &= (~0x00000001);
|
|
qc = ata_qc_from_tag(ap, tag);
|
|
if (unlikely(!qc)) {
|
|
dev_err(ap->dev, "failed to get qc");
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
|
|
/* To be picked up by completion functions */
|
|
qc->ap->link.active_tag = tag;
|
|
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
|
|
|
|
/* Let libata/scsi layers handle error */
|
|
if (status & ATA_ERR) {
|
|
dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
|
|
status);
|
|
sata_dwc_qc_complete(ap, qc);
|
|
handled = 1;
|
|
goto DONE;
|
|
}
|
|
|
|
/* Process completed command */
|
|
dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
|
|
get_prot_descript(qc->tf.protocol));
|
|
if (ata_is_dma(qc->tf.protocol)) {
|
|
hsdevp->dma_interrupt_count++;
|
|
if (hsdevp->dma_pending[tag] == \
|
|
SATA_DWC_DMA_PENDING_NONE)
|
|
dev_warn(ap->dev, "%s: DMA not pending?\n",
|
|
__func__);
|
|
if ((hsdevp->dma_interrupt_count % 2) == 0)
|
|
sata_dwc_dma_xfer_complete(ap);
|
|
} else {
|
|
if (unlikely(sata_dwc_qc_complete(ap, qc)))
|
|
goto STILLBUSY;
|
|
}
|
|
continue;
|
|
|
|
STILLBUSY:
|
|
ap->stats.idle_irq++;
|
|
dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
|
|
ap->print_id);
|
|
} /* while tag_mask */
|
|
|
|
/*
|
|
* Check to see if any commands completed while we were processing our
|
|
* initial set of completed commands (read status clears interrupts,
|
|
* so we might miss a completed command interrupt if one came in while
|
|
* we were processing --we read status as part of processing a completed
|
|
* command).
|
|
*/
|
|
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive2);
|
|
if (sactive2 != sactive) {
|
|
dev_dbg(ap->dev,
|
|
"More completed - sactive=0x%x sactive2=0x%x\n",
|
|
sactive, sactive2);
|
|
}
|
|
handled = 1;
|
|
|
|
DONE:
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
|
|
{
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
|
|
u32 dmacr = sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr);
|
|
|
|
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
|
|
dmacr = SATA_DWC_DMACR_RX_CLEAR(dmacr);
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr);
|
|
} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
|
|
dmacr = SATA_DWC_DMACR_TX_CLEAR(dmacr);
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr);
|
|
} else {
|
|
/*
|
|
* This should not happen, it indicates the driver is out of
|
|
* sync. If it does happen, clear dmacr anyway.
|
|
*/
|
|
dev_err(hsdev->dev,
|
|
"%s DMA protocol RX and TX DMA not pending tag=0x%02x pending=%d dmacr: 0x%08x\n",
|
|
__func__, tag, hsdevp->dma_pending[tag], dmacr);
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
|
|
SATA_DWC_DMACR_TXRXCH_CLEAR);
|
|
}
|
|
}
|
|
|
|
static void sata_dwc_dma_xfer_complete(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
|
|
u8 tag = 0;
|
|
|
|
tag = ap->link.active_tag;
|
|
qc = ata_qc_from_tag(ap, tag);
|
|
if (!qc) {
|
|
dev_err(ap->dev, "failed to get qc");
|
|
return;
|
|
}
|
|
|
|
if (ata_is_dma(qc->tf.protocol)) {
|
|
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
|
|
dev_err(ap->dev,
|
|
"%s DMA protocol RX and TX DMA not pending dmacr: 0x%08x\n",
|
|
__func__,
|
|
sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr));
|
|
}
|
|
|
|
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
|
|
sata_dwc_qc_complete(ap, qc);
|
|
ap->link.active_tag = ATA_TAG_POISON;
|
|
} else {
|
|
sata_dwc_qc_complete(ap, qc);
|
|
}
|
|
}
|
|
|
|
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
u8 status = 0;
|
|
u32 mask = 0x0;
|
|
u8 tag = qc->hw_tag;
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
hsdev->sactive_queued = 0;
|
|
|
|
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
|
|
dev_err(ap->dev, "TX DMA PENDING\n");
|
|
else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
|
|
dev_err(ap->dev, "RX DMA PENDING\n");
|
|
dev_dbg(ap->dev,
|
|
"QC complete cmd=0x%02x status=0x%02x ata%u: protocol=%d\n",
|
|
qc->tf.command, status, ap->print_id, qc->tf.protocol);
|
|
|
|
/* clear active bit */
|
|
mask = (~(qcmd_tag_to_mask(tag)));
|
|
hsdev->sactive_queued = hsdev->sactive_queued & mask;
|
|
hsdev->sactive_issued = hsdev->sactive_issued & mask;
|
|
ata_qc_complete(qc);
|
|
return 0;
|
|
}
|
|
|
|
static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
|
|
{
|
|
/* Enable selective interrupts by setting the interrupt maskregister*/
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->intmr,
|
|
SATA_DWC_INTMR_ERRM |
|
|
SATA_DWC_INTMR_NEWFPM |
|
|
SATA_DWC_INTMR_PMABRTM |
|
|
SATA_DWC_INTMR_DMATM);
|
|
/*
|
|
* Unmask the error bits that should trigger an error interrupt by
|
|
* setting the error mask register.
|
|
*/
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
|
|
|
|
dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
|
|
__func__, sata_dwc_readl(&hsdev->sata_dwc_regs->intmr),
|
|
sata_dwc_readl(&hsdev->sata_dwc_regs->errmr));
|
|
}
|
|
|
|
static void sata_dwc_setup_port(struct ata_ioports *port, void __iomem *base)
|
|
{
|
|
port->cmd_addr = base + 0x00;
|
|
port->data_addr = base + 0x00;
|
|
|
|
port->error_addr = base + 0x04;
|
|
port->feature_addr = base + 0x04;
|
|
|
|
port->nsect_addr = base + 0x08;
|
|
|
|
port->lbal_addr = base + 0x0c;
|
|
port->lbam_addr = base + 0x10;
|
|
port->lbah_addr = base + 0x14;
|
|
|
|
port->device_addr = base + 0x18;
|
|
port->command_addr = base + 0x1c;
|
|
port->status_addr = base + 0x1c;
|
|
|
|
port->altstatus_addr = base + 0x20;
|
|
port->ctl_addr = base + 0x20;
|
|
}
|
|
|
|
static int sata_dwc_dma_get_channel(struct sata_dwc_device_port *hsdevp)
|
|
{
|
|
struct sata_dwc_device *hsdev = hsdevp->hsdev;
|
|
struct device *dev = hsdev->dev;
|
|
|
|
#ifdef CONFIG_SATA_DWC_OLD_DMA
|
|
if (!of_property_present(dev->of_node, "dmas"))
|
|
return sata_dwc_dma_get_channel_old(hsdevp);
|
|
#endif
|
|
|
|
hsdevp->chan = dma_request_chan(dev, "sata-dma");
|
|
if (IS_ERR(hsdevp->chan)) {
|
|
dev_err(dev, "failed to allocate dma channel: %ld\n",
|
|
PTR_ERR(hsdevp->chan));
|
|
return PTR_ERR(hsdevp->chan);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function : sata_dwc_port_start
|
|
* arguments : struct ata_ioports *port
|
|
* Return value : returns 0 if success, error code otherwise
|
|
* This function allocates the scatter gather LLI table for AHB DMA
|
|
*/
|
|
static int sata_dwc_port_start(struct ata_port *ap)
|
|
{
|
|
int err = 0;
|
|
struct sata_dwc_device *hsdev;
|
|
struct sata_dwc_device_port *hsdevp = NULL;
|
|
struct device *pdev;
|
|
int i;
|
|
|
|
hsdev = HSDEV_FROM_AP(ap);
|
|
|
|
dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
|
|
|
|
hsdev->host = ap->host;
|
|
pdev = ap->host->dev;
|
|
if (!pdev) {
|
|
dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
|
|
err = -ENODEV;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* Allocate Port Struct */
|
|
hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
|
|
if (!hsdevp) {
|
|
err = -ENOMEM;
|
|
goto CLEANUP;
|
|
}
|
|
hsdevp->hsdev = hsdev;
|
|
|
|
err = sata_dwc_dma_get_channel(hsdevp);
|
|
if (err)
|
|
goto CLEANUP_ALLOC;
|
|
|
|
err = phy_power_on(hsdev->phy);
|
|
if (err)
|
|
goto CLEANUP_ALLOC;
|
|
|
|
for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
|
|
hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
|
|
|
|
ap->bmdma_prd = NULL; /* set these so libata doesn't use them */
|
|
ap->bmdma_prd_dma = 0;
|
|
|
|
if (ap->port_no == 0) {
|
|
dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
|
|
__func__);
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
|
|
SATA_DWC_DMACR_TXRXCH_CLEAR);
|
|
|
|
dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
|
|
__func__);
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr,
|
|
(SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
|
|
SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
|
|
}
|
|
|
|
/* Clear any error bits before libata starts issuing commands */
|
|
clear_serror(ap);
|
|
ap->private_data = hsdevp;
|
|
dev_dbg(ap->dev, "%s: done\n", __func__);
|
|
return 0;
|
|
|
|
CLEANUP_ALLOC:
|
|
kfree(hsdevp);
|
|
CLEANUP:
|
|
dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
|
|
return err;
|
|
}
|
|
|
|
static void sata_dwc_port_stop(struct ata_port *ap)
|
|
{
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
|
|
|
|
dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
|
|
|
|
dmaengine_terminate_sync(hsdevp->chan);
|
|
dma_release_channel(hsdevp->chan);
|
|
phy_power_off(hsdev->phy);
|
|
|
|
kfree(hsdevp);
|
|
ap->private_data = NULL;
|
|
}
|
|
|
|
/*
|
|
* Function : sata_dwc_exec_command_by_tag
|
|
* arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
|
|
* Return value : None
|
|
* This function keeps track of individual command tag ids and calls
|
|
* ata_exec_command in libata
|
|
*/
|
|
static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
|
|
struct ata_taskfile *tf,
|
|
u8 tag, u32 cmd_issued)
|
|
{
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
|
|
hsdevp->cmd_issued[tag] = cmd_issued;
|
|
|
|
/*
|
|
* Clear SError before executing a new command.
|
|
* sata_dwc_scr_write and read can not be used here. Clearing the PM
|
|
* managed SError register for the disk needs to be done before the
|
|
* task file is loaded.
|
|
*/
|
|
clear_serror(ap);
|
|
ata_sff_exec_command(ap, tf);
|
|
}
|
|
|
|
static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
|
|
{
|
|
sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
|
|
SATA_DWC_CMD_ISSUED_PEND);
|
|
}
|
|
|
|
static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
u8 tag = qc->hw_tag;
|
|
|
|
if (!ata_is_ncq(qc->tf.protocol))
|
|
tag = 0;
|
|
|
|
sata_dwc_bmdma_setup_by_tag(qc, tag);
|
|
}
|
|
|
|
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
|
|
{
|
|
int start_dma;
|
|
u32 reg;
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
|
|
struct ata_port *ap = qc->ap;
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
struct dma_async_tx_descriptor *desc = hsdevp->desc[tag];
|
|
int dir = qc->dma_dir;
|
|
|
|
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
|
|
start_dma = 1;
|
|
if (dir == DMA_TO_DEVICE)
|
|
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
|
|
else
|
|
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
|
|
} else {
|
|
dev_err(ap->dev,
|
|
"%s: Command not pending cmd_issued=%d (tag=%d) DMA NOT started\n",
|
|
__func__, hsdevp->cmd_issued[tag], tag);
|
|
start_dma = 0;
|
|
}
|
|
|
|
if (start_dma) {
|
|
sata_dwc_scr_read(&ap->link, SCR_ERROR, ®);
|
|
if (reg & SATA_DWC_SERROR_ERR_BITS) {
|
|
dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
|
|
__func__, reg);
|
|
}
|
|
|
|
if (dir == DMA_TO_DEVICE)
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
|
|
SATA_DWC_DMACR_TXCHEN);
|
|
else
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
|
|
SATA_DWC_DMACR_RXCHEN);
|
|
|
|
/* Enable AHB DMA transfer on the specified channel */
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(hsdevp->chan);
|
|
}
|
|
}
|
|
|
|
static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
|
|
{
|
|
u8 tag = qc->hw_tag;
|
|
|
|
if (!ata_is_ncq(qc->tf.protocol))
|
|
tag = 0;
|
|
|
|
sata_dwc_bmdma_start_by_tag(qc, tag);
|
|
}
|
|
|
|
static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
u32 sactive;
|
|
u8 tag = qc->hw_tag;
|
|
struct ata_port *ap = qc->ap;
|
|
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
|
|
|
|
if (!ata_is_ncq(qc->tf.protocol))
|
|
tag = 0;
|
|
|
|
if (ata_is_dma(qc->tf.protocol)) {
|
|
hsdevp->desc[tag] = dma_dwc_xfer_setup(qc);
|
|
if (!hsdevp->desc[tag])
|
|
return AC_ERR_SYSTEM;
|
|
} else {
|
|
hsdevp->desc[tag] = NULL;
|
|
}
|
|
|
|
if (ata_is_ncq(qc->tf.protocol)) {
|
|
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
|
|
sactive |= (0x00000001 << tag);
|
|
sata_dwc_scr_write(&ap->link, SCR_ACTIVE, sactive);
|
|
|
|
trace_ata_tf_load(ap, &qc->tf);
|
|
ap->ops->sff_tf_load(ap, &qc->tf);
|
|
trace_ata_exec_command(ap, &qc->tf, tag);
|
|
sata_dwc_exec_command_by_tag(ap, &qc->tf, tag,
|
|
SATA_DWC_CMD_ISSUED_PEND);
|
|
} else {
|
|
return ata_bmdma_qc_issue(qc);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void sata_dwc_error_handler(struct ata_port *ap)
|
|
{
|
|
ata_sff_error_handler(ap);
|
|
}
|
|
|
|
static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
|
|
int ret;
|
|
|
|
ret = sata_sff_hardreset(link, class, deadline);
|
|
|
|
sata_dwc_enable_interrupts(hsdev);
|
|
|
|
/* Reconfigure the DMA control register */
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
|
|
SATA_DWC_DMACR_TXRXCH_CLEAR);
|
|
|
|
/* Reconfigure the DMA Burst Transaction Size register */
|
|
sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr,
|
|
SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
|
|
SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sata_dwc_dev_select(struct ata_port *ap, unsigned int device)
|
|
{
|
|
/* SATA DWC is master only */
|
|
}
|
|
|
|
/*
|
|
* scsi mid-layer and libata interface structures
|
|
*/
|
|
static const struct scsi_host_template sata_dwc_sht = {
|
|
ATA_NCQ_SHT(DRV_NAME),
|
|
/*
|
|
* test-only: Currently this driver doesn't handle NCQ
|
|
* correctly. We enable NCQ but set the queue depth to a
|
|
* max of 1. This will get fixed in in a future release.
|
|
*/
|
|
.sg_tablesize = LIBATA_MAX_PRD,
|
|
/* .can_queue = ATA_MAX_QUEUE, */
|
|
/*
|
|
* Make sure a LLI block is not created that will span 8K max FIS
|
|
* boundary. If the block spans such a FIS boundary, there is a chance
|
|
* that a DMA burst will cross that boundary -- this results in an
|
|
* error in the host controller.
|
|
*/
|
|
.dma_boundary = 0x1fff /* ATA_DMA_BOUNDARY */,
|
|
};
|
|
|
|
static struct ata_port_operations sata_dwc_ops = {
|
|
.inherits = &ata_sff_port_ops,
|
|
|
|
.error_handler = sata_dwc_error_handler,
|
|
.hardreset = sata_dwc_hardreset,
|
|
|
|
.qc_issue = sata_dwc_qc_issue,
|
|
|
|
.scr_read = sata_dwc_scr_read,
|
|
.scr_write = sata_dwc_scr_write,
|
|
|
|
.port_start = sata_dwc_port_start,
|
|
.port_stop = sata_dwc_port_stop,
|
|
|
|
.sff_dev_select = sata_dwc_dev_select,
|
|
|
|
.bmdma_setup = sata_dwc_bmdma_setup,
|
|
.bmdma_start = sata_dwc_bmdma_start,
|
|
};
|
|
|
|
static const struct ata_port_info sata_dwc_port_info[] = {
|
|
{
|
|
.flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
|
|
.pio_mask = ATA_PIO4,
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &sata_dwc_ops,
|
|
},
|
|
};
|
|
|
|
static int sata_dwc_probe(struct platform_device *ofdev)
|
|
{
|
|
struct device *dev = &ofdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
struct sata_dwc_device *hsdev;
|
|
u32 idr, versionr;
|
|
char *ver = (char *)&versionr;
|
|
void __iomem *base;
|
|
int err = 0;
|
|
int irq;
|
|
struct ata_host *host;
|
|
struct ata_port_info pi = sata_dwc_port_info[0];
|
|
const struct ata_port_info *ppi[] = { &pi, NULL };
|
|
struct resource *res;
|
|
|
|
/* Allocate DWC SATA device */
|
|
host = ata_host_alloc_pinfo(dev, ppi, SATA_DWC_MAX_PORTS);
|
|
hsdev = devm_kzalloc(dev, sizeof(*hsdev), GFP_KERNEL);
|
|
if (!host || !hsdev)
|
|
return -ENOMEM;
|
|
|
|
host->private_data = hsdev;
|
|
|
|
/* Ioremap SATA registers */
|
|
base = devm_platform_get_and_ioremap_resource(ofdev, 0, &res);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
dev_dbg(dev, "ioremap done for SATA register address\n");
|
|
|
|
/* Synopsys DWC SATA specific Registers */
|
|
hsdev->sata_dwc_regs = base + SATA_DWC_REG_OFFSET;
|
|
hsdev->dmadr = res->start + SATA_DWC_REG_OFFSET + offsetof(struct sata_dwc_regs, dmadr);
|
|
|
|
/* Setup port */
|
|
host->ports[0]->ioaddr.cmd_addr = base;
|
|
host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
|
|
sata_dwc_setup_port(&host->ports[0]->ioaddr, base);
|
|
|
|
/* Read the ID and Version Registers */
|
|
idr = sata_dwc_readl(&hsdev->sata_dwc_regs->idr);
|
|
versionr = sata_dwc_readl(&hsdev->sata_dwc_regs->versionr);
|
|
dev_notice(dev, "id %d, controller version %c.%c%c\n", idr, ver[0], ver[1], ver[2]);
|
|
|
|
/* Save dev for later use in dev_xxx() routines */
|
|
hsdev->dev = dev;
|
|
|
|
/* Enable SATA Interrupts */
|
|
sata_dwc_enable_interrupts(hsdev);
|
|
|
|
/* Get SATA interrupt number */
|
|
irq = irq_of_parse_and_map(np, 0);
|
|
if (!irq) {
|
|
dev_err(dev, "no SATA DMA irq\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
#ifdef CONFIG_SATA_DWC_OLD_DMA
|
|
if (!of_property_present(np, "dmas")) {
|
|
err = sata_dwc_dma_init_old(ofdev, hsdev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
hsdev->phy = devm_phy_optional_get(dev, "sata-phy");
|
|
if (IS_ERR(hsdev->phy))
|
|
return PTR_ERR(hsdev->phy);
|
|
|
|
err = phy_init(hsdev->phy);
|
|
if (err)
|
|
goto error_out;
|
|
|
|
/*
|
|
* Now, register with libATA core, this will also initiate the
|
|
* device discovery process, invoking our port_start() handler &
|
|
* error_handler() to execute a dummy Softreset EH session
|
|
*/
|
|
err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
|
|
if (err)
|
|
dev_err(dev, "failed to activate host");
|
|
|
|
return 0;
|
|
|
|
error_out:
|
|
phy_exit(hsdev->phy);
|
|
return err;
|
|
}
|
|
|
|
static int sata_dwc_remove(struct platform_device *ofdev)
|
|
{
|
|
struct device *dev = &ofdev->dev;
|
|
struct ata_host *host = dev_get_drvdata(dev);
|
|
struct sata_dwc_device *hsdev = host->private_data;
|
|
|
|
ata_host_detach(host);
|
|
|
|
phy_exit(hsdev->phy);
|
|
|
|
#ifdef CONFIG_SATA_DWC_OLD_DMA
|
|
/* Free SATA DMA resources */
|
|
sata_dwc_dma_exit_old(hsdev);
|
|
#endif
|
|
|
|
dev_dbg(dev, "done\n");
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id sata_dwc_match[] = {
|
|
{ .compatible = "amcc,sata-460ex", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sata_dwc_match);
|
|
|
|
static struct platform_driver sata_dwc_driver = {
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.of_match_table = sata_dwc_match,
|
|
},
|
|
.probe = sata_dwc_probe,
|
|
.remove = sata_dwc_remove,
|
|
};
|
|
|
|
module_platform_driver(sata_dwc_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
|
|
MODULE_DESCRIPTION("DesignWare Cores SATA controller low level driver");
|
|
MODULE_VERSION(DRV_VERSION);
|