linux/drivers/net/ethernet/sfc/net_driver.h
Daniel Pieczko 6d8aaaf6f7 sfc: create VEB vswitch and vport above default firmware setup
Adds functions to allocate and free vswitches and vports; vadaptors
are automatically allocated and freed when TX/RX queues are
initialised and finalised.  This vswitching structure is only created
if the firmware supports it, so a check that full-featured firmware
is running is performed first.

If the MC resets, the vswitching infrastructure will need to be
recreated, so mark the "must_probe_vswitching" flag when an MC reboot
is detected.

Don't try to create a vswitch if vf-count=0

This allocation of vswitches and vports does not currently support
configuring VLAN tags, but that can be added in a future change.

Signed-off-by: Shradha Shah <sshah@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-09 16:16:47 -04:00

1514 lines
54 KiB
C

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/* Common definitions for all Efx net driver code */
#ifndef EFX_NET_DRIVER_H
#define EFX_NET_DRIVER_H
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/timer.h>
#include <linux/mdio.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/vmalloc.h>
#include <linux/i2c.h>
#include <linux/mtd/mtd.h>
#include <net/busy_poll.h>
#include "enum.h"
#include "bitfield.h"
#include "filter.h"
/**************************************************************************
*
* Build definitions
*
**************************************************************************/
#define EFX_DRIVER_VERSION "4.0"
#ifdef DEBUG
#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
#else
#define EFX_BUG_ON_PARANOID(x) do {} while (0)
#define EFX_WARN_ON_PARANOID(x) do {} while (0)
#endif
/**************************************************************************
*
* Efx data structures
*
**************************************************************************/
#define EFX_MAX_CHANNELS 32U
#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
#define EFX_EXTRA_CHANNEL_IOV 0
#define EFX_EXTRA_CHANNEL_PTP 1
#define EFX_MAX_EXTRA_CHANNELS 2U
/* Checksum generation is a per-queue option in hardware, so each
* queue visible to the networking core is backed by two hardware TX
* queues. */
#define EFX_MAX_TX_TC 2
#define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
#define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
#define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
#define EFX_TXQ_TYPES 4
#define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
/* Maximum possible MTU the driver supports */
#define EFX_MAX_MTU (9 * 1024)
/* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
* and should be a multiple of the cache line size.
*/
#define EFX_RX_USR_BUF_SIZE (2048 - 256)
/* If possible, we should ensure cache line alignment at start and end
* of every buffer. Otherwise, we just need to ensure 4-byte
* alignment of the network header.
*/
#if NET_IP_ALIGN == 0
#define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
#else
#define EFX_RX_BUF_ALIGNMENT 4
#endif
/* Forward declare Precision Time Protocol (PTP) support structure. */
struct efx_ptp_data;
struct hwtstamp_config;
struct efx_self_tests;
/**
* struct efx_buffer - A general-purpose DMA buffer
* @addr: host base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
*
* The NIC uses these buffers for its interrupt status registers and
* MAC stats dumps.
*/
struct efx_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
};
/**
* struct efx_special_buffer - DMA buffer entered into buffer table
* @buf: Standard &struct efx_buffer
* @index: Buffer index within controller;s buffer table
* @entries: Number of buffer table entries
*
* The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
* Event and descriptor rings are addressed via one or more buffer
* table entries (and so can be physically non-contiguous, although we
* currently do not take advantage of that). On Falcon and Siena we
* have to take care of allocating and initialising the entries
* ourselves. On later hardware this is managed by the firmware and
* @index and @entries are left as 0.
*/
struct efx_special_buffer {
struct efx_buffer buf;
unsigned int index;
unsigned int entries;
};
/**
* struct efx_tx_buffer - buffer state for a TX descriptor
* @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
* freed when descriptor completes
* @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
* freed when descriptor completes.
* @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
* @dma_addr: DMA address of the fragment.
* @flags: Flags for allocation and DMA mapping type
* @len: Length of this fragment.
* This field is zero when the queue slot is empty.
* @unmap_len: Length of this fragment to unmap
* @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
* Only valid if @unmap_len != 0.
*/
struct efx_tx_buffer {
union {
const struct sk_buff *skb;
void *heap_buf;
};
union {
efx_qword_t option;
dma_addr_t dma_addr;
};
unsigned short flags;
unsigned short len;
unsigned short unmap_len;
unsigned short dma_offset;
};
#define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
#define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
#define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */
#define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
#define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
/**
* struct efx_tx_queue - An Efx TX queue
*
* This is a ring buffer of TX fragments.
* Since the TX completion path always executes on the same
* CPU and the xmit path can operate on different CPUs,
* performance is increased by ensuring that the completion
* path and the xmit path operate on different cache lines.
* This is particularly important if the xmit path is always
* executing on one CPU which is different from the completion
* path. There is also a cache line for members which are
* read but not written on the fast path.
*
* @efx: The associated Efx NIC
* @queue: DMA queue number
* @channel: The associated channel
* @core_txq: The networking core TX queue structure
* @buffer: The software buffer ring
* @tsoh_page: Array of pages of TSO header buffers
* @txd: The hardware descriptor ring
* @ptr_mask: The size of the ring minus 1.
* @piobuf: PIO buffer region for this TX queue (shared with its partner).
* Size of the region is efx_piobuf_size.
* @piobuf_offset: Buffer offset to be specified in PIO descriptors
* @initialised: Has hardware queue been initialised?
* @read_count: Current read pointer.
* This is the number of buffers that have been removed from both rings.
* @old_write_count: The value of @write_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of @write_count if this
* variable indicates that the queue is empty. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @merge_events: Number of TX merged completion events
* @insert_count: Current insert pointer
* This is the number of buffers that have been added to the
* software ring.
* @write_count: Current write pointer
* This is the number of buffers that have been added to the
* hardware ring.
* @old_read_count: The value of read_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of read_count if this
* variable indicates that the queue is full. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @tso_bursts: Number of times TSO xmit invoked by kernel
* @tso_long_headers: Number of packets with headers too long for standard
* blocks
* @tso_packets: Number of packets via the TSO xmit path
* @pushes: Number of times the TX push feature has been used
* @pio_packets: Number of times the TX PIO feature has been used
* @empty_read_count: If the completion path has seen the queue as empty
* and the transmission path has not yet checked this, the value of
* @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
*/
struct efx_tx_queue {
/* Members which don't change on the fast path */
struct efx_nic *efx ____cacheline_aligned_in_smp;
unsigned queue;
struct efx_channel *channel;
struct netdev_queue *core_txq;
struct efx_tx_buffer *buffer;
struct efx_buffer *tsoh_page;
struct efx_special_buffer txd;
unsigned int ptr_mask;
void __iomem *piobuf;
unsigned int piobuf_offset;
bool initialised;
/* Members used mainly on the completion path */
unsigned int read_count ____cacheline_aligned_in_smp;
unsigned int old_write_count;
unsigned int merge_events;
/* Members used only on the xmit path */
unsigned int insert_count ____cacheline_aligned_in_smp;
unsigned int write_count;
unsigned int old_read_count;
unsigned int tso_bursts;
unsigned int tso_long_headers;
unsigned int tso_packets;
unsigned int pushes;
unsigned int pio_packets;
/* Statistics to supplement MAC stats */
unsigned long tx_packets;
/* Members shared between paths and sometimes updated */
unsigned int empty_read_count ____cacheline_aligned_in_smp;
#define EFX_EMPTY_COUNT_VALID 0x80000000
atomic_t flush_outstanding;
};
/**
* struct efx_rx_buffer - An Efx RX data buffer
* @dma_addr: DMA base address of the buffer
* @page: The associated page buffer.
* Will be %NULL if the buffer slot is currently free.
* @page_offset: If pending: offset in @page of DMA base address.
* If completed: offset in @page of Ethernet header.
* @len: If pending: length for DMA descriptor.
* If completed: received length, excluding hash prefix.
* @flags: Flags for buffer and packet state. These are only set on the
* first buffer of a scattered packet.
*/
struct efx_rx_buffer {
dma_addr_t dma_addr;
struct page *page;
u16 page_offset;
u16 len;
u16 flags;
};
#define EFX_RX_BUF_LAST_IN_PAGE 0x0001
#define EFX_RX_PKT_CSUMMED 0x0002
#define EFX_RX_PKT_DISCARD 0x0004
#define EFX_RX_PKT_TCP 0x0040
#define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
/**
* struct efx_rx_page_state - Page-based rx buffer state
*
* Inserted at the start of every page allocated for receive buffers.
* Used to facilitate sharing dma mappings between recycled rx buffers
* and those passed up to the kernel.
*
* @dma_addr: The dma address of this page.
*/
struct efx_rx_page_state {
dma_addr_t dma_addr;
unsigned int __pad[0] ____cacheline_aligned;
};
/**
* struct efx_rx_queue - An Efx RX queue
* @efx: The associated Efx NIC
* @core_index: Index of network core RX queue. Will be >= 0 iff this
* is associated with a real RX queue.
* @buffer: The software buffer ring
* @rxd: The hardware descriptor ring
* @ptr_mask: The size of the ring minus 1.
* @refill_enabled: Enable refill whenever fill level is low
* @flush_pending: Set when a RX flush is pending. Has the same lifetime as
* @rxq_flush_pending.
* @added_count: Number of buffers added to the receive queue.
* @notified_count: Number of buffers given to NIC (<= @added_count).
* @removed_count: Number of buffers removed from the receive queue.
* @scatter_n: Used by NIC specific receive code.
* @scatter_len: Used by NIC specific receive code.
* @page_ring: The ring to store DMA mapped pages for reuse.
* @page_add: Counter to calculate the write pointer for the recycle ring.
* @page_remove: Counter to calculate the read pointer for the recycle ring.
* @page_recycle_count: The number of pages that have been recycled.
* @page_recycle_failed: The number of pages that couldn't be recycled because
* the kernel still held a reference to them.
* @page_recycle_full: The number of pages that were released because the
* recycle ring was full.
* @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
* @max_fill: RX descriptor maximum fill level (<= ring size)
* @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
* (<= @max_fill)
* @min_fill: RX descriptor minimum non-zero fill level.
* This records the minimum fill level observed when a ring
* refill was triggered.
* @recycle_count: RX buffer recycle counter.
* @slow_fill: Timer used to defer efx_nic_generate_fill_event().
*/
struct efx_rx_queue {
struct efx_nic *efx;
int core_index;
struct efx_rx_buffer *buffer;
struct efx_special_buffer rxd;
unsigned int ptr_mask;
bool refill_enabled;
bool flush_pending;
unsigned int added_count;
unsigned int notified_count;
unsigned int removed_count;
unsigned int scatter_n;
unsigned int scatter_len;
struct page **page_ring;
unsigned int page_add;
unsigned int page_remove;
unsigned int page_recycle_count;
unsigned int page_recycle_failed;
unsigned int page_recycle_full;
unsigned int page_ptr_mask;
unsigned int max_fill;
unsigned int fast_fill_trigger;
unsigned int min_fill;
unsigned int min_overfill;
unsigned int recycle_count;
struct timer_list slow_fill;
unsigned int slow_fill_count;
/* Statistics to supplement MAC stats */
unsigned long rx_packets;
};
enum efx_sync_events_state {
SYNC_EVENTS_DISABLED = 0,
SYNC_EVENTS_QUIESCENT,
SYNC_EVENTS_REQUESTED,
SYNC_EVENTS_VALID,
};
/**
* struct efx_channel - An Efx channel
*
* A channel comprises an event queue, at least one TX queue, at least
* one RX queue, and an associated tasklet for processing the event
* queue.
*
* @efx: Associated Efx NIC
* @channel: Channel instance number
* @type: Channel type definition
* @eventq_init: Event queue initialised flag
* @enabled: Channel enabled indicator
* @irq: IRQ number (MSI and MSI-X only)
* @irq_moderation: IRQ moderation value (in hardware ticks)
* @napi_dev: Net device used with NAPI
* @napi_str: NAPI control structure
* @state: state for NAPI vs busy polling
* @state_lock: lock protecting @state
* @eventq: Event queue buffer
* @eventq_mask: Event queue pointer mask
* @eventq_read_ptr: Event queue read pointer
* @event_test_cpu: Last CPU to handle interrupt or test event for this channel
* @irq_count: Number of IRQs since last adaptive moderation decision
* @irq_mod_score: IRQ moderation score
* @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
* @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
* @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
* @n_rx_mcast_mismatch: Count of unmatched multicast frames
* @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
* @n_rx_overlength: Count of RX_OVERLENGTH errors
* @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
* @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
* lack of descriptors
* @n_rx_merge_events: Number of RX merged completion events
* @n_rx_merge_packets: Number of RX packets completed by merged events
* @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
* __efx_rx_packet(), or zero if there is none
* @rx_pkt_index: Ring index of first buffer for next packet to be delivered
* by __efx_rx_packet(), if @rx_pkt_n_frags != 0
* @rx_queue: RX queue for this channel
* @tx_queue: TX queues for this channel
* @sync_events_state: Current state of sync events on this channel
* @sync_timestamp_major: Major part of the last ptp sync event
* @sync_timestamp_minor: Minor part of the last ptp sync event
*/
struct efx_channel {
struct efx_nic *efx;
int channel;
const struct efx_channel_type *type;
bool eventq_init;
bool enabled;
int irq;
unsigned int irq_moderation;
struct net_device *napi_dev;
struct napi_struct napi_str;
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned int state;
spinlock_t state_lock;
#define EFX_CHANNEL_STATE_IDLE 0
#define EFX_CHANNEL_STATE_NAPI (1 << 0) /* NAPI owns this channel */
#define EFX_CHANNEL_STATE_POLL (1 << 1) /* poll owns this channel */
#define EFX_CHANNEL_STATE_DISABLED (1 << 2) /* channel is disabled */
#define EFX_CHANNEL_STATE_NAPI_YIELD (1 << 3) /* NAPI yielded this channel */
#define EFX_CHANNEL_STATE_POLL_YIELD (1 << 4) /* poll yielded this channel */
#define EFX_CHANNEL_OWNED \
(EFX_CHANNEL_STATE_NAPI | EFX_CHANNEL_STATE_POLL)
#define EFX_CHANNEL_LOCKED \
(EFX_CHANNEL_OWNED | EFX_CHANNEL_STATE_DISABLED)
#define EFX_CHANNEL_USER_PEND \
(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_POLL_YIELD)
#endif /* CONFIG_NET_RX_BUSY_POLL */
struct efx_special_buffer eventq;
unsigned int eventq_mask;
unsigned int eventq_read_ptr;
int event_test_cpu;
unsigned int irq_count;
unsigned int irq_mod_score;
#ifdef CONFIG_RFS_ACCEL
unsigned int rfs_filters_added;
#endif
unsigned n_rx_tobe_disc;
unsigned n_rx_ip_hdr_chksum_err;
unsigned n_rx_tcp_udp_chksum_err;
unsigned n_rx_mcast_mismatch;
unsigned n_rx_frm_trunc;
unsigned n_rx_overlength;
unsigned n_skbuff_leaks;
unsigned int n_rx_nodesc_trunc;
unsigned int n_rx_merge_events;
unsigned int n_rx_merge_packets;
unsigned int rx_pkt_n_frags;
unsigned int rx_pkt_index;
struct efx_rx_queue rx_queue;
struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
enum efx_sync_events_state sync_events_state;
u32 sync_timestamp_major;
u32 sync_timestamp_minor;
};
#ifdef CONFIG_NET_RX_BUSY_POLL
static inline void efx_channel_init_lock(struct efx_channel *channel)
{
spin_lock_init(&channel->state_lock);
}
/* Called from the device poll routine to get ownership of a channel. */
static inline bool efx_channel_lock_napi(struct efx_channel *channel)
{
bool rc = true;
spin_lock_bh(&channel->state_lock);
if (channel->state & EFX_CHANNEL_LOCKED) {
WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
channel->state |= EFX_CHANNEL_STATE_NAPI_YIELD;
rc = false;
} else {
/* we don't care if someone yielded */
channel->state = EFX_CHANNEL_STATE_NAPI;
}
spin_unlock_bh(&channel->state_lock);
return rc;
}
static inline void efx_channel_unlock_napi(struct efx_channel *channel)
{
spin_lock_bh(&channel->state_lock);
WARN_ON(channel->state &
(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_YIELD));
channel->state &= EFX_CHANNEL_STATE_DISABLED;
spin_unlock_bh(&channel->state_lock);
}
/* Called from efx_busy_poll(). */
static inline bool efx_channel_lock_poll(struct efx_channel *channel)
{
bool rc = true;
spin_lock_bh(&channel->state_lock);
if ((channel->state & EFX_CHANNEL_LOCKED)) {
channel->state |= EFX_CHANNEL_STATE_POLL_YIELD;
rc = false;
} else {
/* preserve yield marks */
channel->state |= EFX_CHANNEL_STATE_POLL;
}
spin_unlock_bh(&channel->state_lock);
return rc;
}
/* Returns true if NAPI tried to get the channel while it was locked. */
static inline void efx_channel_unlock_poll(struct efx_channel *channel)
{
spin_lock_bh(&channel->state_lock);
WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
/* will reset state to idle, unless channel is disabled */
channel->state &= EFX_CHANNEL_STATE_DISABLED;
spin_unlock_bh(&channel->state_lock);
}
/* True if a socket is polling, even if it did not get the lock. */
static inline bool efx_channel_busy_polling(struct efx_channel *channel)
{
WARN_ON(!(channel->state & EFX_CHANNEL_OWNED));
return channel->state & EFX_CHANNEL_USER_PEND;
}
static inline void efx_channel_enable(struct efx_channel *channel)
{
spin_lock_bh(&channel->state_lock);
channel->state = EFX_CHANNEL_STATE_IDLE;
spin_unlock_bh(&channel->state_lock);
}
/* False if the channel is currently owned. */
static inline bool efx_channel_disable(struct efx_channel *channel)
{
bool rc = true;
spin_lock_bh(&channel->state_lock);
if (channel->state & EFX_CHANNEL_OWNED)
rc = false;
channel->state |= EFX_CHANNEL_STATE_DISABLED;
spin_unlock_bh(&channel->state_lock);
return rc;
}
#else /* CONFIG_NET_RX_BUSY_POLL */
static inline void efx_channel_init_lock(struct efx_channel *channel)
{
}
static inline bool efx_channel_lock_napi(struct efx_channel *channel)
{
return true;
}
static inline void efx_channel_unlock_napi(struct efx_channel *channel)
{
}
static inline bool efx_channel_lock_poll(struct efx_channel *channel)
{
return false;
}
static inline void efx_channel_unlock_poll(struct efx_channel *channel)
{
}
static inline bool efx_channel_busy_polling(struct efx_channel *channel)
{
return false;
}
static inline void efx_channel_enable(struct efx_channel *channel)
{
}
static inline bool efx_channel_disable(struct efx_channel *channel)
{
return true;
}
#endif /* CONFIG_NET_RX_BUSY_POLL */
/**
* struct efx_msi_context - Context for each MSI
* @efx: The associated NIC
* @index: Index of the channel/IRQ
* @name: Name of the channel/IRQ
*
* Unlike &struct efx_channel, this is never reallocated and is always
* safe for the IRQ handler to access.
*/
struct efx_msi_context {
struct efx_nic *efx;
unsigned int index;
char name[IFNAMSIZ + 6];
};
/**
* struct efx_channel_type - distinguishes traffic and extra channels
* @handle_no_channel: Handle failure to allocate an extra channel
* @pre_probe: Set up extra state prior to initialisation
* @post_remove: Tear down extra state after finalisation, if allocated.
* May be called on channels that have not been probed.
* @get_name: Generate the channel's name (used for its IRQ handler)
* @copy: Copy the channel state prior to reallocation. May be %NULL if
* reallocation is not supported.
* @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
* @keep_eventq: Flag for whether event queue should be kept initialised
* while the device is stopped
*/
struct efx_channel_type {
void (*handle_no_channel)(struct efx_nic *);
int (*pre_probe)(struct efx_channel *);
void (*post_remove)(struct efx_channel *);
void (*get_name)(struct efx_channel *, char *buf, size_t len);
struct efx_channel *(*copy)(const struct efx_channel *);
bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
bool keep_eventq;
};
enum efx_led_mode {
EFX_LED_OFF = 0,
EFX_LED_ON = 1,
EFX_LED_DEFAULT = 2
};
#define STRING_TABLE_LOOKUP(val, member) \
((val) < member ## _max) ? member ## _names[val] : "(invalid)"
extern const char *const efx_loopback_mode_names[];
extern const unsigned int efx_loopback_mode_max;
#define LOOPBACK_MODE(efx) \
STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
extern const char *const efx_reset_type_names[];
extern const unsigned int efx_reset_type_max;
#define RESET_TYPE(type) \
STRING_TABLE_LOOKUP(type, efx_reset_type)
enum efx_int_mode {
/* Be careful if altering to correct macro below */
EFX_INT_MODE_MSIX = 0,
EFX_INT_MODE_MSI = 1,
EFX_INT_MODE_LEGACY = 2,
EFX_INT_MODE_MAX /* Insert any new items before this */
};
#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
enum nic_state {
STATE_UNINIT = 0, /* device being probed/removed or is frozen */
STATE_READY = 1, /* hardware ready and netdev registered */
STATE_DISABLED = 2, /* device disabled due to hardware errors */
STATE_RECOVERY = 3, /* device recovering from PCI error */
};
/* Forward declaration */
struct efx_nic;
/* Pseudo bit-mask flow control field */
#define EFX_FC_RX FLOW_CTRL_RX
#define EFX_FC_TX FLOW_CTRL_TX
#define EFX_FC_AUTO 4
/**
* struct efx_link_state - Current state of the link
* @up: Link is up
* @fd: Link is full-duplex
* @fc: Actual flow control flags
* @speed: Link speed (Mbps)
*/
struct efx_link_state {
bool up;
bool fd;
u8 fc;
unsigned int speed;
};
static inline bool efx_link_state_equal(const struct efx_link_state *left,
const struct efx_link_state *right)
{
return left->up == right->up && left->fd == right->fd &&
left->fc == right->fc && left->speed == right->speed;
}
/**
* struct efx_phy_operations - Efx PHY operations table
* @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
* efx->loopback_modes.
* @init: Initialise PHY
* @fini: Shut down PHY
* @reconfigure: Reconfigure PHY (e.g. for new link parameters)
* @poll: Update @link_state and report whether it changed.
* Serialised by the mac_lock.
* @get_settings: Get ethtool settings. Serialised by the mac_lock.
* @set_settings: Set ethtool settings. Serialised by the mac_lock.
* @set_npage_adv: Set abilities advertised in (Extended) Next Page
* (only needed where AN bit is set in mmds)
* @test_alive: Test that PHY is 'alive' (online)
* @test_name: Get the name of a PHY-specific test/result
* @run_tests: Run tests and record results as appropriate (offline).
* Flags are the ethtool tests flags.
*/
struct efx_phy_operations {
int (*probe) (struct efx_nic *efx);
int (*init) (struct efx_nic *efx);
void (*fini) (struct efx_nic *efx);
void (*remove) (struct efx_nic *efx);
int (*reconfigure) (struct efx_nic *efx);
bool (*poll) (struct efx_nic *efx);
void (*get_settings) (struct efx_nic *efx,
struct ethtool_cmd *ecmd);
int (*set_settings) (struct efx_nic *efx,
struct ethtool_cmd *ecmd);
void (*set_npage_adv) (struct efx_nic *efx, u32);
int (*test_alive) (struct efx_nic *efx);
const char *(*test_name) (struct efx_nic *efx, unsigned int index);
int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
int (*get_module_eeprom) (struct efx_nic *efx,
struct ethtool_eeprom *ee,
u8 *data);
int (*get_module_info) (struct efx_nic *efx,
struct ethtool_modinfo *modinfo);
};
/**
* enum efx_phy_mode - PHY operating mode flags
* @PHY_MODE_NORMAL: on and should pass traffic
* @PHY_MODE_TX_DISABLED: on with TX disabled
* @PHY_MODE_LOW_POWER: set to low power through MDIO
* @PHY_MODE_OFF: switched off through external control
* @PHY_MODE_SPECIAL: on but will not pass traffic
*/
enum efx_phy_mode {
PHY_MODE_NORMAL = 0,
PHY_MODE_TX_DISABLED = 1,
PHY_MODE_LOW_POWER = 2,
PHY_MODE_OFF = 4,
PHY_MODE_SPECIAL = 8,
};
static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
{
return !!(mode & ~PHY_MODE_TX_DISABLED);
}
/**
* struct efx_hw_stat_desc - Description of a hardware statistic
* @name: Name of the statistic as visible through ethtool, or %NULL if
* it should not be exposed
* @dma_width: Width in bits (0 for non-DMA statistics)
* @offset: Offset within stats (ignored for non-DMA statistics)
*/
struct efx_hw_stat_desc {
const char *name;
u16 dma_width;
u16 offset;
};
/* Number of bits used in a multicast filter hash address */
#define EFX_MCAST_HASH_BITS 8
/* Number of (single-bit) entries in a multicast filter hash */
#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
/* An Efx multicast filter hash */
union efx_multicast_hash {
u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
};
struct vfdi_status;
/**
* struct efx_nic - an Efx NIC
* @name: Device name (net device name or bus id before net device registered)
* @pci_dev: The PCI device
* @node: List node for maintaning primary/secondary function lists
* @primary: &struct efx_nic instance for the primary function of this
* controller. May be the same structure, and may be %NULL if no
* primary function is bound. Serialised by rtnl_lock.
* @secondary_list: List of &struct efx_nic instances for the secondary PCI
* functions of the controller, if this is for the primary function.
* Serialised by rtnl_lock.
* @type: Controller type attributes
* @legacy_irq: IRQ number
* @workqueue: Workqueue for port reconfigures and the HW monitor.
* Work items do not hold and must not acquire RTNL.
* @workqueue_name: Name of workqueue
* @reset_work: Scheduled reset workitem
* @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value
* @interrupt_mode: Interrupt mode
* @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
* @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
* @irq_rx_moderation: IRQ moderation time for RX event queues
* @msg_enable: Log message enable flags
* @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
* @reset_pending: Bitmask for pending resets
* @tx_queue: TX DMA queues
* @rx_queue: RX DMA queues
* @channel: Channels
* @msi_context: Context for each MSI
* @extra_channel_types: Types of extra (non-traffic) channels that
* should be allocated for this NIC
* @rxq_entries: Size of receive queues requested by user.
* @txq_entries: Size of transmit queues requested by user.
* @txq_stop_thresh: TX queue fill level at or above which we stop it.
* @txq_wake_thresh: TX queue fill level at or below which we wake it.
* @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
* @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
* @sram_lim_qw: Qword address limit of SRAM
* @next_buffer_table: First available buffer table id
* @n_channels: Number of channels in use
* @n_rx_channels: Number of channels used for RX (= number of RX queues)
* @n_tx_channels: Number of channels used for TX
* @rx_ip_align: RX DMA address offset to have IP header aligned in
* in accordance with NET_IP_ALIGN
* @rx_dma_len: Current maximum RX DMA length
* @rx_buffer_order: Order (log2) of number of pages for each RX buffer
* @rx_buffer_truesize: Amortised allocation size of an RX buffer,
* for use in sk_buff::truesize
* @rx_prefix_size: Size of RX prefix before packet data
* @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
* (valid only if @rx_prefix_size != 0; always negative)
* @rx_packet_len_offset: Offset of RX packet length from start of packet data
* (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
* @rx_packet_ts_offset: Offset of timestamp from start of packet data
* (valid only if channel->sync_timestamps_enabled; always negative)
* @rx_hash_key: Toeplitz hash key for RSS
* @rx_indir_table: Indirection table for RSS
* @rx_scatter: Scatter mode enabled for receives
* @int_error_count: Number of internal errors seen recently
* @int_error_expire: Time at which error count will be expired
* @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
* acknowledge but do nothing else.
* @irq_status: Interrupt status buffer
* @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
* @irq_level: IRQ level/index for IRQs not triggered by an event queue
* @selftest_work: Work item for asynchronous self-test
* @mtd_list: List of MTDs attached to the NIC
* @nic_data: Hardware dependent state
* @mcdi: Management-Controller-to-Driver Interface state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
* efx_monitor() and efx_reconfigure_port()
* @port_enabled: Port enabled indicator.
* Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
* efx_mac_work() with kernel interfaces. Safe to read under any
* one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
* be held to modify it.
* @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock
* @stats_buffer: DMA buffer for statistics
* @phy_type: PHY type
* @phy_op: PHY interface
* @phy_data: PHY private data (including PHY-specific stats)
* @mdio: PHY MDIO interface
* @mdio_bus: PHY MDIO bus ID (only used by Siena)
* @phy_mode: PHY operating mode. Serialised by @mac_lock.
* @link_advertising: Autonegotiation advertising flags
* @link_state: Current state of the link
* @n_link_state_changes: Number of times the link has changed state
* @unicast_filter: Flag for Falcon-arch simple unicast filter.
* Protected by @mac_lock.
* @multicast_hash: Multicast hash table for Falcon-arch.
* Protected by @mac_lock.
* @wanted_fc: Wanted flow control flags
* @fc_disable: When non-zero flow control is disabled. Typically used to
* ensure that network back pressure doesn't delay dma queue flushes.
* Serialised by the rtnl lock.
* @mac_work: Work item for changing MAC promiscuity and multicast hash
* @loopback_mode: Loopback status
* @loopback_modes: Supported loopback mode bitmask
* @loopback_selftest: Offline self-test private state
* @filter_lock: Filter table lock
* @filter_state: Architecture-dependent filter table state
* @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
* indexed by filter ID
* @rps_expire_index: Next index to check for expiry in @rps_flow_id
* @active_queues: Count of RX and TX queues that haven't been flushed and drained.
* @rxq_flush_pending: Count of number of receive queues that need to be flushed.
* Decremented when the efx_flush_rx_queue() is called.
* @rxq_flush_outstanding: Count of number of RX flushes started but not yet
* completed (either success or failure). Not used when MCDI is used to
* flush receive queues.
* @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
* @vf_count: Number of VFs intended to be enabled.
* @vf_init_count: Number of VFs that have been fully initialised.
* @vi_scale: log2 number of vnics per VF.
* @ptp_data: PTP state data
* @vpd_sn: Serial number read from VPD
* @monitor_work: Hardware monitor workitem
* @biu_lock: BIU (bus interface unit) lock
* @last_irq_cpu: Last CPU to handle a possible test interrupt. This
* field is used by efx_test_interrupts() to verify that an
* interrupt has occurred.
* @stats_lock: Statistics update lock. Must be held when calling
* efx_nic_type::{update,start,stop}_stats.
* @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
*
* This is stored in the private area of the &struct net_device.
*/
struct efx_nic {
/* The following fields should be written very rarely */
char name[IFNAMSIZ];
struct list_head node;
struct efx_nic *primary;
struct list_head secondary_list;
struct pci_dev *pci_dev;
unsigned int port_num;
const struct efx_nic_type *type;
int legacy_irq;
bool eeh_disabled_legacy_irq;
struct workqueue_struct *workqueue;
char workqueue_name[16];
struct work_struct reset_work;
resource_size_t membase_phys;
void __iomem *membase;
enum efx_int_mode interrupt_mode;
unsigned int timer_quantum_ns;
bool irq_rx_adaptive;
unsigned int irq_rx_moderation;
u32 msg_enable;
enum nic_state state;
unsigned long reset_pending;
struct efx_channel *channel[EFX_MAX_CHANNELS];
struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
const struct efx_channel_type *
extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
unsigned rxq_entries;
unsigned txq_entries;
unsigned int txq_stop_thresh;
unsigned int txq_wake_thresh;
unsigned tx_dc_base;
unsigned rx_dc_base;
unsigned sram_lim_qw;
unsigned next_buffer_table;
unsigned int max_channels;
unsigned n_channels;
unsigned n_rx_channels;
unsigned rss_spread;
unsigned tx_channel_offset;
unsigned n_tx_channels;
unsigned int rx_ip_align;
unsigned int rx_dma_len;
unsigned int rx_buffer_order;
unsigned int rx_buffer_truesize;
unsigned int rx_page_buf_step;
unsigned int rx_bufs_per_page;
unsigned int rx_pages_per_batch;
unsigned int rx_prefix_size;
int rx_packet_hash_offset;
int rx_packet_len_offset;
int rx_packet_ts_offset;
u8 rx_hash_key[40];
u32 rx_indir_table[128];
bool rx_scatter;
unsigned int_error_count;
unsigned long int_error_expire;
bool irq_soft_enabled;
struct efx_buffer irq_status;
unsigned irq_zero_count;
unsigned irq_level;
struct delayed_work selftest_work;
#ifdef CONFIG_SFC_MTD
struct list_head mtd_list;
#endif
void *nic_data;
struct efx_mcdi_data *mcdi;
struct mutex mac_lock;
struct work_struct mac_work;
bool port_enabled;
bool mc_bist_for_other_fn;
bool port_initialized;
struct net_device *net_dev;
struct efx_buffer stats_buffer;
u64 rx_nodesc_drops_total;
u64 rx_nodesc_drops_while_down;
bool rx_nodesc_drops_prev_state;
unsigned int phy_type;
const struct efx_phy_operations *phy_op;
void *phy_data;
struct mdio_if_info mdio;
unsigned int mdio_bus;
enum efx_phy_mode phy_mode;
u32 link_advertising;
struct efx_link_state link_state;
unsigned int n_link_state_changes;
bool unicast_filter;
union efx_multicast_hash multicast_hash;
u8 wanted_fc;
unsigned fc_disable;
atomic_t rx_reset;
enum efx_loopback_mode loopback_mode;
u64 loopback_modes;
void *loopback_selftest;
spinlock_t filter_lock;
void *filter_state;
#ifdef CONFIG_RFS_ACCEL
u32 *rps_flow_id;
unsigned int rps_expire_index;
#endif
atomic_t active_queues;
atomic_t rxq_flush_pending;
atomic_t rxq_flush_outstanding;
wait_queue_head_t flush_wq;
#ifdef CONFIG_SFC_SRIOV
unsigned vf_count;
unsigned vf_init_count;
unsigned vi_scale;
#endif
struct efx_ptp_data *ptp_data;
char *vpd_sn;
/* The following fields may be written more often */
struct delayed_work monitor_work ____cacheline_aligned_in_smp;
spinlock_t biu_lock;
int last_irq_cpu;
spinlock_t stats_lock;
atomic_t n_rx_noskb_drops;
};
static inline int efx_dev_registered(struct efx_nic *efx)
{
return efx->net_dev->reg_state == NETREG_REGISTERED;
}
static inline unsigned int efx_port_num(struct efx_nic *efx)
{
return efx->port_num;
}
struct efx_mtd_partition {
struct list_head node;
struct mtd_info mtd;
const char *dev_type_name;
const char *type_name;
char name[IFNAMSIZ + 20];
};
/**
* struct efx_nic_type - Efx device type definition
* @mem_map_size: Get memory BAR mapped size
* @probe: Probe the controller
* @remove: Free resources allocated by probe()
* @init: Initialise the controller
* @dimension_resources: Dimension controller resources (buffer table,
* and VIs once the available interrupt resources are clear)
* @fini: Shut down the controller
* @monitor: Periodic function for polling link state and hardware monitor
* @map_reset_reason: Map ethtool reset reason to a reset method
* @map_reset_flags: Map ethtool reset flags to a reset method, if possible
* @reset: Reset the controller hardware and possibly the PHY. This will
* be called while the controller is uninitialised.
* @probe_port: Probe the MAC and PHY
* @remove_port: Free resources allocated by probe_port()
* @handle_global_event: Handle a "global" event (may be %NULL)
* @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
* @prepare_flush: Prepare the hardware for flushing the DMA queues
* (for Falcon architecture)
* @finish_flush: Clean up after flushing the DMA queues (for Falcon
* architecture)
* @prepare_flr: Prepare for an FLR
* @finish_flr: Clean up after an FLR
* @describe_stats: Describe statistics for ethtool
* @update_stats: Update statistics not provided by event handling.
* Either argument may be %NULL.
* @start_stats: Start the regular fetching of statistics
* @pull_stats: Pull stats from the NIC and wait until they arrive.
* @stop_stats: Stop the regular fetching of statistics
* @set_id_led: Set state of identifying LED or revert to automatic function
* @push_irq_moderation: Apply interrupt moderation value
* @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
* @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
* @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
* to the hardware. Serialised by the mac_lock.
* @check_mac_fault: Check MAC fault state. True if fault present.
* @get_wol: Get WoL configuration from driver state
* @set_wol: Push WoL configuration to the NIC
* @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
* @test_chip: Test registers. May use efx_farch_test_registers(), and is
* expected to reset the NIC.
* @test_nvram: Test validity of NVRAM contents
* @mcdi_request: Send an MCDI request with the given header and SDU.
* The SDU length may be any value from 0 up to the protocol-
* defined maximum, but its buffer will be padded to a multiple
* of 4 bytes.
* @mcdi_poll_response: Test whether an MCDI response is available.
* @mcdi_read_response: Read the MCDI response PDU. The offset will
* be a multiple of 4. The length may not be, but the buffer
* will be padded so it is safe to round up.
* @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
* return an appropriate error code for aborting any current
* request; otherwise return 0.
* @irq_enable_master: Enable IRQs on the NIC. Each event queue must
* be separately enabled after this.
* @irq_test_generate: Generate a test IRQ
* @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
* queue must be separately disabled before this.
* @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
* a pointer to the &struct efx_msi_context for the channel.
* @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
* is a pointer to the &struct efx_nic.
* @tx_probe: Allocate resources for TX queue
* @tx_init: Initialise TX queue on the NIC
* @tx_remove: Free resources for TX queue
* @tx_write: Write TX descriptors and doorbell
* @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
* @rx_probe: Allocate resources for RX queue
* @rx_init: Initialise RX queue on the NIC
* @rx_remove: Free resources for RX queue
* @rx_write: Write RX descriptors and doorbell
* @rx_defer_refill: Generate a refill reminder event
* @ev_probe: Allocate resources for event queue
* @ev_init: Initialise event queue on the NIC
* @ev_fini: Deinitialise event queue on the NIC
* @ev_remove: Free resources for event queue
* @ev_process: Process events for a queue, up to the given NAPI quota
* @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
* @ev_test_generate: Generate a test event
* @filter_table_probe: Probe filter capabilities and set up filter software state
* @filter_table_restore: Restore filters removed from hardware
* @filter_table_remove: Remove filters from hardware and tear down software state
* @filter_update_rx_scatter: Update filters after change to rx scatter setting
* @filter_insert: add or replace a filter
* @filter_remove_safe: remove a filter by ID, carefully
* @filter_get_safe: retrieve a filter by ID, carefully
* @filter_clear_rx: Remove all RX filters whose priority is less than or
* equal to the given priority and is not %EFX_FILTER_PRI_AUTO
* @filter_count_rx_used: Get the number of filters in use at a given priority
* @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
* @filter_get_rx_ids: Get list of RX filters at a given priority
* @filter_rfs_insert: Add or replace a filter for RFS. This must be
* atomic. The hardware change may be asynchronous but should
* not be delayed for long. It may fail if this can't be done
* atomically.
* @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
* This must check whether the specified table entry is used by RFS
* and that rps_may_expire_flow() returns true for it.
* @mtd_probe: Probe and add MTD partitions associated with this net device,
* using efx_mtd_add()
* @mtd_rename: Set an MTD partition name using the net device name
* @mtd_read: Read from an MTD partition
* @mtd_erase: Erase part of an MTD partition
* @mtd_write: Write to an MTD partition
* @mtd_sync: Wait for write-back to complete on MTD partition. This
* also notifies the driver that a writer has finished using this
* partition.
* @ptp_write_host_time: Send host time to MC as part of sync protocol
* @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
* timestamping, possibly only temporarily for the purposes of a reset.
* @ptp_set_ts_config: Set hardware timestamp configuration. The flags
* and tx_type will already have been validated but this operation
* must validate and update rx_filter.
* @revision: Hardware architecture revision
* @txd_ptr_tbl_base: TX descriptor ring base address
* @rxd_ptr_tbl_base: RX descriptor ring base address
* @buf_tbl_base: Buffer table base address
* @evq_ptr_tbl_base: Event queue pointer table base address
* @evq_rptr_tbl_base: Event queue read-pointer table base address
* @max_dma_mask: Maximum possible DMA mask
* @rx_prefix_size: Size of RX prefix before packet data
* @rx_hash_offset: Offset of RX flow hash within prefix
* @rx_ts_offset: Offset of timestamp within prefix
* @rx_buffer_padding: Size of padding at end of RX packet
* @can_rx_scatter: NIC is able to scatter packets to multiple buffers
* @always_rx_scatter: NIC will always scatter packets to multiple buffers
* @max_interrupt_mode: Highest capability interrupt mode supported
* from &enum efx_init_mode.
* @timer_period_max: Maximum period of interrupt timer (in ticks)
* @offload_features: net_device feature flags for protocol offload
* features implemented in hardware
* @mcdi_max_ver: Maximum MCDI version supported
* @hwtstamp_filters: Mask of hardware timestamp filter types supported
*/
struct efx_nic_type {
unsigned int (*mem_map_size)(struct efx_nic *efx);
int (*probe)(struct efx_nic *efx);
void (*remove)(struct efx_nic *efx);
int (*init)(struct efx_nic *efx);
int (*dimension_resources)(struct efx_nic *efx);
void (*fini)(struct efx_nic *efx);
void (*monitor)(struct efx_nic *efx);
enum reset_type (*map_reset_reason)(enum reset_type reason);
int (*map_reset_flags)(u32 *flags);
int (*reset)(struct efx_nic *efx, enum reset_type method);
int (*probe_port)(struct efx_nic *efx);
void (*remove_port)(struct efx_nic *efx);
bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
int (*fini_dmaq)(struct efx_nic *efx);
void (*prepare_flush)(struct efx_nic *efx);
void (*finish_flush)(struct efx_nic *efx);
void (*prepare_flr)(struct efx_nic *efx);
void (*finish_flr)(struct efx_nic *efx);
size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats);
void (*start_stats)(struct efx_nic *efx);
void (*pull_stats)(struct efx_nic *efx);
void (*stop_stats)(struct efx_nic *efx);
void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
void (*push_irq_moderation)(struct efx_channel *channel);
int (*reconfigure_port)(struct efx_nic *efx);
void (*prepare_enable_fc_tx)(struct efx_nic *efx);
int (*reconfigure_mac)(struct efx_nic *efx);
bool (*check_mac_fault)(struct efx_nic *efx);
void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
int (*set_wol)(struct efx_nic *efx, u32 type);
void (*resume_wol)(struct efx_nic *efx);
int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
int (*test_nvram)(struct efx_nic *efx);
void (*mcdi_request)(struct efx_nic *efx,
const efx_dword_t *hdr, size_t hdr_len,
const efx_dword_t *sdu, size_t sdu_len);
bool (*mcdi_poll_response)(struct efx_nic *efx);
void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
size_t pdu_offset, size_t pdu_len);
int (*mcdi_poll_reboot)(struct efx_nic *efx);
void (*irq_enable_master)(struct efx_nic *efx);
void (*irq_test_generate)(struct efx_nic *efx);
void (*irq_disable_non_ev)(struct efx_nic *efx);
irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
int (*tx_probe)(struct efx_tx_queue *tx_queue);
void (*tx_init)(struct efx_tx_queue *tx_queue);
void (*tx_remove)(struct efx_tx_queue *tx_queue);
void (*tx_write)(struct efx_tx_queue *tx_queue);
void (*rx_push_rss_config)(struct efx_nic *efx);
int (*rx_probe)(struct efx_rx_queue *rx_queue);
void (*rx_init)(struct efx_rx_queue *rx_queue);
void (*rx_remove)(struct efx_rx_queue *rx_queue);
void (*rx_write)(struct efx_rx_queue *rx_queue);
void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
int (*ev_probe)(struct efx_channel *channel);
int (*ev_init)(struct efx_channel *channel);
void (*ev_fini)(struct efx_channel *channel);
void (*ev_remove)(struct efx_channel *channel);
int (*ev_process)(struct efx_channel *channel, int quota);
void (*ev_read_ack)(struct efx_channel *channel);
void (*ev_test_generate)(struct efx_channel *channel);
int (*filter_table_probe)(struct efx_nic *efx);
void (*filter_table_restore)(struct efx_nic *efx);
void (*filter_table_remove)(struct efx_nic *efx);
void (*filter_update_rx_scatter)(struct efx_nic *efx);
s32 (*filter_insert)(struct efx_nic *efx,
struct efx_filter_spec *spec, bool replace);
int (*filter_remove_safe)(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id);
int (*filter_get_safe)(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id, struct efx_filter_spec *);
int (*filter_clear_rx)(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 (*filter_count_rx_used)(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
s32 (*filter_get_rx_ids)(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 *buf, u32 size);
#ifdef CONFIG_RFS_ACCEL
s32 (*filter_rfs_insert)(struct efx_nic *efx,
struct efx_filter_spec *spec);
bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
unsigned int index);
#endif
#ifdef CONFIG_SFC_MTD
int (*mtd_probe)(struct efx_nic *efx);
void (*mtd_rename)(struct efx_mtd_partition *part);
int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, u8 *buffer);
int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, const u8 *buffer);
int (*mtd_sync)(struct mtd_info *mtd);
#endif
void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
int (*ptp_set_ts_config)(struct efx_nic *efx,
struct hwtstamp_config *init);
int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
int (*sriov_init)(struct efx_nic *efx);
void (*sriov_fini)(struct efx_nic *efx);
void (*sriov_mac_address_changed)(struct efx_nic *efx);
bool (*sriov_wanted)(struct efx_nic *efx);
void (*sriov_reset)(struct efx_nic *efx);
void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
u8 qos);
int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
bool spoofchk);
int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
struct ifla_vf_info *ivi);
int (*vswitching_probe)(struct efx_nic *efx);
int (*vswitching_restore)(struct efx_nic *efx);
void (*vswitching_remove)(struct efx_nic *efx);
int revision;
unsigned int txd_ptr_tbl_base;
unsigned int rxd_ptr_tbl_base;
unsigned int buf_tbl_base;
unsigned int evq_ptr_tbl_base;
unsigned int evq_rptr_tbl_base;
u64 max_dma_mask;
unsigned int rx_prefix_size;
unsigned int rx_hash_offset;
unsigned int rx_ts_offset;
unsigned int rx_buffer_padding;
bool can_rx_scatter;
bool always_rx_scatter;
unsigned int max_interrupt_mode;
unsigned int timer_period_max;
netdev_features_t offload_features;
int mcdi_max_ver;
unsigned int max_rx_ip_filters;
u32 hwtstamp_filters;
};
/**************************************************************************
*
* Prototypes and inline functions
*
*************************************************************************/
static inline struct efx_channel *
efx_get_channel(struct efx_nic *efx, unsigned index)
{
EFX_BUG_ON_PARANOID(index >= efx->n_channels);
return efx->channel[index];
}
/* Iterate over all used channels */
#define efx_for_each_channel(_channel, _efx) \
for (_channel = (_efx)->channel[0]; \
_channel; \
_channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
(_efx)->channel[_channel->channel + 1] : NULL)
/* Iterate over all used channels in reverse */
#define efx_for_each_channel_rev(_channel, _efx) \
for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
_channel; \
_channel = _channel->channel ? \
(_efx)->channel[_channel->channel - 1] : NULL)
static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
{
EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
type >= EFX_TXQ_TYPES);
return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
}
static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
{
return channel->channel - channel->efx->tx_channel_offset <
channel->efx->n_tx_channels;
}
static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
{
EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
type >= EFX_TXQ_TYPES);
return &channel->tx_queue[type];
}
static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
{
return !(tx_queue->efx->net_dev->num_tc < 2 &&
tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
}
/* Iterate over all TX queues belonging to a channel */
#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
if (!efx_channel_has_tx_queues(_channel)) \
; \
else \
for (_tx_queue = (_channel)->tx_queue; \
_tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
efx_tx_queue_used(_tx_queue); \
_tx_queue++)
/* Iterate over all possible TX queues belonging to a channel */
#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
if (!efx_channel_has_tx_queues(_channel)) \
; \
else \
for (_tx_queue = (_channel)->tx_queue; \
_tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
_tx_queue++)
static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
{
return channel->rx_queue.core_index >= 0;
}
static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel *channel)
{
EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
return &channel->rx_queue;
}
/* Iterate over all RX queues belonging to a channel */
#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
if (!efx_channel_has_rx_queue(_channel)) \
; \
else \
for (_rx_queue = &(_channel)->rx_queue; \
_rx_queue; \
_rx_queue = NULL)
static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
{
return container_of(rx_queue, struct efx_channel, rx_queue);
}
static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
{
return efx_rx_queue_channel(rx_queue)->channel;
}
/* Returns a pointer to the specified receive buffer in the RX
* descriptor queue.
*/
static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
unsigned int index)
{
return &rx_queue->buffer[index];
}
/**
* EFX_MAX_FRAME_LEN - calculate maximum frame length
*
* This calculates the maximum frame length that will be used for a
* given MTU. The frame length will be equal to the MTU plus a
* constant amount of header space and padding. This is the quantity
* that the net driver will program into the MAC as the maximum frame
* length.
*
* The 10G MAC requires 8-byte alignment on the frame
* length, so we round up to the nearest 8.
*
* Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
* XGMII cycle). If the frame length reaches the maximum value in the
* same cycle, the XMAC can miss the IPG altogether. We work around
* this by adding a further 16 bytes.
*/
#define EFX_MAX_FRAME_LEN(mtu) \
((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
{
return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
}
static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
{
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
}
#endif /* EFX_NET_DRIVER_H */