mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-28 13:34:38 +08:00
7c11d0ae43
[BUG] There is a possible use-after-free bug when running generic/095. BUG: Unable to handle kernel data access on write at 0x6b6b6b6b6b6b725b Faulting instruction address: 0xc000000000283654 c000000000283078 do_raw_spin_unlock+0x88/0x230 c0000000012b1e14 _raw_spin_unlock_irqrestore+0x44/0x90 c000000000a918dc btrfs_subpage_clear_writeback+0xac/0xe0 c0000000009e0458 end_bio_extent_writepage+0x158/0x270 c000000000b6fd14 bio_endio+0x254/0x270 c0000000009fc0f0 btrfs_end_bio+0x1a0/0x200 c000000000b6fd14 bio_endio+0x254/0x270 c000000000b781fc blk_update_request+0x46c/0x670 c000000000b8b394 blk_mq_end_request+0x34/0x1d0 c000000000d82d1c lo_complete_rq+0x11c/0x140 c000000000b880a4 blk_complete_reqs+0x84/0xb0 c0000000012b2ca4 __do_softirq+0x334/0x680 c0000000001dd878 irq_exit+0x148/0x1d0 c000000000016f4c do_IRQ+0x20c/0x240 c000000000009240 hardware_interrupt_common_virt+0x1b0/0x1c0 [CAUSE] There is very small race window like the following in generic/095. Thread 1 | Thread 2 --------------------------------+------------------------------------ end_bio_extent_writepage() | btrfs_releasepage() |- spin_lock_irqsave() | | |- end_page_writeback() | | | | |- if (PageWriteback() ||...) | | |- clear_page_extent_mapped() | | |- kfree(subpage); |- spin_unlock_irqrestore(). The race can also happen between writeback and btrfs_invalidatepage(), although that would be much harder as btrfs_invalidatepage() has much more work to do before the clear_page_extent_mapped() call. [FIX] Here we "wait" for the subapge spinlock to be released before we detach subpage structure. So this patch will introduce a new function, wait_subpage_spinlock(), to do the "wait" by acquiring the spinlock and release it. Since the caller has ensured the page is not dirty nor writeback, and page is already locked, the only way to hold the subpage spinlock is from endio function. Thus we only need to acquire the spinlock to wait for any existing holder. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
584 lines
18 KiB
C
584 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/slab.h>
|
|
#include "ctree.h"
|
|
#include "subpage.h"
|
|
#include "btrfs_inode.h"
|
|
|
|
/*
|
|
* Subpage (sectorsize < PAGE_SIZE) support overview:
|
|
*
|
|
* Limitations:
|
|
*
|
|
* - Only support 64K page size for now
|
|
* This is to make metadata handling easier, as 64K page would ensure
|
|
* all nodesize would fit inside one page, thus we don't need to handle
|
|
* cases where a tree block crosses several pages.
|
|
*
|
|
* - Only metadata read-write for now
|
|
* The data read-write part is in development.
|
|
*
|
|
* - Metadata can't cross 64K page boundary
|
|
* btrfs-progs and kernel have done that for a while, thus only ancient
|
|
* filesystems could have such problem. For such case, do a graceful
|
|
* rejection.
|
|
*
|
|
* Special behavior:
|
|
*
|
|
* - Metadata
|
|
* Metadata read is fully supported.
|
|
* Meaning when reading one tree block will only trigger the read for the
|
|
* needed range, other unrelated range in the same page will not be touched.
|
|
*
|
|
* Metadata write support is partial.
|
|
* The writeback is still for the full page, but we will only submit
|
|
* the dirty extent buffers in the page.
|
|
*
|
|
* This means, if we have a metadata page like this:
|
|
*
|
|
* Page offset
|
|
* 0 16K 32K 48K 64K
|
|
* |/////////| |///////////|
|
|
* \- Tree block A \- Tree block B
|
|
*
|
|
* Even if we just want to writeback tree block A, we will also writeback
|
|
* tree block B if it's also dirty.
|
|
*
|
|
* This may cause extra metadata writeback which results more COW.
|
|
*
|
|
* Implementation:
|
|
*
|
|
* - Common
|
|
* Both metadata and data will use a new structure, btrfs_subpage, to
|
|
* record the status of each sector inside a page. This provides the extra
|
|
* granularity needed.
|
|
*
|
|
* - Metadata
|
|
* Since we have multiple tree blocks inside one page, we can't rely on page
|
|
* locking anymore, or we will have greatly reduced concurrency or even
|
|
* deadlocks (hold one tree lock while trying to lock another tree lock in
|
|
* the same page).
|
|
*
|
|
* Thus for metadata locking, subpage support relies on io_tree locking only.
|
|
* This means a slightly higher tree locking latency.
|
|
*/
|
|
|
|
int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, enum btrfs_subpage_type type)
|
|
{
|
|
struct btrfs_subpage *subpage = NULL;
|
|
int ret;
|
|
|
|
/*
|
|
* We have cases like a dummy extent buffer page, which is not mappped
|
|
* and doesn't need to be locked.
|
|
*/
|
|
if (page->mapping)
|
|
ASSERT(PageLocked(page));
|
|
/* Either not subpage, or the page already has private attached */
|
|
if (fs_info->sectorsize == PAGE_SIZE || PagePrivate(page))
|
|
return 0;
|
|
|
|
ret = btrfs_alloc_subpage(fs_info, &subpage, type);
|
|
if (ret < 0)
|
|
return ret;
|
|
attach_page_private(page, subpage);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info,
|
|
struct page *page)
|
|
{
|
|
struct btrfs_subpage *subpage;
|
|
|
|
/* Either not subpage, or already detached */
|
|
if (fs_info->sectorsize == PAGE_SIZE || !PagePrivate(page))
|
|
return;
|
|
|
|
subpage = (struct btrfs_subpage *)detach_page_private(page);
|
|
ASSERT(subpage);
|
|
btrfs_free_subpage(subpage);
|
|
}
|
|
|
|
int btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info,
|
|
struct btrfs_subpage **ret,
|
|
enum btrfs_subpage_type type)
|
|
{
|
|
if (fs_info->sectorsize == PAGE_SIZE)
|
|
return 0;
|
|
|
|
*ret = kzalloc(sizeof(struct btrfs_subpage), GFP_NOFS);
|
|
if (!*ret)
|
|
return -ENOMEM;
|
|
spin_lock_init(&(*ret)->lock);
|
|
if (type == BTRFS_SUBPAGE_METADATA) {
|
|
atomic_set(&(*ret)->eb_refs, 0);
|
|
} else {
|
|
atomic_set(&(*ret)->readers, 0);
|
|
atomic_set(&(*ret)->writers, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_free_subpage(struct btrfs_subpage *subpage)
|
|
{
|
|
kfree(subpage);
|
|
}
|
|
|
|
/*
|
|
* Increase the eb_refs of current subpage.
|
|
*
|
|
* This is important for eb allocation, to prevent race with last eb freeing
|
|
* of the same page.
|
|
* With the eb_refs increased before the eb inserted into radix tree,
|
|
* detach_extent_buffer_page() won't detach the page private while we're still
|
|
* allocating the extent buffer.
|
|
*/
|
|
void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info,
|
|
struct page *page)
|
|
{
|
|
struct btrfs_subpage *subpage;
|
|
|
|
if (fs_info->sectorsize == PAGE_SIZE)
|
|
return;
|
|
|
|
ASSERT(PagePrivate(page) && page->mapping);
|
|
lockdep_assert_held(&page->mapping->private_lock);
|
|
|
|
subpage = (struct btrfs_subpage *)page->private;
|
|
atomic_inc(&subpage->eb_refs);
|
|
}
|
|
|
|
void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info,
|
|
struct page *page)
|
|
{
|
|
struct btrfs_subpage *subpage;
|
|
|
|
if (fs_info->sectorsize == PAGE_SIZE)
|
|
return;
|
|
|
|
ASSERT(PagePrivate(page) && page->mapping);
|
|
lockdep_assert_held(&page->mapping->private_lock);
|
|
|
|
subpage = (struct btrfs_subpage *)page->private;
|
|
ASSERT(atomic_read(&subpage->eb_refs));
|
|
atomic_dec(&subpage->eb_refs);
|
|
}
|
|
|
|
static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
/* Basic checks */
|
|
ASSERT(PagePrivate(page) && page->private);
|
|
ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
|
|
IS_ALIGNED(len, fs_info->sectorsize));
|
|
/*
|
|
* The range check only works for mapped page, we can still have
|
|
* unmapped page like dummy extent buffer pages.
|
|
*/
|
|
if (page->mapping)
|
|
ASSERT(page_offset(page) <= start &&
|
|
start + len <= page_offset(page) + PAGE_SIZE);
|
|
}
|
|
|
|
void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const int nbits = len >> fs_info->sectorsize_bits;
|
|
|
|
btrfs_subpage_assert(fs_info, page, start, len);
|
|
|
|
atomic_add(nbits, &subpage->readers);
|
|
}
|
|
|
|
void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const int nbits = len >> fs_info->sectorsize_bits;
|
|
bool is_data;
|
|
bool last;
|
|
|
|
btrfs_subpage_assert(fs_info, page, start, len);
|
|
is_data = is_data_inode(page->mapping->host);
|
|
ASSERT(atomic_read(&subpage->readers) >= nbits);
|
|
last = atomic_sub_and_test(nbits, &subpage->readers);
|
|
|
|
/*
|
|
* For data we need to unlock the page if the last read has finished.
|
|
*
|
|
* And please don't replace @last with atomic_sub_and_test() call
|
|
* inside if () condition.
|
|
* As we want the atomic_sub_and_test() to be always executed.
|
|
*/
|
|
if (is_data && last)
|
|
unlock_page(page);
|
|
}
|
|
|
|
static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len)
|
|
{
|
|
u64 orig_start = *start;
|
|
u32 orig_len = *len;
|
|
|
|
*start = max_t(u64, page_offset(page), orig_start);
|
|
*len = min_t(u64, page_offset(page) + PAGE_SIZE,
|
|
orig_start + orig_len) - *start;
|
|
}
|
|
|
|
void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const int nbits = (len >> fs_info->sectorsize_bits);
|
|
int ret;
|
|
|
|
btrfs_subpage_assert(fs_info, page, start, len);
|
|
|
|
ASSERT(atomic_read(&subpage->readers) == 0);
|
|
ret = atomic_add_return(nbits, &subpage->writers);
|
|
ASSERT(ret == nbits);
|
|
}
|
|
|
|
bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const int nbits = (len >> fs_info->sectorsize_bits);
|
|
|
|
btrfs_subpage_assert(fs_info, page, start, len);
|
|
|
|
ASSERT(atomic_read(&subpage->writers) >= nbits);
|
|
return atomic_sub_and_test(nbits, &subpage->writers);
|
|
}
|
|
|
|
/*
|
|
* Lock a page for delalloc page writeback.
|
|
*
|
|
* Return -EAGAIN if the page is not properly initialized.
|
|
* Return 0 with the page locked, and writer counter updated.
|
|
*
|
|
* Even with 0 returned, the page still need extra check to make sure
|
|
* it's really the correct page, as the caller is using
|
|
* find_get_pages_contig(), which can race with page invalidating.
|
|
*/
|
|
int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) {
|
|
lock_page(page);
|
|
return 0;
|
|
}
|
|
lock_page(page);
|
|
if (!PagePrivate(page) || !page->private) {
|
|
unlock_page(page);
|
|
return -EAGAIN;
|
|
}
|
|
btrfs_subpage_clamp_range(page, &start, &len);
|
|
btrfs_subpage_start_writer(fs_info, page, start, len);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE)
|
|
return unlock_page(page);
|
|
btrfs_subpage_clamp_range(page, &start, &len);
|
|
if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len))
|
|
unlock_page(page);
|
|
}
|
|
|
|
/*
|
|
* Convert the [start, start + len) range into a u16 bitmap
|
|
*
|
|
* For example: if start == page_offset() + 16K, len = 16K, we get 0x00f0.
|
|
*/
|
|
static u16 btrfs_subpage_calc_bitmap(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
const int bit_start = offset_in_page(start) >> fs_info->sectorsize_bits;
|
|
const int nbits = len >> fs_info->sectorsize_bits;
|
|
|
|
btrfs_subpage_assert(fs_info, page, start, len);
|
|
|
|
/*
|
|
* Here nbits can be 16, thus can go beyond u16 range. We make the
|
|
* first left shift to be calculate in unsigned long (at least u32),
|
|
* then truncate the result to u16.
|
|
*/
|
|
return (u16)(((1UL << nbits) - 1) << bit_start);
|
|
}
|
|
|
|
void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->uptodate_bitmap |= tmp;
|
|
if (subpage->uptodate_bitmap == U16_MAX)
|
|
SetPageUptodate(page);
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
|
|
void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->uptodate_bitmap &= ~tmp;
|
|
ClearPageUptodate(page);
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
|
|
void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->error_bitmap |= tmp;
|
|
SetPageError(page);
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
|
|
void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->error_bitmap &= ~tmp;
|
|
if (subpage->error_bitmap == 0)
|
|
ClearPageError(page);
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
|
|
void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->dirty_bitmap |= tmp;
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
set_page_dirty(page);
|
|
}
|
|
|
|
/*
|
|
* Extra clear_and_test function for subpage dirty bitmap.
|
|
*
|
|
* Return true if we're the last bits in the dirty_bitmap and clear the
|
|
* dirty_bitmap.
|
|
* Return false otherwise.
|
|
*
|
|
* NOTE: Callers should manually clear page dirty for true case, as we have
|
|
* extra handling for tree blocks.
|
|
*/
|
|
bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
bool last = false;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->dirty_bitmap &= ~tmp;
|
|
if (subpage->dirty_bitmap == 0)
|
|
last = true;
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
return last;
|
|
}
|
|
|
|
void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
bool last;
|
|
|
|
last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len);
|
|
if (last)
|
|
clear_page_dirty_for_io(page);
|
|
}
|
|
|
|
void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->writeback_bitmap |= tmp;
|
|
set_page_writeback(page);
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
|
|
void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->writeback_bitmap &= ~tmp;
|
|
if (subpage->writeback_bitmap == 0) {
|
|
ASSERT(PageWriteback(page));
|
|
end_page_writeback(page);
|
|
}
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
|
|
void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->ordered_bitmap |= tmp;
|
|
SetPageOrdered(page);
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
|
|
void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info,
|
|
struct page *page, u64 start, u32 len)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&subpage->lock, flags);
|
|
subpage->ordered_bitmap &= ~tmp;
|
|
if (subpage->ordered_bitmap == 0)
|
|
ClearPageOrdered(page);
|
|
spin_unlock_irqrestore(&subpage->lock, flags);
|
|
}
|
|
/*
|
|
* Unlike set/clear which is dependent on each page status, for test all bits
|
|
* are tested in the same way.
|
|
*/
|
|
#define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name) \
|
|
bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info, \
|
|
struct page *page, u64 start, u32 len) \
|
|
{ \
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \
|
|
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len); \
|
|
unsigned long flags; \
|
|
bool ret; \
|
|
\
|
|
spin_lock_irqsave(&subpage->lock, flags); \
|
|
ret = ((subpage->name##_bitmap & tmp) == tmp); \
|
|
spin_unlock_irqrestore(&subpage->lock, flags); \
|
|
return ret; \
|
|
}
|
|
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate);
|
|
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error);
|
|
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty);
|
|
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback);
|
|
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered);
|
|
|
|
/*
|
|
* Note that, in selftests (extent-io-tests), we can have empty fs_info passed
|
|
* in. We only test sectorsize == PAGE_SIZE cases so far, thus we can fall
|
|
* back to regular sectorsize branch.
|
|
*/
|
|
#define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func, \
|
|
test_page_func) \
|
|
void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info, \
|
|
struct page *page, u64 start, u32 len) \
|
|
{ \
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
|
|
set_page_func(page); \
|
|
return; \
|
|
} \
|
|
btrfs_subpage_set_##name(fs_info, page, start, len); \
|
|
} \
|
|
void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info, \
|
|
struct page *page, u64 start, u32 len) \
|
|
{ \
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
|
|
clear_page_func(page); \
|
|
return; \
|
|
} \
|
|
btrfs_subpage_clear_##name(fs_info, page, start, len); \
|
|
} \
|
|
bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info, \
|
|
struct page *page, u64 start, u32 len) \
|
|
{ \
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) \
|
|
return test_page_func(page); \
|
|
return btrfs_subpage_test_##name(fs_info, page, start, len); \
|
|
} \
|
|
void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info, \
|
|
struct page *page, u64 start, u32 len) \
|
|
{ \
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
|
|
set_page_func(page); \
|
|
return; \
|
|
} \
|
|
btrfs_subpage_clamp_range(page, &start, &len); \
|
|
btrfs_subpage_set_##name(fs_info, page, start, len); \
|
|
} \
|
|
void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \
|
|
struct page *page, u64 start, u32 len) \
|
|
{ \
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
|
|
clear_page_func(page); \
|
|
return; \
|
|
} \
|
|
btrfs_subpage_clamp_range(page, &start, &len); \
|
|
btrfs_subpage_clear_##name(fs_info, page, start, len); \
|
|
} \
|
|
bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info, \
|
|
struct page *page, u64 start, u32 len) \
|
|
{ \
|
|
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) \
|
|
return test_page_func(page); \
|
|
btrfs_subpage_clamp_range(page, &start, &len); \
|
|
return btrfs_subpage_test_##name(fs_info, page, start, len); \
|
|
}
|
|
IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate,
|
|
PageUptodate);
|
|
IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError);
|
|
IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io,
|
|
PageDirty);
|
|
IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback,
|
|
PageWriteback);
|
|
IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered,
|
|
PageOrdered);
|
|
|
|
/*
|
|
* Make sure not only the page dirty bit is cleared, but also subpage dirty bit
|
|
* is cleared.
|
|
*/
|
|
void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info,
|
|
struct page *page)
|
|
{
|
|
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
|
|
|
|
if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
|
|
return;
|
|
|
|
ASSERT(!PageDirty(page));
|
|
if (fs_info->sectorsize == PAGE_SIZE)
|
|
return;
|
|
|
|
ASSERT(PagePrivate(page) && page->private);
|
|
ASSERT(subpage->dirty_bitmap == 0);
|
|
}
|