linux/drivers/isdn/hardware/mISDN/hfcpci.c
Arvind Yadav ed038e7e68 isdn: mISDN: hfcpci: constify pci_device_id.
pci_device_id are not supposed to change at runtime. All functions
working with pci_device_id provided by <linux/pci.h> work with
const pci_device_id. So mark the non-const structs as const.

File size before:
   text	   data	    bss	    dec	    hex	filename
  21656	   1024	     96	  22776	   58f8	isdn/hardware/mISDN/hfcpci.o

File size After adding 'const':
   text	   data	    bss	    dec	    hex	filename
  22424	    256	     96	  22776	   58f8	isdn/hardware/mISDN/hfcpci.o

Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-15 21:25:56 -07:00

2361 lines
63 KiB
C

/*
*
* hfcpci.c low level driver for CCD's hfc-pci based cards
*
* Author Werner Cornelius (werner@isdn4linux.de)
* based on existing driver for CCD hfc ISA cards
* type approval valid for HFC-S PCI A based card
*
* Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
* Copyright 2008 by Karsten Keil <kkeil@novell.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module options:
*
* debug:
* NOTE: only one poll value must be given for all cards
* See hfc_pci.h for debug flags.
*
* poll:
* NOTE: only one poll value must be given for all cards
* Give the number of samples for each fifo process.
* By default 128 is used. Decrease to reduce delay, increase to
* reduce cpu load. If unsure, don't mess with it!
* A value of 128 will use controller's interrupt. Other values will
* use kernel timer, because the controller will not allow lower values
* than 128.
* Also note that the value depends on the kernel timer frequency.
* If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
* If the kernel uses 100 Hz, steps of 80 samples are possible.
* If the kernel uses 300 Hz, steps of about 26 samples are possible.
*
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mISDNhw.h>
#include <linux/slab.h>
#include "hfc_pci.h"
static const char *hfcpci_revision = "2.0";
static int HFC_cnt;
static uint debug;
static uint poll, tics;
static struct timer_list hfc_tl;
static unsigned long hfc_jiffies;
MODULE_AUTHOR("Karsten Keil");
MODULE_LICENSE("GPL");
module_param(debug, uint, S_IRUGO | S_IWUSR);
module_param(poll, uint, S_IRUGO | S_IWUSR);
enum {
HFC_CCD_2BD0,
HFC_CCD_B000,
HFC_CCD_B006,
HFC_CCD_B007,
HFC_CCD_B008,
HFC_CCD_B009,
HFC_CCD_B00A,
HFC_CCD_B00B,
HFC_CCD_B00C,
HFC_CCD_B100,
HFC_CCD_B700,
HFC_CCD_B701,
HFC_ASUS_0675,
HFC_BERKOM_A1T,
HFC_BERKOM_TCONCEPT,
HFC_ANIGMA_MC145575,
HFC_ZOLTRIX_2BD0,
HFC_DIGI_DF_M_IOM2_E,
HFC_DIGI_DF_M_E,
HFC_DIGI_DF_M_IOM2_A,
HFC_DIGI_DF_M_A,
HFC_ABOCOM_2BD1,
HFC_SITECOM_DC105V2,
};
struct hfcPCI_hw {
unsigned char cirm;
unsigned char ctmt;
unsigned char clkdel;
unsigned char states;
unsigned char conn;
unsigned char mst_m;
unsigned char int_m1;
unsigned char int_m2;
unsigned char sctrl;
unsigned char sctrl_r;
unsigned char sctrl_e;
unsigned char trm;
unsigned char fifo_en;
unsigned char bswapped;
unsigned char protocol;
int nt_timer;
unsigned char __iomem *pci_io; /* start of PCI IO memory */
dma_addr_t dmahandle;
void *fifos; /* FIFO memory */
int last_bfifo_cnt[2];
/* marker saving last b-fifo frame count */
struct timer_list timer;
};
#define HFC_CFG_MASTER 1
#define HFC_CFG_SLAVE 2
#define HFC_CFG_PCM 3
#define HFC_CFG_2HFC 4
#define HFC_CFG_SLAVEHFC 5
#define HFC_CFG_NEG_F0 6
#define HFC_CFG_SW_DD_DU 7
#define FLG_HFC_TIMER_T1 16
#define FLG_HFC_TIMER_T3 17
#define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */
#define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */
#define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
#define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
struct hfc_pci {
u_char subtype;
u_char chanlimit;
u_char initdone;
u_long cfg;
u_int irq;
u_int irqcnt;
struct pci_dev *pdev;
struct hfcPCI_hw hw;
spinlock_t lock; /* card lock */
struct dchannel dch;
struct bchannel bch[2];
};
/* Interface functions */
static void
enable_hwirq(struct hfc_pci *hc)
{
hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
}
static void
disable_hwirq(struct hfc_pci *hc)
{
hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
}
/*
* free hardware resources used by driver
*/
static void
release_io_hfcpci(struct hfc_pci *hc)
{
/* disable memory mapped ports + busmaster */
pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
del_timer(&hc->hw.timer);
pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
iounmap(hc->hw.pci_io);
}
/*
* set mode (NT or TE)
*/
static void
hfcpci_setmode(struct hfc_pci *hc)
{
if (hc->hw.protocol == ISDN_P_NT_S0) {
hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */
hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */
hc->hw.states = 1; /* G1 */
} else {
hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */
hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
hc->hw.states = 2; /* F2 */
}
Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
udelay(10);
Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
}
/*
* function called to reset the HFC PCI chip. A complete software reset of chip
* and fifos is done.
*/
static void
reset_hfcpci(struct hfc_pci *hc)
{
u_char val;
int cnt = 0;
printk(KERN_DEBUG "reset_hfcpci: entered\n");
val = Read_hfc(hc, HFCPCI_CHIP_ID);
printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
/* enable memory mapped ports, disable busmaster */
pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
disable_hwirq(hc);
/* enable memory ports + busmaster */
pci_write_config_word(hc->pdev, PCI_COMMAND,
PCI_ENA_MEMIO + PCI_ENA_MASTER);
val = Read_hfc(hc, HFCPCI_STATUS);
printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
hc->hw.cirm = HFCPCI_RESET; /* Reset On */
Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
set_current_state(TASK_UNINTERRUPTIBLE);
mdelay(10); /* Timeout 10ms */
hc->hw.cirm = 0; /* Reset Off */
Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
val = Read_hfc(hc, HFCPCI_STATUS);
printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
while (cnt < 50000) { /* max 50000 us */
udelay(5);
cnt += 5;
val = Read_hfc(hc, HFCPCI_STATUS);
if (!(val & 2))
break;
}
printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
hc->hw.fifo_en = 0x30; /* only D fifos enabled */
hc->hw.bswapped = 0; /* no exchange */
hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
hc->hw.sctrl_r = 0;
hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */
hc->hw.mst_m = 0;
if (test_bit(HFC_CFG_MASTER, &hc->cfg))
hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */
if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
/* Clear already pending ints */
val = Read_hfc(hc, HFCPCI_INT_S1);
/* set NT/TE mode */
hfcpci_setmode(hc);
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
/*
* Init GCI/IOM2 in master mode
* Slots 0 and 1 are set for B-chan 1 and 2
* D- and monitor/CI channel are not enabled
* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
* STIO2 is used as data input, B1+B2 from IOM->ST
* ST B-channel send disabled -> continuous 1s
* The IOM slots are always enabled
*/
if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
/* set data flow directions: connect B1,B2: HFC to/from PCM */
hc->hw.conn = 0x09;
} else {
hc->hw.conn = 0x36; /* set data flow directions */
if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
} else {
Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
}
}
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
val = Read_hfc(hc, HFCPCI_INT_S2);
}
/*
* Timer function called when kernel timer expires
*/
static void
hfcpci_Timer(struct hfc_pci *hc)
{
hc->hw.timer.expires = jiffies + 75;
/* WD RESET */
/*
* WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
* add_timer(&hc->hw.timer);
*/
}
/*
* select a b-channel entry matching and active
*/
static struct bchannel *
Sel_BCS(struct hfc_pci *hc, int channel)
{
if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
(hc->bch[0].nr & channel))
return &hc->bch[0];
else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
(hc->bch[1].nr & channel))
return &hc->bch[1];
else
return NULL;
}
/*
* clear the desired B-channel rx fifo
*/
static void
hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
{
u_char fifo_state;
struct bzfifo *bzr;
if (fifo) {
bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
} else {
bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
}
if (fifo_state)
hc->hw.fifo_en ^= fifo_state;
Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
hc->hw.last_bfifo_cnt[fifo] = 0;
bzr->f1 = MAX_B_FRAMES;
bzr->f2 = bzr->f1; /* init F pointers to remain constant */
bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
if (fifo_state)
hc->hw.fifo_en |= fifo_state;
Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
}
/*
* clear the desired B-channel tx fifo
*/
static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
{
u_char fifo_state;
struct bzfifo *bzt;
if (fifo) {
bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
} else {
bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
}
if (fifo_state)
hc->hw.fifo_en ^= fifo_state;
Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
"z1(%x) z2(%x) state(%x)\n",
fifo, bzt->f1, bzt->f2,
le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
fifo_state);
bzt->f2 = MAX_B_FRAMES;
bzt->f1 = bzt->f2; /* init F pointers to remain constant */
bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
if (fifo_state)
hc->hw.fifo_en |= fifo_state;
Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG
"hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
fifo, bzt->f1, bzt->f2,
le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
}
/*
* read a complete B-frame out of the buffer
*/
static void
hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
u_char *bdata, int count)
{
u_char *ptr, *ptr1, new_f2;
int maxlen, new_z2;
struct zt *zp;
if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
printk(KERN_DEBUG "hfcpci_empty_fifo\n");
zp = &bz->za[bz->f2]; /* point to Z-Regs */
new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
(*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
if (bch->debug & DEBUG_HW)
printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
"invalid length %d or crc\n", count);
#ifdef ERROR_STATISTIC
bch->err_inv++;
#endif
bz->za[new_f2].z2 = cpu_to_le16(new_z2);
bz->f2 = new_f2; /* next buffer */
} else {
bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
if (!bch->rx_skb) {
printk(KERN_WARNING "HFCPCI: receive out of memory\n");
return;
}
count -= 3;
ptr = skb_put(bch->rx_skb, count);
if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = count; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL -
le16_to_cpu(zp->z2); /* maximum */
ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
/* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
count -= maxlen;
if (count) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, count); /* rest */
}
bz->za[new_f2].z2 = cpu_to_le16(new_z2);
bz->f2 = new_f2; /* next buffer */
recv_Bchannel(bch, MISDN_ID_ANY, false);
}
}
/*
* D-channel receive procedure
*/
static int
receive_dmsg(struct hfc_pci *hc)
{
struct dchannel *dch = &hc->dch;
int maxlen;
int rcnt, total;
int count = 5;
u_char *ptr, *ptr1;
struct dfifo *df;
struct zt *zp;
df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
zp = &df->za[df->f2 & D_FREG_MASK];
rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
if (rcnt < 0)
rcnt += D_FIFO_SIZE;
rcnt++;
if (dch->debug & DEBUG_HW_DCHANNEL)
printk(KERN_DEBUG
"hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
df->f1, df->f2,
le16_to_cpu(zp->z1),
le16_to_cpu(zp->z2),
rcnt);
if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
(df->data[le16_to_cpu(zp->z1)])) {
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG
"empty_fifo hfcpci packet inv. len "
"%d or crc %d\n",
rcnt,
df->data[le16_to_cpu(zp->z1)]);
#ifdef ERROR_STATISTIC
cs->err_rx++;
#endif
df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
(MAX_D_FRAMES + 1); /* next buffer */
df->za[df->f2 & D_FREG_MASK].z2 =
cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
(D_FIFO_SIZE - 1));
} else {
dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
if (!dch->rx_skb) {
printk(KERN_WARNING
"HFC-PCI: D receive out of memory\n");
break;
}
total = rcnt;
rcnt -= 3;
ptr = skb_put(dch->rx_skb, rcnt);
if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
maxlen = rcnt; /* complete transfer */
else
maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
/* maximum */
ptr1 = df->data + le16_to_cpu(zp->z2);
/* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
rcnt -= maxlen;
if (rcnt) { /* rest remaining */
ptr += maxlen;
ptr1 = df->data; /* start of buffer */
memcpy(ptr, ptr1, rcnt); /* rest */
}
df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
(MAX_D_FRAMES + 1); /* next buffer */
df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
recv_Dchannel(dch);
}
}
return 1;
}
/*
* check for transparent receive data and read max one 'poll' size if avail
*/
static void
hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
struct bzfifo *txbz, u_char *bdata)
{
__le16 *z1r, *z2r, *z1t, *z2t;
int new_z2, fcnt_rx, fcnt_tx, maxlen;
u_char *ptr, *ptr1;
z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
z2r = z1r + 1;
z1t = &txbz->za[MAX_B_FRAMES].z1;
z2t = z1t + 1;
fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
if (!fcnt_rx)
return; /* no data avail */
if (fcnt_rx <= 0)
fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
if (fcnt_tx <= 0)
fcnt_tx += B_FIFO_SIZE;
/* fcnt_tx contains available bytes in tx-fifo */
fcnt_tx = B_FIFO_SIZE - fcnt_tx;
/* remaining bytes to send (bytes in tx-fifo) */
if (test_bit(FLG_RX_OFF, &bch->Flags)) {
bch->dropcnt += fcnt_rx;
*z2r = cpu_to_le16(new_z2);
return;
}
maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
if (maxlen < 0) {
pr_warning("B%d: No bufferspace for %d bytes\n",
bch->nr, fcnt_rx);
} else {
ptr = skb_put(bch->rx_skb, fcnt_rx);
if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = fcnt_rx; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
/* maximum */
ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
/* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
fcnt_rx -= maxlen;
if (fcnt_rx) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, fcnt_rx); /* rest */
}
recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
}
*z2r = cpu_to_le16(new_z2); /* new position */
}
/*
* B-channel main receive routine
*/
static void
main_rec_hfcpci(struct bchannel *bch)
{
struct hfc_pci *hc = bch->hw;
int rcnt, real_fifo;
int receive = 0, count = 5;
struct bzfifo *txbz, *rxbz;
u_char *bdata;
struct zt *zp;
if ((bch->nr & 2) && (!hc->hw.bswapped)) {
rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
real_fifo = 1;
} else {
rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
real_fifo = 0;
}
Begin:
count--;
if (rxbz->f1 != rxbz->f2) {
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
bch->nr, rxbz->f1, rxbz->f2);
zp = &rxbz->za[rxbz->f2];
rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
if (rcnt < 0)
rcnt += B_FIFO_SIZE;
rcnt++;
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG
"hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
bch->nr, le16_to_cpu(zp->z1),
le16_to_cpu(zp->z2), rcnt);
hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
rcnt = rxbz->f1 - rxbz->f2;
if (rcnt < 0)
rcnt += MAX_B_FRAMES + 1;
if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
rcnt = 0;
hfcpci_clear_fifo_rx(hc, real_fifo);
}
hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
if (rcnt > 1)
receive = 1;
else
receive = 0;
} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
return;
} else
receive = 0;
if (count && receive)
goto Begin;
}
/*
* D-channel send routine
*/
static void
hfcpci_fill_dfifo(struct hfc_pci *hc)
{
struct dchannel *dch = &hc->dch;
int fcnt;
int count, new_z1, maxlen;
struct dfifo *df;
u_char *src, *dst, new_f1;
if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
printk(KERN_DEBUG "%s\n", __func__);
if (!dch->tx_skb)
return;
count = dch->tx_skb->len - dch->tx_idx;
if (count <= 0)
return;
df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
if (dch->debug & DEBUG_HW_DFIFO)
printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
df->f1, df->f2,
le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
fcnt = df->f1 - df->f2; /* frame count actually buffered */
if (fcnt < 0)
fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
if (fcnt > (MAX_D_FRAMES - 1)) {
if (dch->debug & DEBUG_HW_DCHANNEL)
printk(KERN_DEBUG
"hfcpci_fill_Dfifo more as 14 frames\n");
#ifdef ERROR_STATISTIC
cs->err_tx++;
#endif
return;
}
/* now determine free bytes in FIFO buffer */
maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
if (maxlen <= 0)
maxlen += D_FIFO_SIZE; /* count now contains available bytes */
if (dch->debug & DEBUG_HW_DCHANNEL)
printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
count, maxlen);
if (count > maxlen) {
if (dch->debug & DEBUG_HW_DCHANNEL)
printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
return;
}
new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
(D_FIFO_SIZE - 1);
new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
src = dch->tx_skb->data + dch->tx_idx; /* source pointer */
dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
/* end fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = df->data; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
/* for next buffer */
df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
/* new pos actual buffer */
df->f1 = new_f1; /* next frame */
dch->tx_idx = dch->tx_skb->len;
}
/*
* B-channel send routine
*/
static void
hfcpci_fill_fifo(struct bchannel *bch)
{
struct hfc_pci *hc = bch->hw;
int maxlen, fcnt;
int count, new_z1;
struct bzfifo *bz;
u_char *bdata;
u_char new_f1, *src, *dst;
__le16 *z1t, *z2t;
if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
printk(KERN_DEBUG "%s\n", __func__);
if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
!test_bit(FLG_TRANSPARENT, &bch->Flags))
return;
count = HFCPCI_FILLEMPTY;
} else {
count = bch->tx_skb->len - bch->tx_idx;
}
if ((bch->nr & 2) && (!hc->hw.bswapped)) {
bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
} else {
bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
}
if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
z1t = &bz->za[MAX_B_FRAMES].z1;
z2t = z1t + 1;
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
"cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
le16_to_cpu(*z1t), le16_to_cpu(*z2t));
fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
if (fcnt <= 0)
fcnt += B_FIFO_SIZE;
if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
/* fcnt contains available bytes in fifo */
if (count > fcnt)
count = fcnt;
new_z1 = le16_to_cpu(*z1t) + count;
/* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
/* end of fifo */
if (bch->debug & DEBUG_HW_BFIFO)
printk(KERN_DEBUG "hfcpci_FFt fillempty "
"fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
fcnt, maxlen, new_z1, dst);
if (maxlen > count)
maxlen = count; /* limit size */
memset(dst, bch->fill[0], maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
memset(dst, bch->fill[0], count);
}
*z1t = cpu_to_le16(new_z1); /* now send data */
return;
}
/* fcnt contains available bytes in fifo */
fcnt = B_FIFO_SIZE - fcnt;
/* remaining bytes to send (bytes in fifo) */
next_t_frame:
count = bch->tx_skb->len - bch->tx_idx;
/* maximum fill shall be poll*2 */
if (count > (poll << 1) - fcnt)
count = (poll << 1) - fcnt;
if (count <= 0)
return;
/* data is suitable for fifo */
new_z1 = le16_to_cpu(*z1t) + count;
/* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
src = bch->tx_skb->data + bch->tx_idx;
/* source pointer */
dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
/* end of fifo */
if (bch->debug & DEBUG_HW_BFIFO)
printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
"maxl(%d) nz1(%x) dst(%p)\n",
fcnt, maxlen, new_z1, dst);
fcnt += count;
bch->tx_idx += count;
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
*z1t = cpu_to_le16(new_z1); /* now send data */
if (bch->tx_idx < bch->tx_skb->len)
return;
dev_kfree_skb(bch->tx_skb);
if (get_next_bframe(bch))
goto next_t_frame;
return;
}
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG
"%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
__func__, bch->nr, bz->f1, bz->f2,
bz->za[bz->f1].z1);
fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
if (fcnt < 0)
fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
if (fcnt > (MAX_B_FRAMES - 1)) {
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG
"hfcpci_fill_Bfifo more as 14 frames\n");
return;
}
/* now determine free bytes in FIFO buffer */
maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
le16_to_cpu(bz->za[bz->f1].z1) - 1;
if (maxlen <= 0)
maxlen += B_FIFO_SIZE; /* count now contains available bytes */
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
bch->nr, count, maxlen);
if (maxlen < count) {
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
return;
}
new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
/* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
src = bch->tx_skb->data + bch->tx_idx; /* source pointer */
dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
/* end fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */
bz->f1 = new_f1; /* next frame */
dev_kfree_skb(bch->tx_skb);
get_next_bframe(bch);
}
/*
* handle L1 state changes TE
*/
static void
ph_state_te(struct dchannel *dch)
{
if (dch->debug)
printk(KERN_DEBUG "%s: TE newstate %x\n",
__func__, dch->state);
switch (dch->state) {
case 0:
l1_event(dch->l1, HW_RESET_IND);
break;
case 3:
l1_event(dch->l1, HW_DEACT_IND);
break;
case 5:
case 8:
l1_event(dch->l1, ANYSIGNAL);
break;
case 6:
l1_event(dch->l1, INFO2);
break;
case 7:
l1_event(dch->l1, INFO4_P8);
break;
}
}
/*
* handle L1 state changes NT
*/
static void
handle_nt_timer3(struct dchannel *dch) {
struct hfc_pci *hc = dch->hw;
test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
hc->hw.nt_timer = 0;
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
if (test_bit(HFC_CFG_MASTER, &hc->cfg))
hc->hw.mst_m |= HFCPCI_MASTER;
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
}
static void
ph_state_nt(struct dchannel *dch)
{
struct hfc_pci *hc = dch->hw;
if (dch->debug)
printk(KERN_DEBUG "%s: NT newstate %x\n",
__func__, dch->state);
switch (dch->state) {
case 2:
if (hc->hw.nt_timer < 0) {
hc->hw.nt_timer = 0;
test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
/* Clear already pending ints */
(void) Read_hfc(hc, HFCPCI_INT_S1);
Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
udelay(10);
Write_hfc(hc, HFCPCI_STATES, 4);
dch->state = 4;
} else if (hc->hw.nt_timer == 0) {
hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
hc->hw.nt_timer = NT_T1_COUNT;
hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
hc->hw.ctmt |= HFCPCI_TIM3_125;
Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
HFCPCI_CLTIMER);
test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
/* allow G2 -> G3 transition */
Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
} else {
Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
}
break;
case 1:
hc->hw.nt_timer = 0;
test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
hc->hw.mst_m &= ~HFCPCI_MASTER;
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
break;
case 4:
hc->hw.nt_timer = 0;
test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
break;
case 3:
if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
if (!test_and_clear_bit(FLG_L2_ACTIVATED,
&dch->Flags)) {
handle_nt_timer3(dch);
break;
}
test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
hc->hw.nt_timer = NT_T3_COUNT;
hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
hc->hw.ctmt |= HFCPCI_TIM3_125;
Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
HFCPCI_CLTIMER);
}
break;
}
}
static void
ph_state(struct dchannel *dch)
{
struct hfc_pci *hc = dch->hw;
if (hc->hw.protocol == ISDN_P_NT_S0) {
if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
hc->hw.nt_timer < 0)
handle_nt_timer3(dch);
else
ph_state_nt(dch);
} else
ph_state_te(dch);
}
/*
* Layer 1 callback function
*/
static int
hfc_l1callback(struct dchannel *dch, u_int cmd)
{
struct hfc_pci *hc = dch->hw;
switch (cmd) {
case INFO3_P8:
case INFO3_P10:
if (test_bit(HFC_CFG_MASTER, &hc->cfg))
hc->hw.mst_m |= HFCPCI_MASTER;
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
break;
case HW_RESET_REQ:
Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
/* HFC ST 3 */
udelay(6);
Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */
if (test_bit(HFC_CFG_MASTER, &hc->cfg))
hc->hw.mst_m |= HFCPCI_MASTER;
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
HFCPCI_DO_ACTION);
l1_event(dch->l1, HW_POWERUP_IND);
break;
case HW_DEACT_REQ:
hc->hw.mst_m &= ~HFCPCI_MASTER;
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
skb_queue_purge(&dch->squeue);
if (dch->tx_skb) {
dev_kfree_skb(dch->tx_skb);
dch->tx_skb = NULL;
}
dch->tx_idx = 0;
if (dch->rx_skb) {
dev_kfree_skb(dch->rx_skb);
dch->rx_skb = NULL;
}
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
del_timer(&dch->timer);
break;
case HW_POWERUP_REQ:
Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
break;
case PH_ACTIVATE_IND:
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
GFP_ATOMIC);
break;
case PH_DEACTIVATE_IND:
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
GFP_ATOMIC);
break;
default:
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: unknown command %x\n",
__func__, cmd);
return -1;
}
return 0;
}
/*
* Interrupt handler
*/
static inline void
tx_birq(struct bchannel *bch)
{
if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
hfcpci_fill_fifo(bch);
else {
if (bch->tx_skb)
dev_kfree_skb(bch->tx_skb);
if (get_next_bframe(bch))
hfcpci_fill_fifo(bch);
}
}
static inline void
tx_dirq(struct dchannel *dch)
{
if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
hfcpci_fill_dfifo(dch->hw);
else {
if (dch->tx_skb)
dev_kfree_skb(dch->tx_skb);
if (get_next_dframe(dch))
hfcpci_fill_dfifo(dch->hw);
}
}
static irqreturn_t
hfcpci_int(int intno, void *dev_id)
{
struct hfc_pci *hc = dev_id;
u_char exval;
struct bchannel *bch;
u_char val, stat;
spin_lock(&hc->lock);
if (!(hc->hw.int_m2 & 0x08)) {
spin_unlock(&hc->lock);
return IRQ_NONE; /* not initialised */
}
stat = Read_hfc(hc, HFCPCI_STATUS);
if (HFCPCI_ANYINT & stat) {
val = Read_hfc(hc, HFCPCI_INT_S1);
if (hc->dch.debug & DEBUG_HW_DCHANNEL)
printk(KERN_DEBUG
"HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
} else {
/* shared */
spin_unlock(&hc->lock);
return IRQ_NONE;
}
hc->irqcnt++;
if (hc->dch.debug & DEBUG_HW_DCHANNEL)
printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
val &= hc->hw.int_m1;
if (val & 0x40) { /* state machine irq */
exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
if (hc->dch.debug & DEBUG_HW_DCHANNEL)
printk(KERN_DEBUG "ph_state chg %d->%d\n",
hc->dch.state, exval);
hc->dch.state = exval;
schedule_event(&hc->dch, FLG_PHCHANGE);
val &= ~0x40;
}
if (val & 0x80) { /* timer irq */
if (hc->hw.protocol == ISDN_P_NT_S0) {
if ((--hc->hw.nt_timer) < 0)
schedule_event(&hc->dch, FLG_PHCHANGE);
}
val &= ~0x80;
Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
}
if (val & 0x08) { /* B1 rx */
bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
if (bch)
main_rec_hfcpci(bch);
else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
}
if (val & 0x10) { /* B2 rx */
bch = Sel_BCS(hc, 2);
if (bch)
main_rec_hfcpci(bch);
else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
}
if (val & 0x01) { /* B1 tx */
bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
if (bch)
tx_birq(bch);
else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
}
if (val & 0x02) { /* B2 tx */
bch = Sel_BCS(hc, 2);
if (bch)
tx_birq(bch);
else if (hc->dch.debug)
printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
}
if (val & 0x20) /* D rx */
receive_dmsg(hc);
if (val & 0x04) { /* D tx */
if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
del_timer(&hc->dch.timer);
tx_dirq(&hc->dch);
}
spin_unlock(&hc->lock);
return IRQ_HANDLED;
}
/*
* timer callback for D-chan busy resolution. Currently no function
*/
static void
hfcpci_dbusy_timer(struct hfc_pci *hc)
{
}
/*
* activate/deactivate hardware for selected channels and mode
*/
static int
mode_hfcpci(struct bchannel *bch, int bc, int protocol)
{
struct hfc_pci *hc = bch->hw;
int fifo2;
u_char rx_slot = 0, tx_slot = 0, pcm_mode;
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG
"HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
bch->state, protocol, bch->nr, bc);
fifo2 = bc;
pcm_mode = (bc >> 24) & 0xff;
if (pcm_mode) { /* PCM SLOT USE */
if (!test_bit(HFC_CFG_PCM, &hc->cfg))
printk(KERN_WARNING
"%s: pcm channel id without HFC_CFG_PCM\n",
__func__);
rx_slot = (bc >> 8) & 0xff;
tx_slot = (bc >> 16) & 0xff;
bc = bc & 0xff;
} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
__func__);
if (hc->chanlimit > 1) {
hc->hw.bswapped = 0; /* B1 and B2 normal mode */
hc->hw.sctrl_e &= ~0x80;
} else {
if (bc & 2) {
if (protocol != ISDN_P_NONE) {
hc->hw.bswapped = 1; /* B1 and B2 exchanged */
hc->hw.sctrl_e |= 0x80;
} else {
hc->hw.bswapped = 0; /* B1 and B2 normal mode */
hc->hw.sctrl_e &= ~0x80;
}
fifo2 = 1;
} else {
hc->hw.bswapped = 0; /* B1 and B2 normal mode */
hc->hw.sctrl_e &= ~0x80;
}
}
switch (protocol) {
case (-1): /* used for init */
bch->state = -1;
bch->nr = bc;
case (ISDN_P_NONE):
if (bch->state == ISDN_P_NONE)
return 0;
if (bc & 2) {
hc->hw.sctrl &= ~SCTRL_B2_ENA;
hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
} else {
hc->hw.sctrl &= ~SCTRL_B1_ENA;
hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
}
if (fifo2 & 2) {
hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
HFCPCI_INTS_B2REC);
} else {
hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
HFCPCI_INTS_B1REC);
}
#ifdef REVERSE_BITORDER
if (bch->nr & 2)
hc->hw.cirm &= 0x7f;
else
hc->hw.cirm &= 0xbf;
#endif
bch->state = ISDN_P_NONE;
bch->nr = bc;
test_and_clear_bit(FLG_HDLC, &bch->Flags);
test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case (ISDN_P_B_RAW):
bch->state = protocol;
bch->nr = bc;
hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
if (bc & 2) {
hc->hw.sctrl |= SCTRL_B2_ENA;
hc->hw.sctrl_r |= SCTRL_B2_ENA;
#ifdef REVERSE_BITORDER
hc->hw.cirm |= 0x80;
#endif
} else {
hc->hw.sctrl |= SCTRL_B1_ENA;
hc->hw.sctrl_r |= SCTRL_B1_ENA;
#ifdef REVERSE_BITORDER
hc->hw.cirm |= 0x40;
#endif
}
if (fifo2 & 2) {
hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
if (!tics)
hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
HFCPCI_INTS_B2REC);
hc->hw.ctmt |= 2;
hc->hw.conn &= ~0x18;
} else {
hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
if (!tics)
hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
HFCPCI_INTS_B1REC);
hc->hw.ctmt |= 1;
hc->hw.conn &= ~0x03;
}
test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
break;
case (ISDN_P_B_HDLC):
bch->state = protocol;
bch->nr = bc;
hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
if (bc & 2) {
hc->hw.sctrl |= SCTRL_B2_ENA;
hc->hw.sctrl_r |= SCTRL_B2_ENA;
} else {
hc->hw.sctrl |= SCTRL_B1_ENA;
hc->hw.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2 & 2) {
hc->hw.last_bfifo_cnt[1] = 0;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
HFCPCI_INTS_B2REC);
hc->hw.ctmt &= ~2;
hc->hw.conn &= ~0x18;
} else {
hc->hw.last_bfifo_cnt[0] = 0;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
HFCPCI_INTS_B1REC);
hc->hw.ctmt &= ~1;
hc->hw.conn &= ~0x03;
}
test_and_set_bit(FLG_HDLC, &bch->Flags);
break;
default:
printk(KERN_DEBUG "prot not known %x\n", protocol);
return -ENOPROTOOPT;
}
if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
if ((protocol == ISDN_P_NONE) ||
(protocol == -1)) { /* init case */
rx_slot = 0;
tx_slot = 0;
} else {
if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
rx_slot |= 0xC0;
tx_slot |= 0xC0;
} else {
rx_slot |= 0x80;
tx_slot |= 0x80;
}
}
if (bc & 2) {
hc->hw.conn &= 0xc7;
hc->hw.conn |= 0x08;
printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
__func__, tx_slot);
printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
__func__, rx_slot);
Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
} else {
hc->hw.conn &= 0xf8;
hc->hw.conn |= 0x01;
printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
__func__, tx_slot);
printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
__func__, rx_slot);
Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
}
}
Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
#ifdef REVERSE_BITORDER
Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
#endif
return 0;
}
static int
set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
{
struct hfc_pci *hc = bch->hw;
if (bch->debug & DEBUG_HW_BCHANNEL)
printk(KERN_DEBUG
"HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
bch->state, protocol, bch->nr, chan);
if (bch->nr != chan) {
printk(KERN_DEBUG
"HFCPCI rxtest wrong channel parameter %x/%x\n",
bch->nr, chan);
return -EINVAL;
}
switch (protocol) {
case (ISDN_P_B_RAW):
bch->state = protocol;
hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
if (chan & 2) {
hc->hw.sctrl_r |= SCTRL_B2_ENA;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
if (!tics)
hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
hc->hw.ctmt |= 2;
hc->hw.conn &= ~0x18;
#ifdef REVERSE_BITORDER
hc->hw.cirm |= 0x80;
#endif
} else {
hc->hw.sctrl_r |= SCTRL_B1_ENA;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
if (!tics)
hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
hc->hw.ctmt |= 1;
hc->hw.conn &= ~0x03;
#ifdef REVERSE_BITORDER
hc->hw.cirm |= 0x40;
#endif
}
break;
case (ISDN_P_B_HDLC):
bch->state = protocol;
hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
if (chan & 2) {
hc->hw.sctrl_r |= SCTRL_B2_ENA;
hc->hw.last_bfifo_cnt[1] = 0;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
hc->hw.ctmt &= ~2;
hc->hw.conn &= ~0x18;
} else {
hc->hw.sctrl_r |= SCTRL_B1_ENA;
hc->hw.last_bfifo_cnt[0] = 0;
hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
hc->hw.ctmt &= ~1;
hc->hw.conn &= ~0x03;
}
break;
default:
printk(KERN_DEBUG "prot not known %x\n", protocol);
return -ENOPROTOOPT;
}
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
#ifdef REVERSE_BITORDER
Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
#endif
return 0;
}
static void
deactivate_bchannel(struct bchannel *bch)
{
struct hfc_pci *hc = bch->hw;
u_long flags;
spin_lock_irqsave(&hc->lock, flags);
mISDN_clear_bchannel(bch);
mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
spin_unlock_irqrestore(&hc->lock, flags);
}
/*
* Layer 1 B-channel hardware access
*/
static int
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
{
return mISDN_ctrl_bchannel(bch, cq);
}
static int
hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct hfc_pci *hc = bch->hw;
int ret = -EINVAL;
u_long flags;
if (bch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
switch (cmd) {
case HW_TESTRX_RAW:
spin_lock_irqsave(&hc->lock, flags);
ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
spin_unlock_irqrestore(&hc->lock, flags);
break;
case HW_TESTRX_HDLC:
spin_lock_irqsave(&hc->lock, flags);
ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
spin_unlock_irqrestore(&hc->lock, flags);
break;
case HW_TESTRX_OFF:
spin_lock_irqsave(&hc->lock, flags);
mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
spin_unlock_irqrestore(&hc->lock, flags);
ret = 0;
break;
case CLOSE_CHANNEL:
test_and_clear_bit(FLG_OPEN, &bch->Flags);
deactivate_bchannel(bch);
ch->protocol = ISDN_P_NONE;
ch->peer = NULL;
module_put(THIS_MODULE);
ret = 0;
break;
case CONTROL_CHANNEL:
ret = channel_bctrl(bch, arg);
break;
default:
printk(KERN_WARNING "%s: unknown prim(%x)\n",
__func__, cmd);
}
return ret;
}
/*
* Layer2 -> Layer 1 Dchannel data
*/
static int
hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
struct dchannel *dch = container_of(dev, struct dchannel, dev);
struct hfc_pci *hc = dch->hw;
int ret = -EINVAL;
struct mISDNhead *hh = mISDN_HEAD_P(skb);
unsigned int id;
u_long flags;
switch (hh->prim) {
case PH_DATA_REQ:
spin_lock_irqsave(&hc->lock, flags);
ret = dchannel_senddata(dch, skb);
if (ret > 0) { /* direct TX */
id = hh->id; /* skb can be freed */
hfcpci_fill_dfifo(dch->hw);
ret = 0;
spin_unlock_irqrestore(&hc->lock, flags);
queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
} else
spin_unlock_irqrestore(&hc->lock, flags);
return ret;
case PH_ACTIVATE_REQ:
spin_lock_irqsave(&hc->lock, flags);
if (hc->hw.protocol == ISDN_P_NT_S0) {
ret = 0;
if (test_bit(HFC_CFG_MASTER, &hc->cfg))
hc->hw.mst_m |= HFCPCI_MASTER;
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
if (test_bit(FLG_ACTIVE, &dch->Flags)) {
spin_unlock_irqrestore(&hc->lock, flags);
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
break;
}
test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
HFCPCI_DO_ACTION | 1);
} else
ret = l1_event(dch->l1, hh->prim);
spin_unlock_irqrestore(&hc->lock, flags);
break;
case PH_DEACTIVATE_REQ:
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
spin_lock_irqsave(&hc->lock, flags);
if (hc->hw.protocol == ISDN_P_NT_S0) {
/* prepare deactivation */
Write_hfc(hc, HFCPCI_STATES, 0x40);
skb_queue_purge(&dch->squeue);
if (dch->tx_skb) {
dev_kfree_skb(dch->tx_skb);
dch->tx_skb = NULL;
}
dch->tx_idx = 0;
if (dch->rx_skb) {
dev_kfree_skb(dch->rx_skb);
dch->rx_skb = NULL;
}
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
del_timer(&dch->timer);
#ifdef FIXME
if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
dchannel_sched_event(&hc->dch, D_CLEARBUSY);
#endif
hc->hw.mst_m &= ~HFCPCI_MASTER;
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
ret = 0;
} else {
ret = l1_event(dch->l1, hh->prim);
}
spin_unlock_irqrestore(&hc->lock, flags);
break;
}
if (!ret)
dev_kfree_skb(skb);
return ret;
}
/*
* Layer2 -> Layer 1 Bchannel data
*/
static int
hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct hfc_pci *hc = bch->hw;
int ret = -EINVAL;
struct mISDNhead *hh = mISDN_HEAD_P(skb);
unsigned long flags;
switch (hh->prim) {
case PH_DATA_REQ:
spin_lock_irqsave(&hc->lock, flags);
ret = bchannel_senddata(bch, skb);
if (ret > 0) { /* direct TX */
hfcpci_fill_fifo(bch);
ret = 0;
}
spin_unlock_irqrestore(&hc->lock, flags);
return ret;
case PH_ACTIVATE_REQ:
spin_lock_irqsave(&hc->lock, flags);
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
ret = mode_hfcpci(bch, bch->nr, ch->protocol);
else
ret = 0;
spin_unlock_irqrestore(&hc->lock, flags);
if (!ret)
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_KERNEL);
break;
case PH_DEACTIVATE_REQ:
deactivate_bchannel(bch);
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_KERNEL);
ret = 0;
break;
}
if (!ret)
dev_kfree_skb(skb);
return ret;
}
/*
* called for card init message
*/
static void
inithfcpci(struct hfc_pci *hc)
{
printk(KERN_DEBUG "inithfcpci: entered\n");
setup_timer(&hc->dch.timer, (void *)hfcpci_dbusy_timer,
(long)&hc->dch);
hc->chanlimit = 2;
mode_hfcpci(&hc->bch[0], 1, -1);
mode_hfcpci(&hc->bch[1], 2, -1);
}
static int
init_card(struct hfc_pci *hc)
{
int cnt = 3;
u_long flags;
printk(KERN_DEBUG "init_card: entered\n");
spin_lock_irqsave(&hc->lock, flags);
disable_hwirq(hc);
spin_unlock_irqrestore(&hc->lock, flags);
if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
printk(KERN_WARNING
"mISDN: couldn't get interrupt %d\n", hc->irq);
return -EIO;
}
spin_lock_irqsave(&hc->lock, flags);
reset_hfcpci(hc);
while (cnt) {
inithfcpci(hc);
/*
* Finally enable IRQ output
* this is only allowed, if an IRQ routine is already
* established for this HFC, so don't do that earlier
*/
enable_hwirq(hc);
spin_unlock_irqrestore(&hc->lock, flags);
/* Timeout 80ms */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((80 * HZ) / 1000);
printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
hc->irq, hc->irqcnt);
/* now switch timer interrupt off */
spin_lock_irqsave(&hc->lock, flags);
hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
/* reinit mode reg */
Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
if (!hc->irqcnt) {
printk(KERN_WARNING
"HFC PCI: IRQ(%d) getting no interrupts "
"during init %d\n", hc->irq, 4 - cnt);
if (cnt == 1)
break;
else {
reset_hfcpci(hc);
cnt--;
}
} else {
spin_unlock_irqrestore(&hc->lock, flags);
hc->initdone = 1;
return 0;
}
}
disable_hwirq(hc);
spin_unlock_irqrestore(&hc->lock, flags);
free_irq(hc->irq, hc);
return -EIO;
}
static int
channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
{
int ret = 0;
u_char slot;
switch (cq->op) {
case MISDN_CTRL_GETOP:
cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
break;
case MISDN_CTRL_LOOP:
/* channel 0 disabled loop */
if (cq->channel < 0 || cq->channel > 2) {
ret = -EINVAL;
break;
}
if (cq->channel & 1) {
if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
slot = 0xC0;
else
slot = 0x80;
printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
__func__, slot);
Write_hfc(hc, HFCPCI_B1_SSL, slot);
Write_hfc(hc, HFCPCI_B1_RSL, slot);
hc->hw.conn = (hc->hw.conn & ~7) | 6;
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
}
if (cq->channel & 2) {
if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
slot = 0xC1;
else
slot = 0x81;
printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
__func__, slot);
Write_hfc(hc, HFCPCI_B2_SSL, slot);
Write_hfc(hc, HFCPCI_B2_RSL, slot);
hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
}
if (cq->channel & 3)
hc->hw.trm |= 0x80; /* enable IOM-loop */
else {
hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
hc->hw.trm &= 0x7f; /* disable IOM-loop */
}
Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
break;
case MISDN_CTRL_CONNECT:
if (cq->channel == cq->p1) {
ret = -EINVAL;
break;
}
if (cq->channel < 1 || cq->channel > 2 ||
cq->p1 < 1 || cq->p1 > 2) {
ret = -EINVAL;
break;
}
if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
slot = 0xC0;
else
slot = 0x80;
printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
__func__, slot);
Write_hfc(hc, HFCPCI_B1_SSL, slot);
Write_hfc(hc, HFCPCI_B2_RSL, slot);
if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
slot = 0xC1;
else
slot = 0x81;
printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
__func__, slot);
Write_hfc(hc, HFCPCI_B2_SSL, slot);
Write_hfc(hc, HFCPCI_B1_RSL, slot);
hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
hc->hw.trm |= 0x80;
Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
break;
case MISDN_CTRL_DISCONNECT:
hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
hc->hw.trm &= 0x7f; /* disable IOM-loop */
break;
case MISDN_CTRL_L1_TIMER3:
ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
break;
default:
printk(KERN_WARNING "%s: unknown Op %x\n",
__func__, cq->op);
ret = -EINVAL;
break;
}
return ret;
}
static int
open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
struct channel_req *rq)
{
int err = 0;
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
hc->dch.dev.id, __builtin_return_address(0));
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
if (rq->adr.channel == 1) {
/* TODO: E-Channel */
return -EINVAL;
}
if (!hc->initdone) {
if (rq->protocol == ISDN_P_TE_S0) {
err = create_l1(&hc->dch, hfc_l1callback);
if (err)
return err;
}
hc->hw.protocol = rq->protocol;
ch->protocol = rq->protocol;
err = init_card(hc);
if (err)
return err;
} else {
if (rq->protocol != ch->protocol) {
if (hc->hw.protocol == ISDN_P_TE_S0)
l1_event(hc->dch.l1, CLOSE_CHANNEL);
if (rq->protocol == ISDN_P_TE_S0) {
err = create_l1(&hc->dch, hfc_l1callback);
if (err)
return err;
}
hc->hw.protocol = rq->protocol;
ch->protocol = rq->protocol;
hfcpci_setmode(hc);
}
}
if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
0, NULL, GFP_KERNEL);
}
rq->ch = ch;
if (!try_module_get(THIS_MODULE))
printk(KERN_WARNING "%s:cannot get module\n", __func__);
return 0;
}
static int
open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
{
struct bchannel *bch;
if (rq->adr.channel == 0 || rq->adr.channel > 2)
return -EINVAL;
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
bch = &hc->bch[rq->adr.channel - 1];
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
return -EBUSY; /* b-channel can be only open once */
bch->ch.protocol = rq->protocol;
rq->ch = &bch->ch; /* TODO: E-channel */
if (!try_module_get(THIS_MODULE))
printk(KERN_WARNING "%s:cannot get module\n", __func__);
return 0;
}
/*
* device control function
*/
static int
hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
struct dchannel *dch = container_of(dev, struct dchannel, dev);
struct hfc_pci *hc = dch->hw;
struct channel_req *rq;
int err = 0;
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: cmd:%x %p\n",
__func__, cmd, arg);
switch (cmd) {
case OPEN_CHANNEL:
rq = arg;
if ((rq->protocol == ISDN_P_TE_S0) ||
(rq->protocol == ISDN_P_NT_S0))
err = open_dchannel(hc, ch, rq);
else
err = open_bchannel(hc, rq);
break;
case CLOSE_CHANNEL:
if (debug & DEBUG_HW_OPEN)
printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
__func__, hc->dch.dev.id,
__builtin_return_address(0));
module_put(THIS_MODULE);
break;
case CONTROL_CHANNEL:
err = channel_ctrl(hc, arg);
break;
default:
if (dch->debug & DEBUG_HW)
printk(KERN_DEBUG "%s: unknown command %x\n",
__func__, cmd);
return -EINVAL;
}
return err;
}
static int
setup_hw(struct hfc_pci *hc)
{
void *buffer;
printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
hc->hw.cirm = 0;
hc->dch.state = 0;
pci_set_master(hc->pdev);
if (!hc->irq) {
printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
return 1;
}
hc->hw.pci_io =
(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
if (!hc->hw.pci_io) {
printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
return 1;
}
/* Allocate memory for FIFOS */
/* the memory needs to be on a 32k boundary within the first 4G */
pci_set_dma_mask(hc->pdev, 0xFFFF8000);
buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
/* We silently assume the address is okay if nonzero */
if (!buffer) {
printk(KERN_WARNING
"HFC-PCI: Error allocating memory for FIFO!\n");
return 1;
}
hc->hw.fifos = buffer;
pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
printk(KERN_INFO
"HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
(u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
(u_long) hc->hw.dmahandle, hc->irq, HZ);
/* enable memory mapped ports, disable busmaster */
pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
hc->hw.int_m2 = 0;
disable_hwirq(hc);
hc->hw.int_m1 = 0;
Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
/* At this point the needed PCI config is done */
/* fifos are still not enabled */
setup_timer(&hc->hw.timer, (void *)hfcpci_Timer, (long)hc);
/* default PCM master */
test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
return 0;
}
static void
release_card(struct hfc_pci *hc) {
u_long flags;
spin_lock_irqsave(&hc->lock, flags);
hc->hw.int_m2 = 0; /* interrupt output off ! */
disable_hwirq(hc);
mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
if (hc->dch.timer.function != NULL) {
del_timer(&hc->dch.timer);
hc->dch.timer.function = NULL;
}
spin_unlock_irqrestore(&hc->lock, flags);
if (hc->hw.protocol == ISDN_P_TE_S0)
l1_event(hc->dch.l1, CLOSE_CHANNEL);
if (hc->initdone)
free_irq(hc->irq, hc);
release_io_hfcpci(hc); /* must release after free_irq! */
mISDN_unregister_device(&hc->dch.dev);
mISDN_freebchannel(&hc->bch[1]);
mISDN_freebchannel(&hc->bch[0]);
mISDN_freedchannel(&hc->dch);
pci_set_drvdata(hc->pdev, NULL);
kfree(hc);
}
static int
setup_card(struct hfc_pci *card)
{
int err = -EINVAL;
u_int i;
char name[MISDN_MAX_IDLEN];
card->dch.debug = debug;
spin_lock_init(&card->lock);
mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
card->dch.hw = card;
card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
card->dch.dev.D.send = hfcpci_l2l1D;
card->dch.dev.D.ctrl = hfc_dctrl;
card->dch.dev.nrbchan = 2;
for (i = 0; i < 2; i++) {
card->bch[i].nr = i + 1;
set_channelmap(i + 1, card->dch.dev.channelmap);
card->bch[i].debug = debug;
mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
card->bch[i].hw = card;
card->bch[i].ch.send = hfcpci_l2l1B;
card->bch[i].ch.ctrl = hfc_bctrl;
card->bch[i].ch.nr = i + 1;
list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
}
err = setup_hw(card);
if (err)
goto error;
snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
if (err)
goto error;
HFC_cnt++;
printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
return 0;
error:
mISDN_freebchannel(&card->bch[1]);
mISDN_freebchannel(&card->bch[0]);
mISDN_freedchannel(&card->dch);
kfree(card);
return err;
}
/* private data in the PCI devices list */
struct _hfc_map {
u_int subtype;
u_int flag;
char *name;
};
static const struct _hfc_map hfc_map[] =
{
{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
{HFC_CCD_B000, 0, "Billion B000"},
{HFC_CCD_B006, 0, "Billion B006"},
{HFC_CCD_B007, 0, "Billion B007"},
{HFC_CCD_B008, 0, "Billion B008"},
{HFC_CCD_B009, 0, "Billion B009"},
{HFC_CCD_B00A, 0, "Billion B00A"},
{HFC_CCD_B00B, 0, "Billion B00B"},
{HFC_CCD_B00C, 0, "Billion B00C"},
{HFC_CCD_B100, 0, "Seyeon B100"},
{HFC_CCD_B700, 0, "Primux II S0 B700"},
{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
{HFC_BERKOM_A1T, 0, "German telekom A1T"},
{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
{HFC_DIGI_DF_M_IOM2_E, 0,
"Digi International DataFire Micro V IOM2 (Europe)"},
{HFC_DIGI_DF_M_E, 0,
"Digi International DataFire Micro V (Europe)"},
{HFC_DIGI_DF_M_IOM2_A, 0,
"Digi International DataFire Micro V IOM2 (North America)"},
{HFC_DIGI_DF_M_A, 0,
"Digi International DataFire Micro V (North America)"},
{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
{},
};
static const struct pci_device_id hfc_ids[] =
{
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
(unsigned long) &hfc_map[0] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
(unsigned long) &hfc_map[1] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
(unsigned long) &hfc_map[2] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
(unsigned long) &hfc_map[3] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
(unsigned long) &hfc_map[4] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
(unsigned long) &hfc_map[5] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
(unsigned long) &hfc_map[6] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
(unsigned long) &hfc_map[7] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
(unsigned long) &hfc_map[8] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
(unsigned long) &hfc_map[9] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
(unsigned long) &hfc_map[10] },
{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
(unsigned long) &hfc_map[11] },
{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
(unsigned long) &hfc_map[12] },
{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
(unsigned long) &hfc_map[13] },
{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
(unsigned long) &hfc_map[14] },
{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
(unsigned long) &hfc_map[15] },
{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
(unsigned long) &hfc_map[16] },
{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
(unsigned long) &hfc_map[17] },
{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
(unsigned long) &hfc_map[18] },
{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
(unsigned long) &hfc_map[19] },
{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
(unsigned long) &hfc_map[20] },
{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
(unsigned long) &hfc_map[21] },
{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
(unsigned long) &hfc_map[22] },
{},
};
static int
hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err = -ENOMEM;
struct hfc_pci *card;
struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
if (!card) {
printk(KERN_ERR "No kmem for HFC card\n");
return err;
}
card->pdev = pdev;
card->subtype = m->subtype;
err = pci_enable_device(pdev);
if (err) {
kfree(card);
return err;
}
printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
m->name, pci_name(pdev));
card->irq = pdev->irq;
pci_set_drvdata(pdev, card);
err = setup_card(card);
if (err)
pci_set_drvdata(pdev, NULL);
return err;
}
static void
hfc_remove_pci(struct pci_dev *pdev)
{
struct hfc_pci *card = pci_get_drvdata(pdev);
if (card)
release_card(card);
else
if (debug)
printk(KERN_DEBUG "%s: drvdata already removed\n",
__func__);
}
static struct pci_driver hfc_driver = {
.name = "hfcpci",
.probe = hfc_probe,
.remove = hfc_remove_pci,
.id_table = hfc_ids,
};
static int
_hfcpci_softirq(struct device *dev, void *arg)
{
struct hfc_pci *hc = dev_get_drvdata(dev);
struct bchannel *bch;
if (hc == NULL)
return 0;
if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
spin_lock(&hc->lock);
bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
main_rec_hfcpci(bch);
tx_birq(bch);
}
bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
main_rec_hfcpci(bch);
tx_birq(bch);
}
spin_unlock(&hc->lock);
}
return 0;
}
static void
hfcpci_softirq(void *arg)
{
WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, arg,
_hfcpci_softirq) != 0);
/* if next event would be in the past ... */
if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
hfc_jiffies = jiffies + 1;
else
hfc_jiffies += tics;
hfc_tl.expires = hfc_jiffies;
add_timer(&hfc_tl);
}
static int __init
HFC_init(void)
{
int err;
if (!poll)
poll = HFCPCI_BTRANS_THRESHOLD;
if (poll != HFCPCI_BTRANS_THRESHOLD) {
tics = (poll * HZ) / 8000;
if (tics < 1)
tics = 1;
poll = (tics * 8000) / HZ;
if (poll > 256 || poll < 8) {
printk(KERN_ERR "%s: Wrong poll value %d not in range "
"of 8..256.\n", __func__, poll);
err = -EINVAL;
return err;
}
}
if (poll != HFCPCI_BTRANS_THRESHOLD) {
printk(KERN_INFO "%s: Using alternative poll value of %d\n",
__func__, poll);
hfc_tl.function = (void *)hfcpci_softirq;
hfc_tl.data = 0;
init_timer(&hfc_tl);
hfc_tl.expires = jiffies + tics;
hfc_jiffies = hfc_tl.expires;
add_timer(&hfc_tl);
} else
tics = 0; /* indicate the use of controller's timer */
err = pci_register_driver(&hfc_driver);
if (err) {
if (timer_pending(&hfc_tl))
del_timer(&hfc_tl);
}
return err;
}
static void __exit
HFC_cleanup(void)
{
if (timer_pending(&hfc_tl))
del_timer(&hfc_tl);
pci_unregister_driver(&hfc_driver);
}
module_init(HFC_init);
module_exit(HFC_cleanup);
MODULE_DEVICE_TABLE(pci, hfc_ids);