linux/fs/btrfs/bio.c
Christoph Hellwig 69ccf3f424 btrfs: handle recording of zoned writes in the storage layer
Move the code that splits the ordered extents and records the physical
location for them to the storage layer so that the higher level consumers
don't have to care about physical block numbers at all.  This will also
allow to eventually remove accounting for the zone append write sizes in
the upper layer with a little bit more block layer work.

Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15 19:38:52 +01:00

762 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
* Copyright (C) 2022 Christoph Hellwig.
*/
#include <linux/bio.h>
#include "bio.h"
#include "ctree.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "check-integrity.h"
#include "dev-replace.h"
#include "rcu-string.h"
#include "zoned.h"
#include "file-item.h"
static struct bio_set btrfs_bioset;
static struct bio_set btrfs_repair_bioset;
static mempool_t btrfs_failed_bio_pool;
struct btrfs_failed_bio {
struct btrfs_bio *bbio;
int num_copies;
atomic_t repair_count;
};
/*
* Initialize a btrfs_bio structure. This skips the embedded bio itself as it
* is already initialized by the block layer.
*/
static inline void btrfs_bio_init(struct btrfs_bio *bbio,
struct btrfs_inode *inode,
btrfs_bio_end_io_t end_io, void *private)
{
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
bbio->inode = inode;
bbio->end_io = end_io;
bbio->private = private;
}
/*
* Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
* btrfs, and is used for all I/O submitted through btrfs_submit_bio.
*
* Just like the underlying bio_alloc_bioset it will not fail as it is backed by
* a mempool.
*/
struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
struct btrfs_inode *inode,
btrfs_bio_end_io_t end_io, void *private)
{
struct bio *bio;
bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
btrfs_bio_init(btrfs_bio(bio), inode, end_io, private);
return bio;
}
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
struct btrfs_inode *inode,
btrfs_bio_end_io_t end_io, void *private)
{
struct bio *bio;
struct btrfs_bio *bbio;
ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio, inode, end_io, private);
bio_trim(bio, offset >> 9, size >> 9);
return bio;
}
static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == fbio->num_copies)
return cur_mirror + 1 - fbio->num_copies;
return cur_mirror + 1;
}
static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
if (cur_mirror == 1)
return fbio->num_copies;
return cur_mirror - 1;
}
static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
{
if (atomic_dec_and_test(&fbio->repair_count)) {
fbio->bbio->end_io(fbio->bbio);
mempool_free(fbio, &btrfs_failed_bio_pool);
}
}
static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
struct btrfs_device *dev)
{
struct btrfs_failed_bio *fbio = repair_bbio->private;
struct btrfs_inode *inode = repair_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
int mirror = repair_bbio->mirror_num;
if (repair_bbio->bio.bi_status ||
!btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
mirror = next_repair_mirror(fbio, mirror);
if (mirror == fbio->bbio->mirror_num) {
btrfs_debug(fs_info, "no mirror left");
fbio->bbio->bio.bi_status = BLK_STS_IOERR;
goto done;
}
btrfs_submit_bio(fs_info, &repair_bbio->bio, mirror);
return;
}
do {
mirror = prev_repair_mirror(fbio, mirror);
btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
repair_bbio->file_offset, fs_info->sectorsize,
repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
bv->bv_page, bv->bv_offset, mirror);
} while (mirror != fbio->bbio->mirror_num);
done:
btrfs_repair_done(fbio);
bio_put(&repair_bbio->bio);
}
/*
* Try to kick off a repair read to the next available mirror for a bad sector.
*
* This primarily tries to recover good data to serve the actual read request,
* but also tries to write the good data back to the bad mirror(s) when a
* read succeeded to restore the redundancy.
*/
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
u32 bio_offset,
struct bio_vec *bv,
struct btrfs_failed_bio *fbio)
{
struct btrfs_inode *inode = failed_bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
const u32 sectorsize = fs_info->sectorsize;
const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
struct btrfs_bio *repair_bbio;
struct bio *repair_bio;
int num_copies;
int mirror;
btrfs_debug(fs_info, "repair read error: read error at %llu",
failed_bbio->file_offset + bio_offset);
num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
if (num_copies == 1) {
btrfs_debug(fs_info, "no copy to repair from");
failed_bbio->bio.bi_status = BLK_STS_IOERR;
return fbio;
}
if (!fbio) {
fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
fbio->bbio = failed_bbio;
fbio->num_copies = num_copies;
atomic_set(&fbio->repair_count, 1);
}
atomic_inc(&fbio->repair_count);
repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
&btrfs_repair_bioset);
repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
repair_bbio = btrfs_bio(repair_bio);
btrfs_bio_init(repair_bbio, failed_bbio->inode, NULL, fbio);
repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
btrfs_submit_bio(fs_info, repair_bio, mirror);
return fbio;
}
static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
{
struct btrfs_inode *inode = bbio->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
u32 sectorsize = fs_info->sectorsize;
struct bvec_iter *iter = &bbio->saved_iter;
blk_status_t status = bbio->bio.bi_status;
struct btrfs_failed_bio *fbio = NULL;
u32 offset = 0;
/*
* Hand off repair bios to the repair code as there is no upper level
* submitter for them.
*/
if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
btrfs_end_repair_bio(bbio, dev);
return;
}
/* Clear the I/O error. A failed repair will reset it. */
bbio->bio.bi_status = BLK_STS_OK;
while (iter->bi_size) {
struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
bv.bv_len = min(bv.bv_len, sectorsize);
if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
fbio = repair_one_sector(bbio, offset, &bv, fbio);
bio_advance_iter_single(&bbio->bio, iter, sectorsize);
offset += sectorsize;
}
if (bbio->csum != bbio->csum_inline)
kfree(bbio->csum);
if (fbio)
btrfs_repair_done(fbio);
else
bbio->end_io(bbio);
}
static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
{
if (!dev || !dev->bdev)
return;
if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
return;
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
if (!(bio->bi_opf & REQ_RAHEAD))
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
if (bio->bi_opf & REQ_PREFLUSH)
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
}
static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
struct bio *bio)
{
if (bio->bi_opf & REQ_META)
return fs_info->endio_meta_workers;
return fs_info->endio_workers;
}
static void btrfs_end_bio_work(struct work_struct *work)
{
struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
/* Metadata reads are checked and repaired by the submitter. */
if (bbio->bio.bi_opf & REQ_META)
bbio->end_io(bbio);
else
btrfs_check_read_bio(bbio, bbio->bio.bi_private);
}
static void btrfs_simple_end_io(struct bio *bio)
{
struct btrfs_bio *bbio = btrfs_bio(bio);
struct btrfs_device *dev = bio->bi_private;
struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
btrfs_bio_counter_dec(fs_info);
if (bio->bi_status)
btrfs_log_dev_io_error(bio, dev);
if (bio_op(bio) == REQ_OP_READ) {
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
} else {
if (bio_op(bio) == REQ_OP_ZONE_APPEND)
btrfs_record_physical_zoned(bbio);
bbio->end_io(bbio);
}
}
static void btrfs_raid56_end_io(struct bio *bio)
{
struct btrfs_io_context *bioc = bio->bi_private;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
bbio->mirror_num = bioc->mirror_num;
if (bio_op(bio) == REQ_OP_READ && !(bbio->bio.bi_opf & REQ_META))
btrfs_check_read_bio(bbio, NULL);
else
bbio->end_io(bbio);
btrfs_put_bioc(bioc);
}
static void btrfs_orig_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
struct btrfs_io_context *bioc = stripe->bioc;
struct btrfs_bio *bbio = btrfs_bio(bio);
btrfs_bio_counter_dec(bioc->fs_info);
if (bio->bi_status) {
atomic_inc(&bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
}
/*
* Only send an error to the higher layers if it is beyond the tolerance
* threshold.
*/
if (atomic_read(&bioc->error) > bioc->max_errors)
bio->bi_status = BLK_STS_IOERR;
else
bio->bi_status = BLK_STS_OK;
bbio->end_io(bbio);
btrfs_put_bioc(bioc);
}
static void btrfs_clone_write_end_io(struct bio *bio)
{
struct btrfs_io_stripe *stripe = bio->bi_private;
if (bio->bi_status) {
atomic_inc(&stripe->bioc->error);
btrfs_log_dev_io_error(bio, stripe->dev);
}
/* Pass on control to the original bio this one was cloned from */
bio_endio(stripe->bioc->orig_bio);
bio_put(bio);
}
static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
{
if (!dev || !dev->bdev ||
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
(btrfs_op(bio) == BTRFS_MAP_WRITE &&
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
bio_io_error(bio);
return;
}
bio_set_dev(bio, dev->bdev);
/*
* For zone append writing, bi_sector must point the beginning of the
* zone
*/
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
if (btrfs_dev_is_sequential(dev, physical)) {
u64 zone_start = round_down(physical,
dev->fs_info->zone_size);
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
} else {
bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
bio->bi_opf |= REQ_OP_WRITE;
}
}
btrfs_debug_in_rcu(dev->fs_info,
"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
dev->devid, bio->bi_iter.bi_size);
btrfsic_check_bio(bio);
submit_bio(bio);
}
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
{
struct bio *orig_bio = bioc->orig_bio, *bio;
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
if (dev_nr == bioc->num_stripes - 1) {
bio = orig_bio;
bio->bi_end_io = btrfs_orig_write_end_io;
} else {
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
bio_inc_remaining(orig_bio);
bio->bi_end_io = btrfs_clone_write_end_io;
}
bio->bi_private = &bioc->stripes[dev_nr];
bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
bioc->stripes[dev_nr].bioc = bioc;
btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
}
static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
/* Do not leak our private flag into the block layer. */
bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
if (!bioc) {
/* Single mirror read/write fast path. */
btrfs_bio(bio)->mirror_num = mirror_num;
bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
bio->bi_private = smap->dev;
bio->bi_end_io = btrfs_simple_end_io;
btrfs_submit_dev_bio(smap->dev, bio);
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
/* Parity RAID write or read recovery. */
bio->bi_private = bioc;
bio->bi_end_io = btrfs_raid56_end_io;
if (bio_op(bio) == REQ_OP_READ)
raid56_parity_recover(bio, bioc, mirror_num);
else
raid56_parity_write(bio, bioc);
} else {
/* Write to multiple mirrors. */
int total_devs = bioc->num_stripes;
bioc->orig_bio = bio;
for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
btrfs_submit_mirrored_bio(bioc, dev_nr);
}
}
static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
{
if (bbio->bio.bi_opf & REQ_META)
return btree_csum_one_bio(&bbio->bio);
return btrfs_csum_one_bio(bbio);
}
/*
* Async submit bios are used to offload expensive checksumming onto the worker
* threads.
*/
struct async_submit_bio {
struct btrfs_bio *bbio;
struct btrfs_io_context *bioc;
struct btrfs_io_stripe smap;
int mirror_num;
struct btrfs_work work;
};
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the btree.
*/
static void run_one_async_start(struct btrfs_work *work)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
blk_status_t ret;
ret = btrfs_bio_csum(async->bbio);
if (ret)
async->bbio->bio.bi_status = ret;
}
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the tree.
*/
static void run_one_async_done(struct btrfs_work *work)
{
struct async_submit_bio *async =
container_of(work, struct async_submit_bio, work);
struct bio *bio = &async->bbio->bio;
/* If an error occurred we just want to clean up the bio and move on. */
if (bio->bi_status) {
btrfs_bio_end_io(async->bbio, bio->bi_status);
return;
}
/*
* All of the bios that pass through here are from async helpers.
* Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
* This changes nothing when cgroups aren't in use.
*/
bio->bi_opf |= REQ_CGROUP_PUNT;
__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
}
static void run_one_async_free(struct btrfs_work *work)
{
kfree(container_of(work, struct async_submit_bio, work));
}
static bool should_async_write(struct btrfs_bio *bbio)
{
/*
* If the I/O is not issued by fsync and friends, (->sync_writers != 0),
* then try to defer the submission to a workqueue to parallelize the
* checksum calculation.
*/
if (atomic_read(&bbio->inode->sync_writers))
return false;
/*
* Submit metadata writes synchronously if the checksum implementation
* is fast, or we are on a zoned device that wants I/O to be submitted
* in order.
*/
if (bbio->bio.bi_opf & REQ_META) {
struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
if (btrfs_is_zoned(fs_info))
return false;
if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
return false;
}
return true;
}
/*
* Submit bio to an async queue.
*
* Return true if the work has been succesfuly submitted, else false.
*/
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap, int mirror_num)
{
struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
struct async_submit_bio *async;
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return false;
async->bbio = bbio;
async->bioc = bioc;
async->smap = *smap;
async->mirror_num = mirror_num;
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
run_one_async_free);
if (op_is_sync(bbio->bio.bi_opf))
btrfs_queue_work(fs_info->hipri_workers, &async->work);
else
btrfs_queue_work(fs_info->workers, &async->work);
return true;
}
void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
{
struct btrfs_bio *bbio = btrfs_bio(bio);
u64 logical = bio->bi_iter.bi_sector << 9;
u64 length = bio->bi_iter.bi_size;
u64 map_length = length;
struct btrfs_io_context *bioc = NULL;
struct btrfs_io_stripe smap;
blk_status_t ret;
int error;
btrfs_bio_counter_inc_blocked(fs_info);
error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
&bioc, &smap, &mirror_num, 1);
if (error) {
ret = errno_to_blk_status(error);
goto fail;
}
if (map_length < length) {
btrfs_crit(fs_info,
"mapping failed logical %llu bio len %llu len %llu",
logical, length, map_length);
BUG();
}
/*
* Save the iter for the end_io handler and preload the checksums for
* data reads.
*/
if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META)) {
bbio->saved_iter = bio->bi_iter;
ret = btrfs_lookup_bio_sums(bbio);
if (ret)
goto fail;
}
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
ret = btrfs_extract_ordered_extent(btrfs_bio(bio));
if (ret)
goto fail;
}
/*
* Csum items for reloc roots have already been cloned at this
* point, so they are handled as part of the no-checksum case.
*/
if (!(bbio->inode->flags & BTRFS_INODE_NODATASUM) &&
!test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
!btrfs_is_data_reloc_root(bbio->inode->root)) {
if (should_async_write(bbio) &&
btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
return;
ret = btrfs_bio_csum(bbio);
if (ret)
goto fail;
}
}
__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
return;
fail:
btrfs_bio_counter_dec(fs_info);
btrfs_bio_end_io(bbio, ret);
}
/*
* Submit a repair write.
*
* This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
* RAID setup. Here we only want to write the one bad copy, so we do the
* mapping ourselves and submit the bio directly.
*
* The I/O is issued synchronously to block the repair read completion from
* freeing the bio.
*/
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
u64 length, u64 logical, struct page *page,
unsigned int pg_offset, int mirror_num)
{
struct btrfs_device *dev;
struct bio_vec bvec;
struct bio bio;
u64 map_length = 0;
u64 sector;
struct btrfs_io_context *bioc = NULL;
int ret = 0;
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
BUG_ON(!mirror_num);
if (btrfs_repair_one_zone(fs_info, logical))
return 0;
map_length = length;
/*
* Avoid races with device replace and make sure our bioc has devices
* associated to its stripes that don't go away while we are doing the
* read repair operation.
*/
btrfs_bio_counter_inc_blocked(fs_info);
if (btrfs_is_parity_mirror(fs_info, logical, length)) {
/*
* Note that we don't use BTRFS_MAP_WRITE because it's supposed
* to update all raid stripes, but here we just want to correct
* bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
* stripe's dev and sector.
*/
ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
&map_length, &bioc, 0);
if (ret)
goto out_counter_dec;
ASSERT(bioc->mirror_num == 1);
} else {
ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
&map_length, &bioc, mirror_num);
if (ret)
goto out_counter_dec;
/*
* This happens when dev-replace is also running, and the
* mirror_num indicates the dev-replace target.
*
* In this case, we don't need to do anything, as the read
* error just means the replace progress hasn't reached our
* read range, and later replace routine would handle it well.
*/
if (mirror_num != bioc->mirror_num)
goto out_counter_dec;
}
sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
dev = bioc->stripes[bioc->mirror_num - 1].dev;
btrfs_put_bioc(bioc);
if (!dev || !dev->bdev ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
ret = -EIO;
goto out_counter_dec;
}
bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
bio.bi_iter.bi_sector = sector;
__bio_add_page(&bio, page, length, pg_offset);
btrfsic_check_bio(&bio);
ret = submit_bio_wait(&bio);
if (ret) {
/* try to remap that extent elsewhere? */
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
goto out_bio_uninit;
}
btrfs_info_rl_in_rcu(fs_info,
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
ino, start, btrfs_dev_name(dev), sector);
ret = 0;
out_bio_uninit:
bio_uninit(&bio);
out_counter_dec:
btrfs_bio_counter_dec(fs_info);
return ret;
}
int __init btrfs_bioset_init(void)
{
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
return -ENOMEM;
if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
goto out_free_bioset;
if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
sizeof(struct btrfs_failed_bio)))
goto out_free_repair_bioset;
return 0;
out_free_repair_bioset:
bioset_exit(&btrfs_repair_bioset);
out_free_bioset:
bioset_exit(&btrfs_bioset);
return -ENOMEM;
}
void __cold btrfs_bioset_exit(void)
{
mempool_exit(&btrfs_failed_bio_pool);
bioset_exit(&btrfs_repair_bioset);
bioset_exit(&btrfs_bioset);
}