linux/drivers/scsi/elx/efct/efct_scsi.c
James Smart 3e6414003b scsi: elx: efct: SCSI I/O handling routines
Routines for SCSI transport IO alloc, build and send I/O.

Link: https://lore.kernel.org/r/20210601235512.20104-25-jsmart2021@gmail.com
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Daniel Wagner <dwagner@suse.de>
Co-developed-by: Ram Vegesna <ram.vegesna@broadcom.com>
Signed-off-by: Ram Vegesna <ram.vegesna@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-06-15 23:39:32 -04:00

1160 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Broadcom. All Rights Reserved. The term
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
*/
#include "efct_driver.h"
#include "efct_hw.h"
#define enable_tsend_auto_resp(efct) 1
#define enable_treceive_auto_resp(efct) 0
#define SCSI_IOFMT "[%04x][i:%04x t:%04x h:%04x]"
#define scsi_io_printf(io, fmt, ...) \
efc_log_debug(io->efct, "[%s]" SCSI_IOFMT fmt, \
io->node->display_name, io->instance_index,\
io->init_task_tag, io->tgt_task_tag, io->hw_tag, ##__VA_ARGS__)
#define EFCT_LOG_ENABLE_SCSI_TRACE(efct) \
(((efct) != NULL) ? (((efct)->logmask & (1U << 2)) != 0) : 0)
#define scsi_io_trace(io, fmt, ...) \
do { \
if (EFCT_LOG_ENABLE_SCSI_TRACE(io->efct)) \
scsi_io_printf(io, fmt, ##__VA_ARGS__); \
} while (0)
struct efct_io *
efct_scsi_io_alloc(struct efct_node *node)
{
struct efct *efct;
struct efct_xport *xport;
struct efct_io *io;
unsigned long flags = 0;
efct = node->efct;
xport = efct->xport;
spin_lock_irqsave(&node->active_ios_lock, flags);
io = efct_io_pool_io_alloc(efct->xport->io_pool);
if (!io) {
efc_log_err(efct, "IO alloc Failed\n");
atomic_add_return(1, &xport->io_alloc_failed_count);
spin_unlock_irqrestore(&node->active_ios_lock, flags);
return NULL;
}
/* initialize refcount */
kref_init(&io->ref);
io->release = _efct_scsi_io_free;
/* set generic fields */
io->efct = efct;
io->node = node;
kref_get(&node->ref);
/* set type and name */
io->io_type = EFCT_IO_TYPE_IO;
io->display_name = "scsi_io";
io->cmd_ini = false;
io->cmd_tgt = true;
/* Add to node's active_ios list */
INIT_LIST_HEAD(&io->list_entry);
list_add(&io->list_entry, &node->active_ios);
spin_unlock_irqrestore(&node->active_ios_lock, flags);
return io;
}
void
_efct_scsi_io_free(struct kref *arg)
{
struct efct_io *io = container_of(arg, struct efct_io, ref);
struct efct *efct = io->efct;
struct efct_node *node = io->node;
unsigned long flags = 0;
scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
if (io->io_free) {
efc_log_err(efct, "IO already freed.\n");
return;
}
spin_lock_irqsave(&node->active_ios_lock, flags);
list_del_init(&io->list_entry);
spin_unlock_irqrestore(&node->active_ios_lock, flags);
kref_put(&node->ref, node->release);
io->node = NULL;
efct_io_pool_io_free(efct->xport->io_pool, io);
}
void
efct_scsi_io_free(struct efct_io *io)
{
scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
WARN_ON(!refcount_read(&io->ref.refcount));
kref_put(&io->ref, io->release);
}
static void
efct_target_io_cb(struct efct_hw_io *hio, u32 length, int status,
u32 ext_status, void *app)
{
u32 flags = 0;
struct efct_io *io = app;
struct efct *efct;
enum efct_scsi_io_status scsi_stat = EFCT_SCSI_STATUS_GOOD;
efct_scsi_io_cb_t cb;
if (!io || !io->efct) {
pr_err("%s: IO can not be NULL\n", __func__);
return;
}
scsi_io_trace(io, "status x%x ext_status x%x\n", status, ext_status);
efct = io->efct;
io->transferred += length;
if (!io->scsi_tgt_cb) {
efct_scsi_check_pending(efct);
return;
}
/* Call target server completion */
cb = io->scsi_tgt_cb;
/* Clear the callback before invoking the callback */
io->scsi_tgt_cb = NULL;
/* if status was good, and auto-good-response was set,
* then callback target-server with IO_CMPL_RSP_SENT,
* otherwise send IO_CMPL
*/
if (status == 0 && io->auto_resp)
flags |= EFCT_SCSI_IO_CMPL_RSP_SENT;
else
flags |= EFCT_SCSI_IO_CMPL;
switch (status) {
case SLI4_FC_WCQE_STATUS_SUCCESS:
scsi_stat = EFCT_SCSI_STATUS_GOOD;
break;
case SLI4_FC_WCQE_STATUS_DI_ERROR:
if (ext_status & SLI4_FC_DI_ERROR_GE)
scsi_stat = EFCT_SCSI_STATUS_DIF_GUARD_ERR;
else if (ext_status & SLI4_FC_DI_ERROR_AE)
scsi_stat = EFCT_SCSI_STATUS_DIF_APP_TAG_ERROR;
else if (ext_status & SLI4_FC_DI_ERROR_RE)
scsi_stat = EFCT_SCSI_STATUS_DIF_REF_TAG_ERROR;
else
scsi_stat = EFCT_SCSI_STATUS_DIF_UNKNOWN_ERROR;
break;
case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
switch (ext_status) {
case SLI4_FC_LOCAL_REJECT_INVALID_RELOFFSET:
case SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED:
scsi_stat = EFCT_SCSI_STATUS_ABORTED;
break;
case SLI4_FC_LOCAL_REJECT_INVALID_RPI:
scsi_stat = EFCT_SCSI_STATUS_NEXUS_LOST;
break;
case SLI4_FC_LOCAL_REJECT_NO_XRI:
scsi_stat = EFCT_SCSI_STATUS_NO_IO;
break;
default:
/*we have seen 0x0d(TX_DMA_FAILED err)*/
scsi_stat = EFCT_SCSI_STATUS_ERROR;
break;
}
break;
case SLI4_FC_WCQE_STATUS_TARGET_WQE_TIMEOUT:
/* target IO timed out */
scsi_stat = EFCT_SCSI_STATUS_TIMEDOUT_AND_ABORTED;
break;
case SLI4_FC_WCQE_STATUS_SHUTDOWN:
/* Target IO cancelled by HW */
scsi_stat = EFCT_SCSI_STATUS_SHUTDOWN;
break;
default:
scsi_stat = EFCT_SCSI_STATUS_ERROR;
break;
}
cb(io, scsi_stat, flags, io->scsi_tgt_cb_arg);
efct_scsi_check_pending(efct);
}
static int
efct_scsi_build_sgls(struct efct_hw *hw, struct efct_hw_io *hio,
struct efct_scsi_sgl *sgl, u32 sgl_count,
enum efct_hw_io_type type)
{
int rc;
u32 i;
struct efct *efct = hw->os;
/* Initialize HW SGL */
rc = efct_hw_io_init_sges(hw, hio, type);
if (rc) {
efc_log_err(efct, "efct_hw_io_init_sges failed: %d\n", rc);
return -EIO;
}
for (i = 0; i < sgl_count; i++) {
/* Add data SGE */
rc = efct_hw_io_add_sge(hw, hio, sgl[i].addr, sgl[i].len);
if (rc) {
efc_log_err(efct, "add sge failed cnt=%d rc=%d\n",
sgl_count, rc);
return rc;
}
}
return 0;
}
static void efc_log_sgl(struct efct_io *io)
{
struct efct_hw_io *hio = io->hio;
struct sli4_sge *data = NULL;
u32 *dword = NULL;
u32 i;
u32 n_sge;
scsi_io_trace(io, "def_sgl at 0x%x 0x%08x\n",
upper_32_bits(hio->def_sgl.phys),
lower_32_bits(hio->def_sgl.phys));
n_sge = (hio->sgl == &hio->def_sgl) ? hio->n_sge : hio->def_sgl_count;
for (i = 0, data = hio->def_sgl.virt; i < n_sge; i++, data++) {
dword = (u32 *)data;
scsi_io_trace(io, "SGL %2d 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, dword[0], dword[1], dword[2], dword[3]);
if (dword[2] & (1U << 31))
break;
}
}
static void
efct_scsi_check_pending_async_cb(struct efct_hw *hw, int status,
u8 *mqe, void *arg)
{
struct efct_io *io = arg;
if (io) {
efct_hw_done_t cb = io->hw_cb;
if (!io->hw_cb)
return;
io->hw_cb = NULL;
(cb)(io->hio, 0, SLI4_FC_WCQE_STATUS_DISPATCH_ERROR, 0, io);
}
}
static int
efct_scsi_io_dispatch_hw_io(struct efct_io *io, struct efct_hw_io *hio)
{
int rc = 0;
struct efct *efct = io->efct;
/* Got a HW IO;
* update ini/tgt_task_tag with HW IO info and dispatch
*/
io->hio = hio;
if (io->cmd_tgt)
io->tgt_task_tag = hio->indicator;
else if (io->cmd_ini)
io->init_task_tag = hio->indicator;
io->hw_tag = hio->reqtag;
hio->eq = io->hw_priv;
/* Copy WQ steering */
switch (io->wq_steering) {
case EFCT_SCSI_WQ_STEERING_CLASS >> EFCT_SCSI_WQ_STEERING_SHIFT:
hio->wq_steering = EFCT_HW_WQ_STEERING_CLASS;
break;
case EFCT_SCSI_WQ_STEERING_REQUEST >> EFCT_SCSI_WQ_STEERING_SHIFT:
hio->wq_steering = EFCT_HW_WQ_STEERING_REQUEST;
break;
case EFCT_SCSI_WQ_STEERING_CPU >> EFCT_SCSI_WQ_STEERING_SHIFT:
hio->wq_steering = EFCT_HW_WQ_STEERING_CPU;
break;
}
switch (io->io_type) {
case EFCT_IO_TYPE_IO:
rc = efct_scsi_build_sgls(&efct->hw, io->hio,
io->sgl, io->sgl_count, io->hio_type);
if (rc)
break;
if (EFCT_LOG_ENABLE_SCSI_TRACE(efct))
efc_log_sgl(io);
if (io->app_id)
io->iparam.fcp_tgt.app_id = io->app_id;
io->iparam.fcp_tgt.vpi = io->node->vpi;
io->iparam.fcp_tgt.rpi = io->node->rpi;
io->iparam.fcp_tgt.s_id = io->node->port_fc_id;
io->iparam.fcp_tgt.d_id = io->node->node_fc_id;
io->iparam.fcp_tgt.xmit_len = io->wire_len;
rc = efct_hw_io_send(&io->efct->hw, io->hio_type, io->hio,
&io->iparam, io->hw_cb, io);
break;
default:
scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type);
rc = -EIO;
break;
}
return rc;
}
static int
efct_scsi_io_dispatch_no_hw_io(struct efct_io *io)
{
int rc;
switch (io->io_type) {
case EFCT_IO_TYPE_ABORT: {
struct efct_hw_io *hio_to_abort = NULL;
hio_to_abort = io->io_to_abort->hio;
if (!hio_to_abort) {
/*
* If "IO to abort" does not have an
* associated HW IO, immediately make callback with
* success. The command must have been sent to
* the backend, but the data phase has not yet
* started, so we don't have a HW IO.
*
* Note: since the backend shims should be
* taking a reference on io_to_abort, it should not
* be possible to have been completed and freed by
* the backend before the abort got here.
*/
scsi_io_printf(io, "IO: not active\n");
((efct_hw_done_t)io->hw_cb)(io->hio, 0,
SLI4_FC_WCQE_STATUS_SUCCESS, 0, io);
rc = 0;
break;
}
/* HW IO is valid, abort it */
scsi_io_printf(io, "aborting\n");
rc = efct_hw_io_abort(&io->efct->hw, hio_to_abort,
io->send_abts, io->hw_cb, io);
if (rc) {
int status = SLI4_FC_WCQE_STATUS_SUCCESS;
efct_hw_done_t cb = io->hw_cb;
if (rc != -ENOENT && rc != -EINPROGRESS) {
status = -1;
scsi_io_printf(io, "Failed to abort IO rc=%d\n",
rc);
}
cb(io->hio, 0, status, 0, io);
rc = 0;
}
break;
}
default:
scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type);
rc = -EIO;
break;
}
return rc;
}
static struct efct_io *
efct_scsi_dispatch_pending(struct efct *efct)
{
struct efct_xport *xport = efct->xport;
struct efct_io *io = NULL;
struct efct_hw_io *hio;
unsigned long flags = 0;
int status;
spin_lock_irqsave(&xport->io_pending_lock, flags);
if (!list_empty(&xport->io_pending_list)) {
io = list_first_entry(&xport->io_pending_list, struct efct_io,
io_pending_link);
list_del_init(&io->io_pending_link);
}
if (!io) {
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
return NULL;
}
if (io->io_type == EFCT_IO_TYPE_ABORT) {
hio = NULL;
} else {
hio = efct_hw_io_alloc(&efct->hw);
if (!hio) {
/*
* No HW IO available.Put IO back on
* the front of pending list
*/
list_add(&xport->io_pending_list, &io->io_pending_link);
io = NULL;
} else {
hio->eq = io->hw_priv;
}
}
/* Must drop the lock before dispatching the IO */
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
if (!io)
return NULL;
/*
* We pulled an IO off the pending list,
* and either got an HW IO or don't need one
*/
atomic_sub_return(1, &xport->io_pending_count);
if (!hio)
status = efct_scsi_io_dispatch_no_hw_io(io);
else
status = efct_scsi_io_dispatch_hw_io(io, hio);
if (status) {
/*
* Invoke the HW callback, but do so in the
* separate execution context,provided by the
* NOP mailbox completion processing context
* by using efct_hw_async_call()
*/
if (efct_hw_async_call(&efct->hw,
efct_scsi_check_pending_async_cb, io)) {
efc_log_debug(efct, "call hw async failed\n");
}
}
return io;
}
void
efct_scsi_check_pending(struct efct *efct)
{
struct efct_xport *xport = efct->xport;
struct efct_io *io = NULL;
int count = 0;
unsigned long flags = 0;
int dispatch = 0;
/* Guard against recursion */
if (atomic_add_return(1, &xport->io_pending_recursing)) {
/* This function is already running. Decrement and return. */
atomic_sub_return(1, &xport->io_pending_recursing);
return;
}
while (efct_scsi_dispatch_pending(efct))
count++;
if (count) {
atomic_sub_return(1, &xport->io_pending_recursing);
return;
}
/*
* If nothing was removed from the list,
* we might be in a case where we need to abort an
* active IO and the abort is on the pending list.
* Look for an abort we can dispatch.
*/
spin_lock_irqsave(&xport->io_pending_lock, flags);
list_for_each_entry(io, &xport->io_pending_list, io_pending_link) {
if (io->io_type == EFCT_IO_TYPE_ABORT && io->io_to_abort->hio) {
/* This IO has a HW IO, so it is
* active. Dispatch the abort.
*/
dispatch = 1;
list_del_init(&io->io_pending_link);
atomic_sub_return(1, &xport->io_pending_count);
break;
}
}
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
if (dispatch) {
if (efct_scsi_io_dispatch_no_hw_io(io)) {
if (efct_hw_async_call(&efct->hw,
efct_scsi_check_pending_async_cb, io)) {
efc_log_debug(efct, "hw async failed\n");
}
}
}
atomic_sub_return(1, &xport->io_pending_recursing);
}
int
efct_scsi_io_dispatch(struct efct_io *io, void *cb)
{
struct efct_hw_io *hio;
struct efct *efct = io->efct;
struct efct_xport *xport = efct->xport;
unsigned long flags = 0;
io->hw_cb = cb;
/*
* if this IO already has a HW IO, then this is either
* not the first phase of the IO. Send it to the HW.
*/
if (io->hio)
return efct_scsi_io_dispatch_hw_io(io, io->hio);
/*
* We don't already have a HW IO associated with the IO. First check
* the pending list. If not empty, add IO to the tail and process the
* pending list.
*/
spin_lock_irqsave(&xport->io_pending_lock, flags);
if (!list_empty(&xport->io_pending_list)) {
/*
* If this is a low latency request,
* the put at the front of the IO pending
* queue, otherwise put it at the end of the queue.
*/
if (io->low_latency) {
INIT_LIST_HEAD(&io->io_pending_link);
list_add(&xport->io_pending_list, &io->io_pending_link);
} else {
INIT_LIST_HEAD(&io->io_pending_link);
list_add_tail(&io->io_pending_link,
&xport->io_pending_list);
}
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
atomic_add_return(1, &xport->io_pending_count);
atomic_add_return(1, &xport->io_total_pending);
/* process pending list */
efct_scsi_check_pending(efct);
return 0;
}
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
/*
* We don't have a HW IO associated with the IO and there's nothing
* on the pending list. Attempt to allocate a HW IO and dispatch it.
*/
hio = efct_hw_io_alloc(&io->efct->hw);
if (!hio) {
/* Couldn't get a HW IO. Save this IO on the pending list */
spin_lock_irqsave(&xport->io_pending_lock, flags);
INIT_LIST_HEAD(&io->io_pending_link);
list_add_tail(&io->io_pending_link, &xport->io_pending_list);
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
atomic_add_return(1, &xport->io_total_pending);
atomic_add_return(1, &xport->io_pending_count);
return 0;
}
/* We successfully allocated a HW IO; dispatch to HW */
return efct_scsi_io_dispatch_hw_io(io, hio);
}
int
efct_scsi_io_dispatch_abort(struct efct_io *io, void *cb)
{
struct efct *efct = io->efct;
struct efct_xport *xport = efct->xport;
unsigned long flags = 0;
io->hw_cb = cb;
/*
* For aborts, we don't need a HW IO, but we still want
* to pass through the pending list to preserve ordering.
* Thus, if the pending list is not empty, add this abort
* to the pending list and process the pending list.
*/
spin_lock_irqsave(&xport->io_pending_lock, flags);
if (!list_empty(&xport->io_pending_list)) {
INIT_LIST_HEAD(&io->io_pending_link);
list_add_tail(&io->io_pending_link, &xport->io_pending_list);
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
atomic_add_return(1, &xport->io_pending_count);
atomic_add_return(1, &xport->io_total_pending);
/* process pending list */
efct_scsi_check_pending(efct);
return 0;
}
spin_unlock_irqrestore(&xport->io_pending_lock, flags);
/* nothing on pending list, dispatch abort */
return efct_scsi_io_dispatch_no_hw_io(io);
}
static inline int
efct_scsi_xfer_data(struct efct_io *io, u32 flags,
struct efct_scsi_sgl *sgl, u32 sgl_count, u64 xwire_len,
enum efct_hw_io_type type, int enable_ar,
efct_scsi_io_cb_t cb, void *arg)
{
struct efct *efct;
size_t residual = 0;
io->sgl_count = sgl_count;
efct = io->efct;
scsi_io_trace(io, "%s wire_len %llu\n",
(type == EFCT_HW_IO_TARGET_READ) ? "send" : "recv",
xwire_len);
io->hio_type = type;
io->scsi_tgt_cb = cb;
io->scsi_tgt_cb_arg = arg;
residual = io->exp_xfer_len - io->transferred;
io->wire_len = (xwire_len < residual) ? xwire_len : residual;
residual = (xwire_len - io->wire_len);
memset(&io->iparam, 0, sizeof(io->iparam));
io->iparam.fcp_tgt.ox_id = io->init_task_tag;
io->iparam.fcp_tgt.offset = io->transferred;
io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
io->iparam.fcp_tgt.timeout = io->timeout;
/* if this is the last data phase and there is no residual, enable
* auto-good-response
*/
if (enable_ar && (flags & EFCT_SCSI_LAST_DATAPHASE) && residual == 0 &&
((io->transferred + io->wire_len) == io->exp_xfer_len) &&
(!(flags & EFCT_SCSI_NO_AUTO_RESPONSE))) {
io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE;
io->auto_resp = true;
} else {
io->auto_resp = false;
}
/* save this transfer length */
io->xfer_req = io->wire_len;
/* Adjust the transferred count to account for overrun
* when the residual is calculated in efct_scsi_send_resp
*/
io->transferred += residual;
/* Adjust the SGL size if there is overrun */
if (residual) {
struct efct_scsi_sgl *sgl_ptr = &io->sgl[sgl_count - 1];
while (residual) {
size_t len = sgl_ptr->len;
if (len > residual) {
sgl_ptr->len = len - residual;
residual = 0;
} else {
sgl_ptr->len = 0;
residual -= len;
io->sgl_count--;
}
sgl_ptr--;
}
}
/* Set latency and WQ steering */
io->low_latency = (flags & EFCT_SCSI_LOW_LATENCY) != 0;
io->wq_steering = (flags & EFCT_SCSI_WQ_STEERING_MASK) >>
EFCT_SCSI_WQ_STEERING_SHIFT;
io->wq_class = (flags & EFCT_SCSI_WQ_CLASS_MASK) >>
EFCT_SCSI_WQ_CLASS_SHIFT;
if (efct->xport) {
struct efct_xport *xport = efct->xport;
if (type == EFCT_HW_IO_TARGET_READ) {
xport->fcp_stats.input_requests++;
xport->fcp_stats.input_bytes += xwire_len;
} else if (type == EFCT_HW_IO_TARGET_WRITE) {
xport->fcp_stats.output_requests++;
xport->fcp_stats.output_bytes += xwire_len;
}
}
return efct_scsi_io_dispatch(io, efct_target_io_cb);
}
int
efct_scsi_send_rd_data(struct efct_io *io, u32 flags,
struct efct_scsi_sgl *sgl, u32 sgl_count, u64 len,
efct_scsi_io_cb_t cb, void *arg)
{
return efct_scsi_xfer_data(io, flags, sgl, sgl_count,
len, EFCT_HW_IO_TARGET_READ,
enable_tsend_auto_resp(io->efct), cb, arg);
}
int
efct_scsi_recv_wr_data(struct efct_io *io, u32 flags,
struct efct_scsi_sgl *sgl, u32 sgl_count, u64 len,
efct_scsi_io_cb_t cb, void *arg)
{
return efct_scsi_xfer_data(io, flags, sgl, sgl_count, len,
EFCT_HW_IO_TARGET_WRITE,
enable_treceive_auto_resp(io->efct), cb, arg);
}
int
efct_scsi_send_resp(struct efct_io *io, u32 flags,
struct efct_scsi_cmd_resp *rsp,
efct_scsi_io_cb_t cb, void *arg)
{
struct efct *efct;
int residual;
/* Always try auto resp */
bool auto_resp = true;
u8 scsi_status = 0;
u16 scsi_status_qualifier = 0;
u8 *sense_data = NULL;
u32 sense_data_length = 0;
efct = io->efct;
if (rsp) {
scsi_status = rsp->scsi_status;
scsi_status_qualifier = rsp->scsi_status_qualifier;
sense_data = rsp->sense_data;
sense_data_length = rsp->sense_data_length;
residual = rsp->residual;
} else {
residual = io->exp_xfer_len - io->transferred;
}
io->wire_len = 0;
io->hio_type = EFCT_HW_IO_TARGET_RSP;
io->scsi_tgt_cb = cb;
io->scsi_tgt_cb_arg = arg;
memset(&io->iparam, 0, sizeof(io->iparam));
io->iparam.fcp_tgt.ox_id = io->init_task_tag;
io->iparam.fcp_tgt.offset = 0;
io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
io->iparam.fcp_tgt.timeout = io->timeout;
/* Set low latency queueing request */
io->low_latency = (flags & EFCT_SCSI_LOW_LATENCY) != 0;
io->wq_steering = (flags & EFCT_SCSI_WQ_STEERING_MASK) >>
EFCT_SCSI_WQ_STEERING_SHIFT;
io->wq_class = (flags & EFCT_SCSI_WQ_CLASS_MASK) >>
EFCT_SCSI_WQ_CLASS_SHIFT;
if (scsi_status != 0 || residual || sense_data_length) {
struct fcp_resp_with_ext *fcprsp = io->rspbuf.virt;
u8 *sns_data;
if (!fcprsp) {
efc_log_err(efct, "NULL response buffer\n");
return -EIO;
}
sns_data = (u8 *)io->rspbuf.virt + sizeof(*fcprsp);
auto_resp = false;
memset(fcprsp, 0, sizeof(*fcprsp));
io->wire_len += sizeof(*fcprsp);
fcprsp->resp.fr_status = scsi_status;
fcprsp->resp.fr_retry_delay =
cpu_to_be16(scsi_status_qualifier);
/* set residual status if necessary */
if (residual != 0) {
/* FCP: if data transferred is less than the
* amount expected, then this is an underflow.
* If data transferred would have been greater
* than the amount expected this is an overflow
*/
if (residual > 0) {
fcprsp->resp.fr_flags |= FCP_RESID_UNDER;
fcprsp->ext.fr_resid = cpu_to_be32(residual);
} else {
fcprsp->resp.fr_flags |= FCP_RESID_OVER;
fcprsp->ext.fr_resid = cpu_to_be32(-residual);
}
}
if (EFCT_SCSI_SNS_BUF_VALID(sense_data) && sense_data_length) {
if (sense_data_length > SCSI_SENSE_BUFFERSIZE) {
efc_log_err(efct, "Sense exceeds max size.\n");
return -EIO;
}
fcprsp->resp.fr_flags |= FCP_SNS_LEN_VAL;
memcpy(sns_data, sense_data, sense_data_length);
fcprsp->ext.fr_sns_len = cpu_to_be32(sense_data_length);
io->wire_len += sense_data_length;
}
io->sgl[0].addr = io->rspbuf.phys;
io->sgl[0].dif_addr = 0;
io->sgl[0].len = io->wire_len;
io->sgl_count = 1;
}
if (auto_resp)
io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE;
return efct_scsi_io_dispatch(io, efct_target_io_cb);
}
static int
efct_target_bls_resp_cb(struct efct_hw_io *hio, u32 length, int status,
u32 ext_status, void *app)
{
struct efct_io *io = app;
struct efct *efct;
enum efct_scsi_io_status bls_status;
efct = io->efct;
/* BLS isn't really a "SCSI" concept, but use SCSI status */
if (status) {
io_error_log(io, "s=%#x x=%#x\n", status, ext_status);
bls_status = EFCT_SCSI_STATUS_ERROR;
} else {
bls_status = EFCT_SCSI_STATUS_GOOD;
}
if (io->bls_cb) {
efct_scsi_io_cb_t bls_cb = io->bls_cb;
void *bls_cb_arg = io->bls_cb_arg;
io->bls_cb = NULL;
io->bls_cb_arg = NULL;
/* invoke callback */
bls_cb(io, bls_status, 0, bls_cb_arg);
}
efct_scsi_check_pending(efct);
return 0;
}
static int
efct_target_send_bls_resp(struct efct_io *io,
efct_scsi_io_cb_t cb, void *arg)
{
struct efct_node *node = io->node;
struct sli_bls_params *bls = &io->iparam.bls;
struct efct *efct = node->efct;
struct fc_ba_acc *acc;
int rc;
/* fill out IO structure with everything needed to send BA_ACC */
memset(&io->iparam, 0, sizeof(io->iparam));
bls->ox_id = io->init_task_tag;
bls->rx_id = io->abort_rx_id;
bls->vpi = io->node->vpi;
bls->rpi = io->node->rpi;
bls->s_id = U32_MAX;
bls->d_id = io->node->node_fc_id;
bls->rpi_registered = true;
acc = (void *)bls->payload;
acc->ba_ox_id = cpu_to_be16(bls->ox_id);
acc->ba_rx_id = cpu_to_be16(bls->rx_id);
acc->ba_high_seq_cnt = cpu_to_be16(U16_MAX);
/* generic io fields have already been populated */
/* set type and BLS-specific fields */
io->io_type = EFCT_IO_TYPE_BLS_RESP;
io->display_name = "bls_rsp";
io->hio_type = EFCT_HW_BLS_ACC;
io->bls_cb = cb;
io->bls_cb_arg = arg;
/* dispatch IO */
rc = efct_hw_bls_send(efct, FC_RCTL_BA_ACC, bls,
efct_target_bls_resp_cb, io);
return rc;
}
static int efct_bls_send_rjt_cb(struct efct_hw_io *hio, u32 length, int status,
u32 ext_status, void *app)
{
struct efct_io *io = app;
efct_scsi_io_free(io);
return 0;
}
struct efct_io *
efct_bls_send_rjt(struct efct_io *io, struct fc_frame_header *hdr)
{
struct efct_node *node = io->node;
struct sli_bls_params *bls = &io->iparam.bls;
struct efct *efct = node->efct;
struct fc_ba_rjt *acc;
int rc;
/* fill out BLS Response-specific fields */
io->io_type = EFCT_IO_TYPE_BLS_RESP;
io->display_name = "ba_rjt";
io->hio_type = EFCT_HW_BLS_RJT;
io->init_task_tag = be16_to_cpu(hdr->fh_ox_id);
/* fill out iparam fields */
memset(&io->iparam, 0, sizeof(io->iparam));
bls->ox_id = be16_to_cpu(hdr->fh_ox_id);
bls->rx_id = be16_to_cpu(hdr->fh_rx_id);
bls->vpi = io->node->vpi;
bls->rpi = io->node->rpi;
bls->s_id = U32_MAX;
bls->d_id = io->node->node_fc_id;
bls->rpi_registered = true;
acc = (void *)bls->payload;
acc->br_reason = ELS_RJT_UNAB;
acc->br_explan = ELS_EXPL_NONE;
rc = efct_hw_bls_send(efct, FC_RCTL_BA_RJT, bls, efct_bls_send_rjt_cb,
io);
if (rc) {
efc_log_err(efct, "efct_scsi_io_dispatch() failed: %d\n", rc);
efct_scsi_io_free(io);
io = NULL;
}
return io;
}
int
efct_scsi_send_tmf_resp(struct efct_io *io,
enum efct_scsi_tmf_resp rspcode,
u8 addl_rsp_info[3],
efct_scsi_io_cb_t cb, void *arg)
{
int rc;
struct {
struct fcp_resp_with_ext rsp_ext;
struct fcp_resp_rsp_info info;
} *fcprsp;
u8 fcp_rspcode;
io->wire_len = 0;
switch (rspcode) {
case EFCT_SCSI_TMF_FUNCTION_COMPLETE:
fcp_rspcode = FCP_TMF_CMPL;
break;
case EFCT_SCSI_TMF_FUNCTION_SUCCEEDED:
case EFCT_SCSI_TMF_FUNCTION_IO_NOT_FOUND:
fcp_rspcode = FCP_TMF_CMPL;
break;
case EFCT_SCSI_TMF_FUNCTION_REJECTED:
fcp_rspcode = FCP_TMF_REJECTED;
break;
case EFCT_SCSI_TMF_INCORRECT_LOGICAL_UNIT_NUMBER:
fcp_rspcode = FCP_TMF_INVALID_LUN;
break;
case EFCT_SCSI_TMF_SERVICE_DELIVERY:
fcp_rspcode = FCP_TMF_FAILED;
break;
default:
fcp_rspcode = FCP_TMF_REJECTED;
break;
}
io->hio_type = EFCT_HW_IO_TARGET_RSP;
io->scsi_tgt_cb = cb;
io->scsi_tgt_cb_arg = arg;
if (io->tmf_cmd == EFCT_SCSI_TMF_ABORT_TASK) {
rc = efct_target_send_bls_resp(io, cb, arg);
return rc;
}
/* populate the FCP TMF response */
fcprsp = io->rspbuf.virt;
memset(fcprsp, 0, sizeof(*fcprsp));
fcprsp->rsp_ext.resp.fr_flags |= FCP_SNS_LEN_VAL;
if (addl_rsp_info) {
memcpy(fcprsp->info._fr_resvd, addl_rsp_info,
sizeof(fcprsp->info._fr_resvd));
}
fcprsp->info.rsp_code = fcp_rspcode;
io->wire_len = sizeof(*fcprsp);
fcprsp->rsp_ext.ext.fr_rsp_len =
cpu_to_be32(sizeof(struct fcp_resp_rsp_info));
io->sgl[0].addr = io->rspbuf.phys;
io->sgl[0].dif_addr = 0;
io->sgl[0].len = io->wire_len;
io->sgl_count = 1;
memset(&io->iparam, 0, sizeof(io->iparam));
io->iparam.fcp_tgt.ox_id = io->init_task_tag;
io->iparam.fcp_tgt.offset = 0;
io->iparam.fcp_tgt.cs_ctl = io->cs_ctl;
io->iparam.fcp_tgt.timeout = io->timeout;
rc = efct_scsi_io_dispatch(io, efct_target_io_cb);
return rc;
}
static int
efct_target_abort_cb(struct efct_hw_io *hio, u32 length, int status,
u32 ext_status, void *app)
{
struct efct_io *io = app;
struct efct *efct;
enum efct_scsi_io_status scsi_status;
efct_scsi_io_cb_t abort_cb;
void *abort_cb_arg;
efct = io->efct;
if (!io->abort_cb)
goto done;
abort_cb = io->abort_cb;
abort_cb_arg = io->abort_cb_arg;
io->abort_cb = NULL;
io->abort_cb_arg = NULL;
switch (status) {
case SLI4_FC_WCQE_STATUS_SUCCESS:
scsi_status = EFCT_SCSI_STATUS_GOOD;
break;
case SLI4_FC_WCQE_STATUS_LOCAL_REJECT:
switch (ext_status) {
case SLI4_FC_LOCAL_REJECT_NO_XRI:
scsi_status = EFCT_SCSI_STATUS_NO_IO;
break;
case SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS:
scsi_status = EFCT_SCSI_STATUS_ABORT_IN_PROGRESS;
break;
default:
/*we have seen 0x15 (abort in progress)*/
scsi_status = EFCT_SCSI_STATUS_ERROR;
break;
}
break;
case SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE:
scsi_status = EFCT_SCSI_STATUS_CHECK_RESPONSE;
break;
default:
scsi_status = EFCT_SCSI_STATUS_ERROR;
break;
}
/* invoke callback */
abort_cb(io->io_to_abort, scsi_status, 0, abort_cb_arg);
done:
/* done with IO to abort,efct_ref_get(): efct_scsi_tgt_abort_io() */
kref_put(&io->io_to_abort->ref, io->io_to_abort->release);
efct_io_pool_io_free(efct->xport->io_pool, io);
efct_scsi_check_pending(efct);
return 0;
}
int
efct_scsi_tgt_abort_io(struct efct_io *io, efct_scsi_io_cb_t cb, void *arg)
{
struct efct *efct;
struct efct_xport *xport;
int rc;
struct efct_io *abort_io = NULL;
efct = io->efct;
xport = efct->xport;
/* take a reference on IO being aborted */
if (kref_get_unless_zero(&io->ref) == 0) {
/* command no longer active */
scsi_io_printf(io, "command no longer active\n");
return -EIO;
}
/*
* allocate a new IO to send the abort request. Use efct_io_alloc()
* directly, as we need an IO object that will not fail allocation
* due to allocations being disabled (in efct_scsi_io_alloc())
*/
abort_io = efct_io_pool_io_alloc(efct->xport->io_pool);
if (!abort_io) {
atomic_add_return(1, &xport->io_alloc_failed_count);
kref_put(&io->ref, io->release);
return -EIO;
}
/* Save the target server callback and argument */
/* set generic fields */
abort_io->cmd_tgt = true;
abort_io->node = io->node;
/* set type and abort-specific fields */
abort_io->io_type = EFCT_IO_TYPE_ABORT;
abort_io->display_name = "tgt_abort";
abort_io->io_to_abort = io;
abort_io->send_abts = false;
abort_io->abort_cb = cb;
abort_io->abort_cb_arg = arg;
/* now dispatch IO */
rc = efct_scsi_io_dispatch_abort(abort_io, efct_target_abort_cb);
if (rc)
kref_put(&io->ref, io->release);
return rc;
}
void
efct_scsi_io_complete(struct efct_io *io)
{
if (io->io_free) {
efc_log_debug(io->efct, "completion for non-busy io tag 0x%x\n",
io->tag);
return;
}
scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name);
kref_put(&io->ref, io->release);
}