linux/arch/arm64/include/asm/arch_timer.h
Marc Zyngier 9ee840a960 arm64: Add CNT{P,V}CTSS_EL0 alternatives to cnt{p,v}ct_el0
CNTPCTSS_EL0 and CNTVCTSS_EL0 are alternatives to the usual
CNTPCT_EL0 and CNTVCT_EL0 that do not require a previous ISB
to be synchronised (SS stands for Self-Synchronising).

Use the ARM64_HAS_ECV capability to control alternative sequences
that switch to these low(er)-cost primitives. Note that the
counter access in the VDSO is for now left alone until we decide
whether we want to allow this.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-16-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2021-10-19 10:56:20 +01:00

236 lines
5.0 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* arch/arm64/include/asm/arch_timer.h
*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#ifndef __ASM_ARCH_TIMER_H
#define __ASM_ARCH_TIMER_H
#include <asm/barrier.h>
#include <asm/hwcap.h>
#include <asm/sysreg.h>
#include <linux/bug.h>
#include <linux/init.h>
#include <linux/jump_label.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <clocksource/arm_arch_timer.h>
#if IS_ENABLED(CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND)
#define has_erratum_handler(h) \
({ \
const struct arch_timer_erratum_workaround *__wa; \
__wa = __this_cpu_read(timer_unstable_counter_workaround); \
(__wa && __wa->h); \
})
#define erratum_handler(h) \
({ \
const struct arch_timer_erratum_workaround *__wa; \
__wa = __this_cpu_read(timer_unstable_counter_workaround); \
(__wa && __wa->h) ? ({ isb(); __wa->h;}) : arch_timer_##h; \
})
#else
#define has_erratum_handler(h) false
#define erratum_handler(h) (arch_timer_##h)
#endif
enum arch_timer_erratum_match_type {
ate_match_dt,
ate_match_local_cap_id,
ate_match_acpi_oem_info,
};
struct clock_event_device;
struct arch_timer_erratum_workaround {
enum arch_timer_erratum_match_type match_type;
const void *id;
const char *desc;
u64 (*read_cntpct_el0)(void);
u64 (*read_cntvct_el0)(void);
int (*set_next_event_phys)(unsigned long, struct clock_event_device *);
int (*set_next_event_virt)(unsigned long, struct clock_event_device *);
bool disable_compat_vdso;
};
DECLARE_PER_CPU(const struct arch_timer_erratum_workaround *,
timer_unstable_counter_workaround);
static inline notrace u64 arch_timer_read_cntpct_el0(void)
{
u64 cnt;
asm volatile(ALTERNATIVE("isb\n mrs %0, cntpct_el0",
"nop\n" __mrs_s("%0", SYS_CNTPCTSS_EL0),
ARM64_HAS_ECV)
: "=r" (cnt));
return cnt;
}
static inline notrace u64 arch_timer_read_cntvct_el0(void)
{
u64 cnt;
asm volatile(ALTERNATIVE("isb\n mrs %0, cntvct_el0",
"nop\n" __mrs_s("%0", SYS_CNTVCTSS_EL0),
ARM64_HAS_ECV)
: "=r" (cnt));
return cnt;
}
#define arch_timer_reg_read_stable(reg) \
({ \
u64 _val; \
\
preempt_disable_notrace(); \
_val = erratum_handler(read_ ## reg)(); \
preempt_enable_notrace(); \
\
_val; \
})
/*
* These register accessors are marked inline so the compiler can
* nicely work out which register we want, and chuck away the rest of
* the code.
*/
static __always_inline
void arch_timer_reg_write_cp15(int access, enum arch_timer_reg reg, u64 val)
{
if (access == ARCH_TIMER_PHYS_ACCESS) {
switch (reg) {
case ARCH_TIMER_REG_CTRL:
write_sysreg(val, cntp_ctl_el0);
isb();
break;
case ARCH_TIMER_REG_CVAL:
write_sysreg(val, cntp_cval_el0);
break;
default:
BUILD_BUG();
}
} else if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) {
case ARCH_TIMER_REG_CTRL:
write_sysreg(val, cntv_ctl_el0);
isb();
break;
case ARCH_TIMER_REG_CVAL:
write_sysreg(val, cntv_cval_el0);
break;
default:
BUILD_BUG();
}
} else {
BUILD_BUG();
}
}
static __always_inline
u64 arch_timer_reg_read_cp15(int access, enum arch_timer_reg reg)
{
if (access == ARCH_TIMER_PHYS_ACCESS) {
switch (reg) {
case ARCH_TIMER_REG_CTRL:
return read_sysreg(cntp_ctl_el0);
default:
BUILD_BUG();
}
} else if (access == ARCH_TIMER_VIRT_ACCESS) {
switch (reg) {
case ARCH_TIMER_REG_CTRL:
return read_sysreg(cntv_ctl_el0);
default:
BUILD_BUG();
}
}
BUILD_BUG();
unreachable();
}
static inline u32 arch_timer_get_cntfrq(void)
{
return read_sysreg(cntfrq_el0);
}
static inline u32 arch_timer_get_cntkctl(void)
{
return read_sysreg(cntkctl_el1);
}
static inline void arch_timer_set_cntkctl(u32 cntkctl)
{
write_sysreg(cntkctl, cntkctl_el1);
isb();
}
static __always_inline u64 __arch_counter_get_cntpct_stable(void)
{
u64 cnt;
cnt = arch_timer_reg_read_stable(cntpct_el0);
arch_counter_enforce_ordering(cnt);
return cnt;
}
static __always_inline u64 __arch_counter_get_cntpct(void)
{
u64 cnt;
asm volatile(ALTERNATIVE("isb\n mrs %0, cntpct_el0",
"nop\n" __mrs_s("%0", SYS_CNTPCTSS_EL0),
ARM64_HAS_ECV)
: "=r" (cnt));
arch_counter_enforce_ordering(cnt);
return cnt;
}
static __always_inline u64 __arch_counter_get_cntvct_stable(void)
{
u64 cnt;
cnt = arch_timer_reg_read_stable(cntvct_el0);
arch_counter_enforce_ordering(cnt);
return cnt;
}
static __always_inline u64 __arch_counter_get_cntvct(void)
{
u64 cnt;
asm volatile(ALTERNATIVE("isb\n mrs %0, cntvct_el0",
"nop\n" __mrs_s("%0", SYS_CNTVCTSS_EL0),
ARM64_HAS_ECV)
: "=r" (cnt));
arch_counter_enforce_ordering(cnt);
return cnt;
}
static inline int arch_timer_arch_init(void)
{
return 0;
}
static inline void arch_timer_set_evtstrm_feature(void)
{
cpu_set_named_feature(EVTSTRM);
#ifdef CONFIG_COMPAT
compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}
static inline bool arch_timer_have_evtstrm_feature(void)
{
return cpu_have_named_feature(EVTSTRM);
}
#endif