linux/drivers/scsi/lpfc/lpfc_scsi.c
James Smart f45775bf56 scsi: lpfc: Copyright updates for 14.2.0.0 patches
Update copyrights to 2022 for files modified in the 14.2.0.0 patch set.

Link: https://lore.kernel.org/r/20220225022308.16486-18-jsmart2021@gmail.com
Co-developed-by: Justin Tee <justin.tee@broadcom.com>
Signed-off-by: Justin Tee <justin.tee@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2022-03-15 13:51:50 -04:00

7106 lines
205 KiB
C

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <asm/unaligned.h>
#include <linux/t10-pi.h>
#include <linux/crc-t10dif.h>
#include <linux/blk-cgroup.h>
#include <net/checksum.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport_fc.h>
#include "lpfc_version.h"
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#define LPFC_RESET_WAIT 2
#define LPFC_ABORT_WAIT 2
static char *dif_op_str[] = {
"PROT_NORMAL",
"PROT_READ_INSERT",
"PROT_WRITE_STRIP",
"PROT_READ_STRIP",
"PROT_WRITE_INSERT",
"PROT_READ_PASS",
"PROT_WRITE_PASS",
};
struct scsi_dif_tuple {
__be16 guard_tag; /* Checksum */
__be16 app_tag; /* Opaque storage */
__be32 ref_tag; /* Target LBA or indirect LBA */
};
static struct lpfc_rport_data *
lpfc_rport_data_from_scsi_device(struct scsi_device *sdev)
{
struct lpfc_vport *vport = (struct lpfc_vport *)sdev->host->hostdata;
if (vport->phba->cfg_fof)
return ((struct lpfc_device_data *)sdev->hostdata)->rport_data;
else
return (struct lpfc_rport_data *)sdev->hostdata;
}
static void
lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_io_buf *psb);
static void
lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_io_buf *psb);
static int
lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc);
static void
lpfc_put_vmid_in_hashtable(struct lpfc_vport *vport, u32 hash,
struct lpfc_vmid *vmp);
static void lpfc_vmid_update_entry(struct lpfc_vport *vport, struct scsi_cmnd
*cmd, struct lpfc_vmid *vmp,
union lpfc_vmid_io_tag *tag);
static void lpfc_vmid_assign_cs_ctl(struct lpfc_vport *vport,
struct lpfc_vmid *vmid);
/**
* lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
* @phba: Pointer to HBA object.
* @lpfc_cmd: lpfc scsi command object pointer.
*
* This function is called from the lpfc_prep_task_mgmt_cmd function to
* set the last bit in the response sge entry.
**/
static void
lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
struct lpfc_io_buf *lpfc_cmd)
{
struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
if (sgl) {
sgl += 1;
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 1);
sgl->word2 = cpu_to_le32(sgl->word2);
}
}
#define LPFC_INVALID_REFTAG ((u32)-1)
/**
* lpfc_update_stats - Update statistical data for the command completion
* @vport: The virtual port on which this call is executing.
* @lpfc_cmd: lpfc scsi command object pointer.
*
* This function is called when there is a command completion and this
* function updates the statistical data for the command completion.
**/
static void
lpfc_update_stats(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_rport_data *rdata;
struct lpfc_nodelist *pnode;
struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
unsigned long flags;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
unsigned long latency;
int i;
if (!vport->stat_data_enabled ||
vport->stat_data_blocked ||
(cmd->result))
return;
latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
rdata = lpfc_cmd->rdata;
pnode = rdata->pnode;
spin_lock_irqsave(shost->host_lock, flags);
if (!pnode ||
!pnode->lat_data ||
(phba->bucket_type == LPFC_NO_BUCKET)) {
spin_unlock_irqrestore(shost->host_lock, flags);
return;
}
if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
phba->bucket_step;
/* check array subscript bounds */
if (i < 0)
i = 0;
else if (i >= LPFC_MAX_BUCKET_COUNT)
i = LPFC_MAX_BUCKET_COUNT - 1;
} else {
for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
if (latency <= (phba->bucket_base +
((1<<i)*phba->bucket_step)))
break;
}
pnode->lat_data[i].cmd_count++;
spin_unlock_irqrestore(shost->host_lock, flags);
}
/**
* lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
* @phba: The Hba for which this call is being executed.
*
* This routine is called when there is resource error in driver or firmware.
* This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
* posts at most 1 event each second. This routine wakes up worker thread of
* @phba to process WORKER_RAM_DOWN_EVENT event.
*
* This routine should be called with no lock held.
**/
void
lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
{
unsigned long flags;
uint32_t evt_posted;
unsigned long expires;
spin_lock_irqsave(&phba->hbalock, flags);
atomic_inc(&phba->num_rsrc_err);
phba->last_rsrc_error_time = jiffies;
expires = phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL;
if (time_after(expires, jiffies)) {
spin_unlock_irqrestore(&phba->hbalock, flags);
return;
}
phba->last_ramp_down_time = jiffies;
spin_unlock_irqrestore(&phba->hbalock, flags);
spin_lock_irqsave(&phba->pport->work_port_lock, flags);
evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
if (!evt_posted)
phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
if (!evt_posted)
lpfc_worker_wake_up(phba);
return;
}
/**
* lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
* @phba: The Hba for which this call is being executed.
*
* This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker
* thread.This routine reduces queue depth for all scsi device on each vport
* associated with @phba.
**/
void
lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
struct Scsi_Host *shost;
struct scsi_device *sdev;
unsigned long new_queue_depth;
unsigned long num_rsrc_err, num_cmd_success;
int i;
num_rsrc_err = atomic_read(&phba->num_rsrc_err);
num_cmd_success = atomic_read(&phba->num_cmd_success);
/*
* The error and success command counters are global per
* driver instance. If another handler has already
* operated on this error event, just exit.
*/
if (num_rsrc_err == 0)
return;
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
shost = lpfc_shost_from_vport(vports[i]);
shost_for_each_device(sdev, shost) {
new_queue_depth =
sdev->queue_depth * num_rsrc_err /
(num_rsrc_err + num_cmd_success);
if (!new_queue_depth)
new_queue_depth = sdev->queue_depth - 1;
else
new_queue_depth = sdev->queue_depth -
new_queue_depth;
scsi_change_queue_depth(sdev, new_queue_depth);
}
}
lpfc_destroy_vport_work_array(phba, vports);
atomic_set(&phba->num_rsrc_err, 0);
atomic_set(&phba->num_cmd_success, 0);
}
/**
* lpfc_scsi_dev_block - set all scsi hosts to block state
* @phba: Pointer to HBA context object.
*
* This function walks vport list and set each SCSI host to block state
* by invoking fc_remote_port_delete() routine. This function is invoked
* with EEH when device's PCI slot has been permanently disabled.
**/
void
lpfc_scsi_dev_block(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
struct Scsi_Host *shost;
struct scsi_device *sdev;
struct fc_rport *rport;
int i;
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
shost = lpfc_shost_from_vport(vports[i]);
shost_for_each_device(sdev, shost) {
rport = starget_to_rport(scsi_target(sdev));
fc_remote_port_delete(rport);
}
}
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
* @vport: The virtual port for which this call being executed.
* @num_to_alloc: The requested number of buffers to allocate.
*
* This routine allocates a scsi buffer for device with SLI-3 interface spec,
* the scsi buffer contains all the necessary information needed to initiate
* a SCSI I/O. The non-DMAable buffer region contains information to build
* the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
* and the initial BPL. In addition to allocating memory, the FCP CMND and
* FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
*
* Return codes:
* int - number of scsi buffers that were allocated.
* 0 = failure, less than num_to_alloc is a partial failure.
**/
static int
lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_io_buf *psb;
struct ulp_bde64 *bpl;
IOCB_t *iocb;
dma_addr_t pdma_phys_fcp_cmd;
dma_addr_t pdma_phys_fcp_rsp;
dma_addr_t pdma_phys_sgl;
uint16_t iotag;
int bcnt, bpl_size;
bpl_size = phba->cfg_sg_dma_buf_size -
(sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"9067 ALLOC %d scsi_bufs: %d (%d + %d + %d)\n",
num_to_alloc, phba->cfg_sg_dma_buf_size,
(int)sizeof(struct fcp_cmnd),
(int)sizeof(struct fcp_rsp), bpl_size);
for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
psb = kzalloc(sizeof(struct lpfc_io_buf), GFP_KERNEL);
if (!psb)
break;
/*
* Get memory from the pci pool to map the virt space to pci
* bus space for an I/O. The DMA buffer includes space for the
* struct fcp_cmnd, struct fcp_rsp and the number of bde's
* necessary to support the sg_tablesize.
*/
psb->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool,
GFP_KERNEL, &psb->dma_handle);
if (!psb->data) {
kfree(psb);
break;
}
/* Allocate iotag for psb->cur_iocbq. */
iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
if (iotag == 0) {
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
psb->data, psb->dma_handle);
kfree(psb);
break;
}
psb->cur_iocbq.cmd_flag |= LPFC_IO_FCP;
psb->fcp_cmnd = psb->data;
psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
psb->dma_sgl = psb->data + sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp);
/* Initialize local short-hand pointers. */
bpl = (struct ulp_bde64 *)psb->dma_sgl;
pdma_phys_fcp_cmd = psb->dma_handle;
pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
pdma_phys_sgl = psb->dma_handle + sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp);
/*
* The first two bdes are the FCP_CMD and FCP_RSP. The balance
* are sg list bdes. Initialize the first two and leave the
* rest for queuecommand.
*/
bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
/* Setup the physical region for the FCP RSP */
bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
/*
* Since the IOCB for the FCP I/O is built into this
* lpfc_scsi_buf, initialize it with all known data now.
*/
iocb = &psb->cur_iocbq.iocb;
iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
if ((phba->sli_rev == 3) &&
!(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
/* fill in immediate fcp command BDE */
iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
unsli3.fcp_ext.icd);
iocb->un.fcpi64.bdl.addrHigh = 0;
iocb->ulpBdeCount = 0;
iocb->ulpLe = 0;
/* fill in response BDE */
iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
BUFF_TYPE_BDE_64;
iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
sizeof(struct fcp_rsp);
iocb->unsli3.fcp_ext.rbde.addrLow =
putPaddrLow(pdma_phys_fcp_rsp);
iocb->unsli3.fcp_ext.rbde.addrHigh =
putPaddrHigh(pdma_phys_fcp_rsp);
} else {
iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
iocb->un.fcpi64.bdl.bdeSize =
(2 * sizeof(struct ulp_bde64));
iocb->un.fcpi64.bdl.addrLow =
putPaddrLow(pdma_phys_sgl);
iocb->un.fcpi64.bdl.addrHigh =
putPaddrHigh(pdma_phys_sgl);
iocb->ulpBdeCount = 1;
iocb->ulpLe = 1;
}
iocb->ulpClass = CLASS3;
psb->status = IOSTAT_SUCCESS;
/* Put it back into the SCSI buffer list */
psb->cur_iocbq.context1 = psb;
spin_lock_init(&psb->buf_lock);
lpfc_release_scsi_buf_s3(phba, psb);
}
return bcnt;
}
/**
* lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport
* @vport: pointer to lpfc vport data structure.
*
* This routine is invoked by the vport cleanup for deletions and the cleanup
* for an ndlp on removal.
**/
void
lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_io_buf *psb, *next_psb;
struct lpfc_sli4_hdw_queue *qp;
unsigned long iflag = 0;
int idx;
if (!(vport->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
return;
spin_lock_irqsave(&phba->hbalock, iflag);
for (idx = 0; idx < phba->cfg_hdw_queue; idx++) {
qp = &phba->sli4_hba.hdwq[idx];
spin_lock(&qp->abts_io_buf_list_lock);
list_for_each_entry_safe(psb, next_psb,
&qp->lpfc_abts_io_buf_list, list) {
if (psb->cur_iocbq.cmd_flag & LPFC_IO_NVME)
continue;
if (psb->rdata && psb->rdata->pnode &&
psb->rdata->pnode->vport == vport)
psb->rdata = NULL;
}
spin_unlock(&qp->abts_io_buf_list_lock);
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
/**
* lpfc_sli4_io_xri_aborted - Fast-path process of fcp xri abort
* @phba: pointer to lpfc hba data structure.
* @axri: pointer to the fcp xri abort wcqe structure.
* @idx: index into hdwq
*
* This routine is invoked by the worker thread to process a SLI4 fast-path
* FCP or NVME aborted xri.
**/
void
lpfc_sli4_io_xri_aborted(struct lpfc_hba *phba,
struct sli4_wcqe_xri_aborted *axri, int idx)
{
u16 xri = 0;
u16 rxid = 0;
struct lpfc_io_buf *psb, *next_psb;
struct lpfc_sli4_hdw_queue *qp;
unsigned long iflag = 0;
struct lpfc_iocbq *iocbq;
int i;
struct lpfc_nodelist *ndlp;
int rrq_empty = 0;
struct lpfc_sli_ring *pring = phba->sli4_hba.els_wq->pring;
struct scsi_cmnd *cmd;
int offline = 0;
if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP))
return;
offline = pci_channel_offline(phba->pcidev);
if (!offline) {
xri = bf_get(lpfc_wcqe_xa_xri, axri);
rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
}
qp = &phba->sli4_hba.hdwq[idx];
spin_lock_irqsave(&phba->hbalock, iflag);
spin_lock(&qp->abts_io_buf_list_lock);
list_for_each_entry_safe(psb, next_psb,
&qp->lpfc_abts_io_buf_list, list) {
if (offline)
xri = psb->cur_iocbq.sli4_xritag;
if (psb->cur_iocbq.sli4_xritag == xri) {
list_del_init(&psb->list);
psb->flags &= ~LPFC_SBUF_XBUSY;
psb->status = IOSTAT_SUCCESS;
if (psb->cur_iocbq.cmd_flag & LPFC_IO_NVME) {
qp->abts_nvme_io_bufs--;
spin_unlock(&qp->abts_io_buf_list_lock);
spin_unlock_irqrestore(&phba->hbalock, iflag);
if (!offline) {
lpfc_sli4_nvme_xri_aborted(phba, axri,
psb);
return;
}
lpfc_sli4_nvme_pci_offline_aborted(phba, psb);
spin_lock_irqsave(&phba->hbalock, iflag);
spin_lock(&qp->abts_io_buf_list_lock);
continue;
}
qp->abts_scsi_io_bufs--;
spin_unlock(&qp->abts_io_buf_list_lock);
if (psb->rdata && psb->rdata->pnode)
ndlp = psb->rdata->pnode;
else
ndlp = NULL;
rrq_empty = list_empty(&phba->active_rrq_list);
spin_unlock_irqrestore(&phba->hbalock, iflag);
if (ndlp && !offline) {
lpfc_set_rrq_active(phba, ndlp,
psb->cur_iocbq.sli4_lxritag, rxid, 1);
lpfc_sli4_abts_err_handler(phba, ndlp, axri);
}
if (phba->cfg_fcp_wait_abts_rsp || offline) {
spin_lock_irqsave(&psb->buf_lock, iflag);
cmd = psb->pCmd;
psb->pCmd = NULL;
spin_unlock_irqrestore(&psb->buf_lock, iflag);
/* The sdev is not guaranteed to be valid post
* scsi_done upcall.
*/
if (cmd)
scsi_done(cmd);
/*
* We expect there is an abort thread waiting
* for command completion wake up the thread.
*/
spin_lock_irqsave(&psb->buf_lock, iflag);
psb->cur_iocbq.cmd_flag &=
~LPFC_DRIVER_ABORTED;
if (psb->waitq)
wake_up(psb->waitq);
spin_unlock_irqrestore(&psb->buf_lock, iflag);
}
lpfc_release_scsi_buf_s4(phba, psb);
if (rrq_empty)
lpfc_worker_wake_up(phba);
if (!offline)
return;
spin_lock_irqsave(&phba->hbalock, iflag);
spin_lock(&qp->abts_io_buf_list_lock);
continue;
}
}
spin_unlock(&qp->abts_io_buf_list_lock);
if (!offline) {
for (i = 1; i <= phba->sli.last_iotag; i++) {
iocbq = phba->sli.iocbq_lookup[i];
if (!(iocbq->cmd_flag & LPFC_IO_FCP) ||
(iocbq->cmd_flag & LPFC_IO_LIBDFC))
continue;
if (iocbq->sli4_xritag != xri)
continue;
psb = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
psb->flags &= ~LPFC_SBUF_XBUSY;
spin_unlock_irqrestore(&phba->hbalock, iflag);
if (!list_empty(&pring->txq))
lpfc_worker_wake_up(phba);
return;
}
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
/**
* lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
* @phba: The HBA for which this call is being executed.
* @ndlp: pointer to a node-list data structure.
* @cmnd: Pointer to scsi_cmnd data structure.
*
* This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
* and returns to caller.
*
* Return codes:
* NULL - Error
* Pointer to lpfc_scsi_buf - Success
**/
static struct lpfc_io_buf *
lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
struct scsi_cmnd *cmnd)
{
struct lpfc_io_buf *lpfc_cmd = NULL;
struct list_head *scsi_buf_list_get = &phba->lpfc_scsi_buf_list_get;
unsigned long iflag = 0;
spin_lock_irqsave(&phba->scsi_buf_list_get_lock, iflag);
list_remove_head(scsi_buf_list_get, lpfc_cmd, struct lpfc_io_buf,
list);
if (!lpfc_cmd) {
spin_lock(&phba->scsi_buf_list_put_lock);
list_splice(&phba->lpfc_scsi_buf_list_put,
&phba->lpfc_scsi_buf_list_get);
INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put);
list_remove_head(scsi_buf_list_get, lpfc_cmd,
struct lpfc_io_buf, list);
spin_unlock(&phba->scsi_buf_list_put_lock);
}
spin_unlock_irqrestore(&phba->scsi_buf_list_get_lock, iflag);
if (lpfc_ndlp_check_qdepth(phba, ndlp) && lpfc_cmd) {
atomic_inc(&ndlp->cmd_pending);
lpfc_cmd->flags |= LPFC_SBUF_BUMP_QDEPTH;
}
return lpfc_cmd;
}
/**
* lpfc_get_scsi_buf_s4 - Get a scsi buffer from io_buf_list of the HBA
* @phba: The HBA for which this call is being executed.
* @ndlp: pointer to a node-list data structure.
* @cmnd: Pointer to scsi_cmnd data structure.
*
* This routine removes a scsi buffer from head of @hdwq io_buf_list
* and returns to caller.
*
* Return codes:
* NULL - Error
* Pointer to lpfc_scsi_buf - Success
**/
static struct lpfc_io_buf *
lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
struct scsi_cmnd *cmnd)
{
struct lpfc_io_buf *lpfc_cmd;
struct lpfc_sli4_hdw_queue *qp;
struct sli4_sge *sgl;
dma_addr_t pdma_phys_fcp_rsp;
dma_addr_t pdma_phys_fcp_cmd;
uint32_t cpu, idx;
int tag;
struct fcp_cmd_rsp_buf *tmp = NULL;
cpu = raw_smp_processor_id();
if (cmnd && phba->cfg_fcp_io_sched == LPFC_FCP_SCHED_BY_HDWQ) {
tag = blk_mq_unique_tag(scsi_cmd_to_rq(cmnd));
idx = blk_mq_unique_tag_to_hwq(tag);
} else {
idx = phba->sli4_hba.cpu_map[cpu].hdwq;
}
lpfc_cmd = lpfc_get_io_buf(phba, ndlp, idx,
!phba->cfg_xri_rebalancing);
if (!lpfc_cmd) {
qp = &phba->sli4_hba.hdwq[idx];
qp->empty_io_bufs++;
return NULL;
}
/* Setup key fields in buffer that may have been changed
* if other protocols used this buffer.
*/
lpfc_cmd->cur_iocbq.cmd_flag = LPFC_IO_FCP;
lpfc_cmd->prot_seg_cnt = 0;
lpfc_cmd->seg_cnt = 0;
lpfc_cmd->timeout = 0;
lpfc_cmd->flags = 0;
lpfc_cmd->start_time = jiffies;
lpfc_cmd->waitq = NULL;
lpfc_cmd->cpu = cpu;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
lpfc_cmd->prot_data_type = 0;
#endif
tmp = lpfc_get_cmd_rsp_buf_per_hdwq(phba, lpfc_cmd);
if (!tmp) {
lpfc_release_io_buf(phba, lpfc_cmd, lpfc_cmd->hdwq);
return NULL;
}
lpfc_cmd->fcp_cmnd = tmp->fcp_cmnd;
lpfc_cmd->fcp_rsp = tmp->fcp_rsp;
/*
* The first two SGEs are the FCP_CMD and FCP_RSP.
* The balance are sg list bdes. Initialize the
* first two and leave the rest for queuecommand.
*/
sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
pdma_phys_fcp_cmd = tmp->fcp_cmd_rsp_dma_handle;
sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 0);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd));
sgl++;
/* Setup the physical region for the FCP RSP */
pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 1);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp));
if (lpfc_ndlp_check_qdepth(phba, ndlp)) {
atomic_inc(&ndlp->cmd_pending);
lpfc_cmd->flags |= LPFC_SBUF_BUMP_QDEPTH;
}
return lpfc_cmd;
}
/**
* lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
* @phba: The HBA for which this call is being executed.
* @ndlp: pointer to a node-list data structure.
* @cmnd: Pointer to scsi_cmnd data structure.
*
* This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
* and returns to caller.
*
* Return codes:
* NULL - Error
* Pointer to lpfc_scsi_buf - Success
**/
static struct lpfc_io_buf*
lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
struct scsi_cmnd *cmnd)
{
return phba->lpfc_get_scsi_buf(phba, ndlp, cmnd);
}
/**
* lpfc_release_scsi_buf_s3 - Return a scsi buffer back to hba scsi buf list
* @phba: The Hba for which this call is being executed.
* @psb: The scsi buffer which is being released.
*
* This routine releases @psb scsi buffer by adding it to tail of @phba
* lpfc_scsi_buf_list list.
**/
static void
lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_io_buf *psb)
{
unsigned long iflag = 0;
psb->seg_cnt = 0;
psb->prot_seg_cnt = 0;
spin_lock_irqsave(&phba->scsi_buf_list_put_lock, iflag);
psb->pCmd = NULL;
psb->cur_iocbq.cmd_flag = LPFC_IO_FCP;
list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list_put);
spin_unlock_irqrestore(&phba->scsi_buf_list_put_lock, iflag);
}
/**
* lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
* @phba: The Hba for which this call is being executed.
* @psb: The scsi buffer which is being released.
*
* This routine releases @psb scsi buffer by adding it to tail of @hdwq
* io_buf_list list. For SLI4 XRI's are tied to the scsi buffer
* and cannot be reused for at least RA_TOV amount of time if it was
* aborted.
**/
static void
lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_io_buf *psb)
{
struct lpfc_sli4_hdw_queue *qp;
unsigned long iflag = 0;
psb->seg_cnt = 0;
psb->prot_seg_cnt = 0;
qp = psb->hdwq;
if (psb->flags & LPFC_SBUF_XBUSY) {
spin_lock_irqsave(&qp->abts_io_buf_list_lock, iflag);
if (!phba->cfg_fcp_wait_abts_rsp)
psb->pCmd = NULL;
list_add_tail(&psb->list, &qp->lpfc_abts_io_buf_list);
qp->abts_scsi_io_bufs++;
spin_unlock_irqrestore(&qp->abts_io_buf_list_lock, iflag);
} else {
lpfc_release_io_buf(phba, (struct lpfc_io_buf *)psb, qp);
}
}
/**
* lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
* @phba: The Hba for which this call is being executed.
* @psb: The scsi buffer which is being released.
*
* This routine releases @psb scsi buffer by adding it to tail of @phba
* lpfc_scsi_buf_list list.
**/
static void
lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_io_buf *psb)
{
if ((psb->flags & LPFC_SBUF_BUMP_QDEPTH) && psb->ndlp)
atomic_dec(&psb->ndlp->cmd_pending);
psb->flags &= ~LPFC_SBUF_BUMP_QDEPTH;
phba->lpfc_release_scsi_buf(phba, psb);
}
/**
* lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
* @data: A pointer to the immediate command data portion of the IOCB.
* @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
*
* The routine copies the entire FCP command from @fcp_cmnd to @data while
* byte swapping the data to big endian format for transmission on the wire.
**/
static void
lpfc_fcpcmd_to_iocb(u8 *data, struct fcp_cmnd *fcp_cmnd)
{
int i, j;
for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
i += sizeof(uint32_t), j++) {
((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
}
}
/**
* lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
* @phba: The Hba for which this call is being executed.
* @lpfc_cmd: The scsi buffer which is going to be mapped.
*
* This routine does the pci dma mapping for scatter-gather list of scsi cmnd
* field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
* through sg elements and format the bde. This routine also initializes all
* IOCB fields which are dependent on scsi command request buffer.
*
* Return codes:
* 1 - Error
* 0 - Success
**/
static int
lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
{
struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
struct scatterlist *sgel = NULL;
struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
struct ulp_bde64 *bpl = (struct ulp_bde64 *)lpfc_cmd->dma_sgl;
struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq;
IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
dma_addr_t physaddr;
uint32_t num_bde = 0;
int nseg, datadir = scsi_cmnd->sc_data_direction;
/*
* There are three possibilities here - use scatter-gather segment, use
* the single mapping, or neither. Start the lpfc command prep by
* bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
* data bde entry.
*/
bpl += 2;
if (scsi_sg_count(scsi_cmnd)) {
/*
* The driver stores the segment count returned from dma_map_sg
* because this a count of dma-mappings used to map the use_sg
* pages. They are not guaranteed to be the same for those
* architectures that implement an IOMMU.
*/
nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
scsi_sg_count(scsi_cmnd), datadir);
if (unlikely(!nseg))
return 1;
lpfc_cmd->seg_cnt = nseg;
if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9064 BLKGRD: %s: Too many sg segments"
" from dma_map_sg. Config %d, seg_cnt"
" %d\n", __func__, phba->cfg_sg_seg_cnt,
lpfc_cmd->seg_cnt);
WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt);
lpfc_cmd->seg_cnt = 0;
scsi_dma_unmap(scsi_cmnd);
return 2;
}
/*
* The driver established a maximum scatter-gather segment count
* during probe that limits the number of sg elements in any
* single scsi command. Just run through the seg_cnt and format
* the bde's.
* When using SLI-3 the driver will try to fit all the BDEs into
* the IOCB. If it can't then the BDEs get added to a BPL as it
* does for SLI-2 mode.
*/
scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
physaddr = sg_dma_address(sgel);
if (phba->sli_rev == 3 &&
!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
!(iocbq->cmd_flag & DSS_SECURITY_OP) &&
nseg <= LPFC_EXT_DATA_BDE_COUNT) {
data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
data_bde->tus.f.bdeSize = sg_dma_len(sgel);
data_bde->addrLow = putPaddrLow(physaddr);
data_bde->addrHigh = putPaddrHigh(physaddr);
data_bde++;
} else {
bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
bpl->tus.f.bdeSize = sg_dma_len(sgel);
bpl->tus.w = le32_to_cpu(bpl->tus.w);
bpl->addrLow =
le32_to_cpu(putPaddrLow(physaddr));
bpl->addrHigh =
le32_to_cpu(putPaddrHigh(physaddr));
bpl++;
}
}
}
/*
* Finish initializing those IOCB fields that are dependent on the
* scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
* explicitly reinitialized and for SLI-3 the extended bde count is
* explicitly reinitialized since all iocb memory resources are reused.
*/
if (phba->sli_rev == 3 &&
!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
!(iocbq->cmd_flag & DSS_SECURITY_OP)) {
if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
/*
* The extended IOCB format can only fit 3 BDE or a BPL.
* This I/O has more than 3 BDE so the 1st data bde will
* be a BPL that is filled in here.
*/
physaddr = lpfc_cmd->dma_handle;
data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
data_bde->tus.f.bdeSize = (num_bde *
sizeof(struct ulp_bde64));
physaddr += (sizeof(struct fcp_cmnd) +
sizeof(struct fcp_rsp) +
(2 * sizeof(struct ulp_bde64)));
data_bde->addrHigh = putPaddrHigh(physaddr);
data_bde->addrLow = putPaddrLow(physaddr);
/* ebde count includes the response bde and data bpl */
iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
} else {
/* ebde count includes the response bde and data bdes */
iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
}
} else {
iocb_cmd->un.fcpi64.bdl.bdeSize =
((num_bde + 2) * sizeof(struct ulp_bde64));
iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
}
fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
/*
* Due to difference in data length between DIF/non-DIF paths,
* we need to set word 4 of IOCB here
*/
iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
return 0;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
/* Return BG_ERR_INIT if error injection is detected by Initiator */
#define BG_ERR_INIT 0x1
/* Return BG_ERR_TGT if error injection is detected by Target */
#define BG_ERR_TGT 0x2
/* Return BG_ERR_SWAP if swapping CSUM<-->CRC is required for error injection */
#define BG_ERR_SWAP 0x10
/*
* Return BG_ERR_CHECK if disabling Guard/Ref/App checking is required for
* error injection
*/
#define BG_ERR_CHECK 0x20
/**
* lpfc_bg_err_inject - Determine if we should inject an error
* @phba: The Hba for which this call is being executed.
* @sc: The SCSI command to examine
* @reftag: (out) BlockGuard reference tag for transmitted data
* @apptag: (out) BlockGuard application tag for transmitted data
* @new_guard: (in) Value to replace CRC with if needed
*
* Returns BG_ERR_* bit mask or 0 if request ignored
**/
static int
lpfc_bg_err_inject(struct lpfc_hba *phba, struct scsi_cmnd *sc,
uint32_t *reftag, uint16_t *apptag, uint32_t new_guard)
{
struct scatterlist *sgpe; /* s/g prot entry */
struct lpfc_io_buf *lpfc_cmd = NULL;
struct scsi_dif_tuple *src = NULL;
struct lpfc_nodelist *ndlp;
struct lpfc_rport_data *rdata;
uint32_t op = scsi_get_prot_op(sc);
uint32_t blksize;
uint32_t numblks;
u32 lba;
int rc = 0;
int blockoff = 0;
if (op == SCSI_PROT_NORMAL)
return 0;
sgpe = scsi_prot_sglist(sc);
lba = scsi_prot_ref_tag(sc);
if (lba == LPFC_INVALID_REFTAG)
return 0;
/* First check if we need to match the LBA */
if (phba->lpfc_injerr_lba != LPFC_INJERR_LBA_OFF) {
blksize = scsi_prot_interval(sc);
numblks = (scsi_bufflen(sc) + blksize - 1) / blksize;
/* Make sure we have the right LBA if one is specified */
if (phba->lpfc_injerr_lba < (u64)lba ||
(phba->lpfc_injerr_lba >= (u64)(lba + numblks)))
return 0;
if (sgpe) {
blockoff = phba->lpfc_injerr_lba - (u64)lba;
numblks = sg_dma_len(sgpe) /
sizeof(struct scsi_dif_tuple);
if (numblks < blockoff)
blockoff = numblks;
}
}
/* Next check if we need to match the remote NPortID or WWPN */
rdata = lpfc_rport_data_from_scsi_device(sc->device);
if (rdata && rdata->pnode) {
ndlp = rdata->pnode;
/* Make sure we have the right NPortID if one is specified */
if (phba->lpfc_injerr_nportid &&
(phba->lpfc_injerr_nportid != ndlp->nlp_DID))
return 0;
/*
* Make sure we have the right WWPN if one is specified.
* wwn[0] should be a non-zero NAA in a good WWPN.
*/
if (phba->lpfc_injerr_wwpn.u.wwn[0] &&
(memcmp(&ndlp->nlp_portname, &phba->lpfc_injerr_wwpn,
sizeof(struct lpfc_name)) != 0))
return 0;
}
/* Setup a ptr to the protection data if the SCSI host provides it */
if (sgpe) {
src = (struct scsi_dif_tuple *)sg_virt(sgpe);
src += blockoff;
lpfc_cmd = (struct lpfc_io_buf *)sc->host_scribble;
}
/* Should we change the Reference Tag */
if (reftag) {
if (phba->lpfc_injerr_wref_cnt) {
switch (op) {
case SCSI_PROT_WRITE_PASS:
if (src) {
/*
* For WRITE_PASS, force the error
* to be sent on the wire. It should
* be detected by the Target.
* If blockoff != 0 error will be
* inserted in middle of the IO.
*/
lpfc_printf_log(phba, KERN_ERR,
LOG_TRACE_EVENT,
"9076 BLKGRD: Injecting reftag error: "
"write lba x%lx + x%x oldrefTag x%x\n",
(unsigned long)lba, blockoff,
be32_to_cpu(src->ref_tag));
/*
* Save the old ref_tag so we can
* restore it on completion.
*/
if (lpfc_cmd) {
lpfc_cmd->prot_data_type =
LPFC_INJERR_REFTAG;
lpfc_cmd->prot_data_segment =
src;
lpfc_cmd->prot_data =
src->ref_tag;
}
src->ref_tag = cpu_to_be32(0xDEADBEEF);
phba->lpfc_injerr_wref_cnt--;
if (phba->lpfc_injerr_wref_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_TGT | BG_ERR_CHECK;
break;
}
fallthrough;
case SCSI_PROT_WRITE_INSERT:
/*
* For WRITE_INSERT, force the error
* to be sent on the wire. It should be
* detected by the Target.
*/
/* DEADBEEF will be the reftag on the wire */
*reftag = 0xDEADBEEF;
phba->lpfc_injerr_wref_cnt--;
if (phba->lpfc_injerr_wref_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_TGT | BG_ERR_CHECK;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9078 BLKGRD: Injecting reftag error: "
"write lba x%lx\n", (unsigned long)lba);
break;
case SCSI_PROT_WRITE_STRIP:
/*
* For WRITE_STRIP and WRITE_PASS,
* force the error on data
* being copied from SLI-Host to SLI-Port.
*/
*reftag = 0xDEADBEEF;
phba->lpfc_injerr_wref_cnt--;
if (phba->lpfc_injerr_wref_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_INIT;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9077 BLKGRD: Injecting reftag error: "
"write lba x%lx\n", (unsigned long)lba);
break;
}
}
if (phba->lpfc_injerr_rref_cnt) {
switch (op) {
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_READ_PASS:
/*
* For READ_STRIP and READ_PASS, force the
* error on data being read off the wire. It
* should force an IO error to the driver.
*/
*reftag = 0xDEADBEEF;
phba->lpfc_injerr_rref_cnt--;
if (phba->lpfc_injerr_rref_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_INIT;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9079 BLKGRD: Injecting reftag error: "
"read lba x%lx\n", (unsigned long)lba);
break;
}
}
}
/* Should we change the Application Tag */
if (apptag) {
if (phba->lpfc_injerr_wapp_cnt) {
switch (op) {
case SCSI_PROT_WRITE_PASS:
if (src) {
/*
* For WRITE_PASS, force the error
* to be sent on the wire. It should
* be detected by the Target.
* If blockoff != 0 error will be
* inserted in middle of the IO.
*/
lpfc_printf_log(phba, KERN_ERR,
LOG_TRACE_EVENT,
"9080 BLKGRD: Injecting apptag error: "
"write lba x%lx + x%x oldappTag x%x\n",
(unsigned long)lba, blockoff,
be16_to_cpu(src->app_tag));
/*
* Save the old app_tag so we can
* restore it on completion.
*/
if (lpfc_cmd) {
lpfc_cmd->prot_data_type =
LPFC_INJERR_APPTAG;
lpfc_cmd->prot_data_segment =
src;
lpfc_cmd->prot_data =
src->app_tag;
}
src->app_tag = cpu_to_be16(0xDEAD);
phba->lpfc_injerr_wapp_cnt--;
if (phba->lpfc_injerr_wapp_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_TGT | BG_ERR_CHECK;
break;
}
fallthrough;
case SCSI_PROT_WRITE_INSERT:
/*
* For WRITE_INSERT, force the
* error to be sent on the wire. It should be
* detected by the Target.
*/
/* DEAD will be the apptag on the wire */
*apptag = 0xDEAD;
phba->lpfc_injerr_wapp_cnt--;
if (phba->lpfc_injerr_wapp_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_TGT | BG_ERR_CHECK;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0813 BLKGRD: Injecting apptag error: "
"write lba x%lx\n", (unsigned long)lba);
break;
case SCSI_PROT_WRITE_STRIP:
/*
* For WRITE_STRIP and WRITE_PASS,
* force the error on data
* being copied from SLI-Host to SLI-Port.
*/
*apptag = 0xDEAD;
phba->lpfc_injerr_wapp_cnt--;
if (phba->lpfc_injerr_wapp_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_INIT;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0812 BLKGRD: Injecting apptag error: "
"write lba x%lx\n", (unsigned long)lba);
break;
}
}
if (phba->lpfc_injerr_rapp_cnt) {
switch (op) {
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_READ_PASS:
/*
* For READ_STRIP and READ_PASS, force the
* error on data being read off the wire. It
* should force an IO error to the driver.
*/
*apptag = 0xDEAD;
phba->lpfc_injerr_rapp_cnt--;
if (phba->lpfc_injerr_rapp_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_INIT;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0814 BLKGRD: Injecting apptag error: "
"read lba x%lx\n", (unsigned long)lba);
break;
}
}
}
/* Should we change the Guard Tag */
if (new_guard) {
if (phba->lpfc_injerr_wgrd_cnt) {
switch (op) {
case SCSI_PROT_WRITE_PASS:
rc = BG_ERR_CHECK;
fallthrough;
case SCSI_PROT_WRITE_INSERT:
/*
* For WRITE_INSERT, force the
* error to be sent on the wire. It should be
* detected by the Target.
*/
phba->lpfc_injerr_wgrd_cnt--;
if (phba->lpfc_injerr_wgrd_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc |= BG_ERR_TGT | BG_ERR_SWAP;
/* Signals the caller to swap CRC->CSUM */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0817 BLKGRD: Injecting guard error: "
"write lba x%lx\n", (unsigned long)lba);
break;
case SCSI_PROT_WRITE_STRIP:
/*
* For WRITE_STRIP and WRITE_PASS,
* force the error on data
* being copied from SLI-Host to SLI-Port.
*/
phba->lpfc_injerr_wgrd_cnt--;
if (phba->lpfc_injerr_wgrd_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_INIT | BG_ERR_SWAP;
/* Signals the caller to swap CRC->CSUM */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0816 BLKGRD: Injecting guard error: "
"write lba x%lx\n", (unsigned long)lba);
break;
}
}
if (phba->lpfc_injerr_rgrd_cnt) {
switch (op) {
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_READ_PASS:
/*
* For READ_STRIP and READ_PASS, force the
* error on data being read off the wire. It
* should force an IO error to the driver.
*/
phba->lpfc_injerr_rgrd_cnt--;
if (phba->lpfc_injerr_rgrd_cnt == 0) {
phba->lpfc_injerr_nportid = 0;
phba->lpfc_injerr_lba =
LPFC_INJERR_LBA_OFF;
memset(&phba->lpfc_injerr_wwpn,
0, sizeof(struct lpfc_name));
}
rc = BG_ERR_INIT | BG_ERR_SWAP;
/* Signals the caller to swap CRC->CSUM */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0818 BLKGRD: Injecting guard error: "
"read lba x%lx\n", (unsigned long)lba);
}
}
}
return rc;
}
#endif
/**
* lpfc_sc_to_bg_opcodes - Determine the BlockGuard opcodes to be used with
* the specified SCSI command.
* @phba: The Hba for which this call is being executed.
* @sc: The SCSI command to examine
* @txop: (out) BlockGuard operation for transmitted data
* @rxop: (out) BlockGuard operation for received data
*
* Returns: zero on success; non-zero if tx and/or rx op cannot be determined
*
**/
static int
lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc,
uint8_t *txop, uint8_t *rxop)
{
uint8_t ret = 0;
if (sc->prot_flags & SCSI_PROT_IP_CHECKSUM) {
switch (scsi_get_prot_op(sc)) {
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_WRITE_STRIP:
*rxop = BG_OP_IN_NODIF_OUT_CSUM;
*txop = BG_OP_IN_CSUM_OUT_NODIF;
break;
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_WRITE_INSERT:
*rxop = BG_OP_IN_CRC_OUT_NODIF;
*txop = BG_OP_IN_NODIF_OUT_CRC;
break;
case SCSI_PROT_READ_PASS:
case SCSI_PROT_WRITE_PASS:
*rxop = BG_OP_IN_CRC_OUT_CSUM;
*txop = BG_OP_IN_CSUM_OUT_CRC;
break;
case SCSI_PROT_NORMAL:
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9063 BLKGRD: Bad op/guard:%d/IP combination\n",
scsi_get_prot_op(sc));
ret = 1;
break;
}
} else {
switch (scsi_get_prot_op(sc)) {
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_WRITE_INSERT:
*rxop = BG_OP_IN_CRC_OUT_NODIF;
*txop = BG_OP_IN_NODIF_OUT_CRC;
break;
case SCSI_PROT_READ_PASS:
case SCSI_PROT_WRITE_PASS:
*rxop = BG_OP_IN_CRC_OUT_CRC;
*txop = BG_OP_IN_CRC_OUT_CRC;
break;
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_WRITE_STRIP:
*rxop = BG_OP_IN_NODIF_OUT_CRC;
*txop = BG_OP_IN_CRC_OUT_NODIF;
break;
case SCSI_PROT_NORMAL:
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9075 BLKGRD: Bad op/guard:%d/CRC combination\n",
scsi_get_prot_op(sc));
ret = 1;
break;
}
}
return ret;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
/**
* lpfc_bg_err_opcodes - reDetermine the BlockGuard opcodes to be used with
* the specified SCSI command in order to force a guard tag error.
* @phba: The Hba for which this call is being executed.
* @sc: The SCSI command to examine
* @txop: (out) BlockGuard operation for transmitted data
* @rxop: (out) BlockGuard operation for received data
*
* Returns: zero on success; non-zero if tx and/or rx op cannot be determined
*
**/
static int
lpfc_bg_err_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc,
uint8_t *txop, uint8_t *rxop)
{
if (sc->prot_flags & SCSI_PROT_IP_CHECKSUM) {
switch (scsi_get_prot_op(sc)) {
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_WRITE_STRIP:
*rxop = BG_OP_IN_NODIF_OUT_CRC;
*txop = BG_OP_IN_CRC_OUT_NODIF;
break;
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_WRITE_INSERT:
*rxop = BG_OP_IN_CSUM_OUT_NODIF;
*txop = BG_OP_IN_NODIF_OUT_CSUM;
break;
case SCSI_PROT_READ_PASS:
case SCSI_PROT_WRITE_PASS:
*rxop = BG_OP_IN_CSUM_OUT_CRC;
*txop = BG_OP_IN_CRC_OUT_CSUM;
break;
case SCSI_PROT_NORMAL:
default:
break;
}
} else {
switch (scsi_get_prot_op(sc)) {
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_WRITE_INSERT:
*rxop = BG_OP_IN_CSUM_OUT_NODIF;
*txop = BG_OP_IN_NODIF_OUT_CSUM;
break;
case SCSI_PROT_READ_PASS:
case SCSI_PROT_WRITE_PASS:
*rxop = BG_OP_IN_CSUM_OUT_CSUM;
*txop = BG_OP_IN_CSUM_OUT_CSUM;
break;
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_WRITE_STRIP:
*rxop = BG_OP_IN_NODIF_OUT_CSUM;
*txop = BG_OP_IN_CSUM_OUT_NODIF;
break;
case SCSI_PROT_NORMAL:
default:
break;
}
}
return 0;
}
#endif
/**
* lpfc_bg_setup_bpl - Setup BlockGuard BPL with no protection data
* @phba: The Hba for which this call is being executed.
* @sc: pointer to scsi command we're working on
* @bpl: pointer to buffer list for protection groups
* @datasegcnt: number of segments of data that have been dma mapped
*
* This function sets up BPL buffer list for protection groups of
* type LPFC_PG_TYPE_NO_DIF
*
* This is usually used when the HBA is instructed to generate
* DIFs and insert them into data stream (or strip DIF from
* incoming data stream)
*
* The buffer list consists of just one protection group described
* below:
* +-------------------------+
* start of prot group --> | PDE_5 |
* +-------------------------+
* | PDE_6 |
* +-------------------------+
* | Data BDE |
* +-------------------------+
* |more Data BDE's ... (opt)|
* +-------------------------+
*
*
* Note: Data s/g buffers have been dma mapped
*
* Returns the number of BDEs added to the BPL.
**/
static int
lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
struct ulp_bde64 *bpl, int datasegcnt)
{
struct scatterlist *sgde = NULL; /* s/g data entry */
struct lpfc_pde5 *pde5 = NULL;
struct lpfc_pde6 *pde6 = NULL;
dma_addr_t physaddr;
int i = 0, num_bde = 0, status;
int datadir = sc->sc_data_direction;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
uint32_t rc;
#endif
uint32_t checking = 1;
uint32_t reftag;
uint8_t txop, rxop;
status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
if (status)
goto out;
/* extract some info from the scsi command for pde*/
reftag = scsi_prot_ref_tag(sc);
if (reftag == LPFC_INVALID_REFTAG)
goto out;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1);
if (rc) {
if (rc & BG_ERR_SWAP)
lpfc_bg_err_opcodes(phba, sc, &txop, &rxop);
if (rc & BG_ERR_CHECK)
checking = 0;
}
#endif
/* setup PDE5 with what we have */
pde5 = (struct lpfc_pde5 *) bpl;
memset(pde5, 0, sizeof(struct lpfc_pde5));
bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
/* Endianness conversion if necessary for PDE5 */
pde5->word0 = cpu_to_le32(pde5->word0);
pde5->reftag = cpu_to_le32(reftag);
/* advance bpl and increment bde count */
num_bde++;
bpl++;
pde6 = (struct lpfc_pde6 *) bpl;
/* setup PDE6 with the rest of the info */
memset(pde6, 0, sizeof(struct lpfc_pde6));
bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
bf_set(pde6_optx, pde6, txop);
bf_set(pde6_oprx, pde6, rxop);
/*
* We only need to check the data on READs, for WRITEs
* protection data is automatically generated, not checked.
*/
if (datadir == DMA_FROM_DEVICE) {
if (sc->prot_flags & SCSI_PROT_GUARD_CHECK)
bf_set(pde6_ce, pde6, checking);
else
bf_set(pde6_ce, pde6, 0);
if (sc->prot_flags & SCSI_PROT_REF_CHECK)
bf_set(pde6_re, pde6, checking);
else
bf_set(pde6_re, pde6, 0);
}
bf_set(pde6_ai, pde6, 1);
bf_set(pde6_ae, pde6, 0);
bf_set(pde6_apptagval, pde6, 0);
/* Endianness conversion if necessary for PDE6 */
pde6->word0 = cpu_to_le32(pde6->word0);
pde6->word1 = cpu_to_le32(pde6->word1);
pde6->word2 = cpu_to_le32(pde6->word2);
/* advance bpl and increment bde count */
num_bde++;
bpl++;
/* assumption: caller has already run dma_map_sg on command data */
scsi_for_each_sg(sc, sgde, datasegcnt, i) {
physaddr = sg_dma_address(sgde);
bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
bpl->tus.f.bdeSize = sg_dma_len(sgde);
if (datadir == DMA_TO_DEVICE)
bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
else
bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
bpl->tus.w = le32_to_cpu(bpl->tus.w);
bpl++;
num_bde++;
}
out:
return num_bde;
}
/**
* lpfc_bg_setup_bpl_prot - Setup BlockGuard BPL with protection data
* @phba: The Hba for which this call is being executed.
* @sc: pointer to scsi command we're working on
* @bpl: pointer to buffer list for protection groups
* @datacnt: number of segments of data that have been dma mapped
* @protcnt: number of segment of protection data that have been dma mapped
*
* This function sets up BPL buffer list for protection groups of
* type LPFC_PG_TYPE_DIF
*
* This is usually used when DIFs are in their own buffers,
* separate from the data. The HBA can then by instructed
* to place the DIFs in the outgoing stream. For read operations,
* The HBA could extract the DIFs and place it in DIF buffers.
*
* The buffer list for this type consists of one or more of the
* protection groups described below:
* +-------------------------+
* start of first prot group --> | PDE_5 |
* +-------------------------+
* | PDE_6 |
* +-------------------------+
* | PDE_7 (Prot BDE) |
* +-------------------------+
* | Data BDE |
* +-------------------------+
* |more Data BDE's ... (opt)|
* +-------------------------+
* start of new prot group --> | PDE_5 |
* +-------------------------+
* | ... |
* +-------------------------+
*
* Note: It is assumed that both data and protection s/g buffers have been
* mapped for DMA
*
* Returns the number of BDEs added to the BPL.
**/
static int
lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
struct ulp_bde64 *bpl, int datacnt, int protcnt)
{
struct scatterlist *sgde = NULL; /* s/g data entry */
struct scatterlist *sgpe = NULL; /* s/g prot entry */
struct lpfc_pde5 *pde5 = NULL;
struct lpfc_pde6 *pde6 = NULL;
struct lpfc_pde7 *pde7 = NULL;
dma_addr_t dataphysaddr, protphysaddr;
unsigned short curr_data = 0, curr_prot = 0;
unsigned int split_offset;
unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder;
unsigned int protgrp_blks, protgrp_bytes;
unsigned int remainder, subtotal;
int status;
int datadir = sc->sc_data_direction;
unsigned char pgdone = 0, alldone = 0;
unsigned blksize;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
uint32_t rc;
#endif
uint32_t checking = 1;
uint32_t reftag;
uint8_t txop, rxop;
int num_bde = 0;
sgpe = scsi_prot_sglist(sc);
sgde = scsi_sglist(sc);
if (!sgpe || !sgde) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9020 Invalid s/g entry: data=x%px prot=x%px\n",
sgpe, sgde);
return 0;
}
status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
if (status)
goto out;
/* extract some info from the scsi command */
blksize = scsi_prot_interval(sc);
reftag = scsi_prot_ref_tag(sc);
if (reftag == LPFC_INVALID_REFTAG)
goto out;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1);
if (rc) {
if (rc & BG_ERR_SWAP)
lpfc_bg_err_opcodes(phba, sc, &txop, &rxop);
if (rc & BG_ERR_CHECK)
checking = 0;
}
#endif
split_offset = 0;
do {
/* Check to see if we ran out of space */
if (num_bde >= (phba->cfg_total_seg_cnt - 2))
return num_bde + 3;
/* setup PDE5 with what we have */
pde5 = (struct lpfc_pde5 *) bpl;
memset(pde5, 0, sizeof(struct lpfc_pde5));
bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
/* Endianness conversion if necessary for PDE5 */
pde5->word0 = cpu_to_le32(pde5->word0);
pde5->reftag = cpu_to_le32(reftag);
/* advance bpl and increment bde count */
num_bde++;
bpl++;
pde6 = (struct lpfc_pde6 *) bpl;
/* setup PDE6 with the rest of the info */
memset(pde6, 0, sizeof(struct lpfc_pde6));
bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
bf_set(pde6_optx, pde6, txop);
bf_set(pde6_oprx, pde6, rxop);
if (sc->prot_flags & SCSI_PROT_GUARD_CHECK)
bf_set(pde6_ce, pde6, checking);
else
bf_set(pde6_ce, pde6, 0);
if (sc->prot_flags & SCSI_PROT_REF_CHECK)
bf_set(pde6_re, pde6, checking);
else
bf_set(pde6_re, pde6, 0);
bf_set(pde6_ai, pde6, 1);
bf_set(pde6_ae, pde6, 0);
bf_set(pde6_apptagval, pde6, 0);
/* Endianness conversion if necessary for PDE6 */
pde6->word0 = cpu_to_le32(pde6->word0);
pde6->word1 = cpu_to_le32(pde6->word1);
pde6->word2 = cpu_to_le32(pde6->word2);
/* advance bpl and increment bde count */
num_bde++;
bpl++;
/* setup the first BDE that points to protection buffer */
protphysaddr = sg_dma_address(sgpe) + protgroup_offset;
protgroup_len = sg_dma_len(sgpe) - protgroup_offset;
/* must be integer multiple of the DIF block length */
BUG_ON(protgroup_len % 8);
pde7 = (struct lpfc_pde7 *) bpl;
memset(pde7, 0, sizeof(struct lpfc_pde7));
bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR);
pde7->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr));
pde7->addrLow = le32_to_cpu(putPaddrLow(protphysaddr));
protgrp_blks = protgroup_len / 8;
protgrp_bytes = protgrp_blks * blksize;
/* check if this pde is crossing the 4K boundary; if so split */
if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) {
protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff);
protgroup_offset += protgroup_remainder;
protgrp_blks = protgroup_remainder / 8;
protgrp_bytes = protgrp_blks * blksize;
} else {
protgroup_offset = 0;
curr_prot++;
}
num_bde++;
/* setup BDE's for data blocks associated with DIF data */
pgdone = 0;
subtotal = 0; /* total bytes processed for current prot grp */
while (!pgdone) {
/* Check to see if we ran out of space */
if (num_bde >= phba->cfg_total_seg_cnt)
return num_bde + 1;
if (!sgde) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9065 BLKGRD:%s Invalid data segment\n",
__func__);
return 0;
}
bpl++;
dataphysaddr = sg_dma_address(sgde) + split_offset;
bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
remainder = sg_dma_len(sgde) - split_offset;
if ((subtotal + remainder) <= protgrp_bytes) {
/* we can use this whole buffer */
bpl->tus.f.bdeSize = remainder;
split_offset = 0;
if ((subtotal + remainder) == protgrp_bytes)
pgdone = 1;
} else {
/* must split this buffer with next prot grp */
bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
split_offset += bpl->tus.f.bdeSize;
}
subtotal += bpl->tus.f.bdeSize;
if (datadir == DMA_TO_DEVICE)
bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
else
bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
bpl->tus.w = le32_to_cpu(bpl->tus.w);
num_bde++;
curr_data++;
if (split_offset)
break;
/* Move to the next s/g segment if possible */
sgde = sg_next(sgde);
}
if (protgroup_offset) {
/* update the reference tag */
reftag += protgrp_blks;
bpl++;
continue;
}
/* are we done ? */
if (curr_prot == protcnt) {
alldone = 1;
} else if (curr_prot < protcnt) {
/* advance to next prot buffer */
sgpe = sg_next(sgpe);
bpl++;
/* update the reference tag */
reftag += protgrp_blks;
} else {
/* if we're here, we have a bug */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9054 BLKGRD: bug in %s\n", __func__);
}
} while (!alldone);
out:
return num_bde;
}
/**
* lpfc_bg_setup_sgl - Setup BlockGuard SGL with no protection data
* @phba: The Hba for which this call is being executed.
* @sc: pointer to scsi command we're working on
* @sgl: pointer to buffer list for protection groups
* @datasegcnt: number of segments of data that have been dma mapped
* @lpfc_cmd: lpfc scsi command object pointer.
*
* This function sets up SGL buffer list for protection groups of
* type LPFC_PG_TYPE_NO_DIF
*
* This is usually used when the HBA is instructed to generate
* DIFs and insert them into data stream (or strip DIF from
* incoming data stream)
*
* The buffer list consists of just one protection group described
* below:
* +-------------------------+
* start of prot group --> | DI_SEED |
* +-------------------------+
* | Data SGE |
* +-------------------------+
* |more Data SGE's ... (opt)|
* +-------------------------+
*
*
* Note: Data s/g buffers have been dma mapped
*
* Returns the number of SGEs added to the SGL.
**/
static int
lpfc_bg_setup_sgl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
struct sli4_sge *sgl, int datasegcnt,
struct lpfc_io_buf *lpfc_cmd)
{
struct scatterlist *sgde = NULL; /* s/g data entry */
struct sli4_sge_diseed *diseed = NULL;
dma_addr_t physaddr;
int i = 0, num_sge = 0, status;
uint32_t reftag;
uint8_t txop, rxop;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
uint32_t rc;
#endif
uint32_t checking = 1;
uint32_t dma_len;
uint32_t dma_offset = 0;
struct sli4_hybrid_sgl *sgl_xtra = NULL;
int j;
bool lsp_just_set = false;
status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
if (status)
goto out;
/* extract some info from the scsi command for pde*/
reftag = scsi_prot_ref_tag(sc);
if (reftag == LPFC_INVALID_REFTAG)
goto out;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1);
if (rc) {
if (rc & BG_ERR_SWAP)
lpfc_bg_err_opcodes(phba, sc, &txop, &rxop);
if (rc & BG_ERR_CHECK)
checking = 0;
}
#endif
/* setup DISEED with what we have */
diseed = (struct sli4_sge_diseed *) sgl;
memset(diseed, 0, sizeof(struct sli4_sge_diseed));
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DISEED);
/* Endianness conversion if necessary */
diseed->ref_tag = cpu_to_le32(reftag);
diseed->ref_tag_tran = diseed->ref_tag;
/*
* We only need to check the data on READs, for WRITEs
* protection data is automatically generated, not checked.
*/
if (sc->sc_data_direction == DMA_FROM_DEVICE) {
if (sc->prot_flags & SCSI_PROT_GUARD_CHECK)
bf_set(lpfc_sli4_sge_dif_ce, diseed, checking);
else
bf_set(lpfc_sli4_sge_dif_ce, diseed, 0);
if (sc->prot_flags & SCSI_PROT_REF_CHECK)
bf_set(lpfc_sli4_sge_dif_re, diseed, checking);
else
bf_set(lpfc_sli4_sge_dif_re, diseed, 0);
}
/* setup DISEED with the rest of the info */
bf_set(lpfc_sli4_sge_dif_optx, diseed, txop);
bf_set(lpfc_sli4_sge_dif_oprx, diseed, rxop);
bf_set(lpfc_sli4_sge_dif_ai, diseed, 1);
bf_set(lpfc_sli4_sge_dif_me, diseed, 0);
/* Endianness conversion if necessary for DISEED */
diseed->word2 = cpu_to_le32(diseed->word2);
diseed->word3 = cpu_to_le32(diseed->word3);
/* advance bpl and increment sge count */
num_sge++;
sgl++;
/* assumption: caller has already run dma_map_sg on command data */
sgde = scsi_sglist(sc);
j = 3;
for (i = 0; i < datasegcnt; i++) {
/* clear it */
sgl->word2 = 0;
/* do we need to expand the segment */
if (!lsp_just_set && !((j + 1) % phba->border_sge_num) &&
((datasegcnt - 1) != i)) {
/* set LSP type */
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_LSP);
sgl_xtra = lpfc_get_sgl_per_hdwq(phba, lpfc_cmd);
if (unlikely(!sgl_xtra)) {
lpfc_cmd->seg_cnt = 0;
return 0;
}
sgl->addr_lo = cpu_to_le32(putPaddrLow(
sgl_xtra->dma_phys_sgl));
sgl->addr_hi = cpu_to_le32(putPaddrHigh(
sgl_xtra->dma_phys_sgl));
} else {
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
}
if (!(bf_get(lpfc_sli4_sge_type, sgl) & LPFC_SGE_TYPE_LSP)) {
if ((datasegcnt - 1) == i)
bf_set(lpfc_sli4_sge_last, sgl, 1);
physaddr = sg_dma_address(sgde);
dma_len = sg_dma_len(sgde);
sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(dma_len);
dma_offset += dma_len;
sgde = sg_next(sgde);
sgl++;
num_sge++;
lsp_just_set = false;
} else {
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(phba->cfg_sg_dma_buf_size);
sgl = (struct sli4_sge *)sgl_xtra->dma_sgl;
i = i - 1;
lsp_just_set = true;
}
j++;
}
out:
return num_sge;
}
/**
* lpfc_bg_setup_sgl_prot - Setup BlockGuard SGL with protection data
* @phba: The Hba for which this call is being executed.
* @sc: pointer to scsi command we're working on
* @sgl: pointer to buffer list for protection groups
* @datacnt: number of segments of data that have been dma mapped
* @protcnt: number of segment of protection data that have been dma mapped
* @lpfc_cmd: lpfc scsi command object pointer.
*
* This function sets up SGL buffer list for protection groups of
* type LPFC_PG_TYPE_DIF
*
* This is usually used when DIFs are in their own buffers,
* separate from the data. The HBA can then by instructed
* to place the DIFs in the outgoing stream. For read operations,
* The HBA could extract the DIFs and place it in DIF buffers.
*
* The buffer list for this type consists of one or more of the
* protection groups described below:
* +-------------------------+
* start of first prot group --> | DISEED |
* +-------------------------+
* | DIF (Prot SGE) |
* +-------------------------+
* | Data SGE |
* +-------------------------+
* |more Data SGE's ... (opt)|
* +-------------------------+
* start of new prot group --> | DISEED |
* +-------------------------+
* | ... |
* +-------------------------+
*
* Note: It is assumed that both data and protection s/g buffers have been
* mapped for DMA
*
* Returns the number of SGEs added to the SGL.
**/
static int
lpfc_bg_setup_sgl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
struct sli4_sge *sgl, int datacnt, int protcnt,
struct lpfc_io_buf *lpfc_cmd)
{
struct scatterlist *sgde = NULL; /* s/g data entry */
struct scatterlist *sgpe = NULL; /* s/g prot entry */
struct sli4_sge_diseed *diseed = NULL;
dma_addr_t dataphysaddr, protphysaddr;
unsigned short curr_data = 0, curr_prot = 0;
unsigned int split_offset;
unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder;
unsigned int protgrp_blks, protgrp_bytes;
unsigned int remainder, subtotal;
int status;
unsigned char pgdone = 0, alldone = 0;
unsigned blksize;
uint32_t reftag;
uint8_t txop, rxop;
uint32_t dma_len;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
uint32_t rc;
#endif
uint32_t checking = 1;
uint32_t dma_offset = 0;
int num_sge = 0, j = 2;
struct sli4_hybrid_sgl *sgl_xtra = NULL;
sgpe = scsi_prot_sglist(sc);
sgde = scsi_sglist(sc);
if (!sgpe || !sgde) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9082 Invalid s/g entry: data=x%px prot=x%px\n",
sgpe, sgde);
return 0;
}
status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
if (status)
goto out;
/* extract some info from the scsi command */
blksize = scsi_prot_interval(sc);
reftag = scsi_prot_ref_tag(sc);
if (reftag == LPFC_INVALID_REFTAG)
goto out;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1);
if (rc) {
if (rc & BG_ERR_SWAP)
lpfc_bg_err_opcodes(phba, sc, &txop, &rxop);
if (rc & BG_ERR_CHECK)
checking = 0;
}
#endif
split_offset = 0;
do {
/* Check to see if we ran out of space */
if ((num_sge >= (phba->cfg_total_seg_cnt - 2)) &&
!(phba->cfg_xpsgl))
return num_sge + 3;
/* DISEED and DIF have to be together */
if (!((j + 1) % phba->border_sge_num) ||
!((j + 2) % phba->border_sge_num) ||
!((j + 3) % phba->border_sge_num)) {
sgl->word2 = 0;
/* set LSP type */
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_LSP);
sgl_xtra = lpfc_get_sgl_per_hdwq(phba, lpfc_cmd);
if (unlikely(!sgl_xtra)) {
goto out;
} else {
sgl->addr_lo = cpu_to_le32(putPaddrLow(
sgl_xtra->dma_phys_sgl));
sgl->addr_hi = cpu_to_le32(putPaddrHigh(
sgl_xtra->dma_phys_sgl));
}
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(phba->cfg_sg_dma_buf_size);
sgl = (struct sli4_sge *)sgl_xtra->dma_sgl;
j = 0;
}
/* setup DISEED with what we have */
diseed = (struct sli4_sge_diseed *) sgl;
memset(diseed, 0, sizeof(struct sli4_sge_diseed));
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DISEED);
/* Endianness conversion if necessary */
diseed->ref_tag = cpu_to_le32(reftag);
diseed->ref_tag_tran = diseed->ref_tag;
if (sc->prot_flags & SCSI_PROT_GUARD_CHECK) {
bf_set(lpfc_sli4_sge_dif_ce, diseed, checking);
} else {
bf_set(lpfc_sli4_sge_dif_ce, diseed, 0);
/*
* When in this mode, the hardware will replace
* the guard tag from the host with a
* newly generated good CRC for the wire.
* Switch to raw mode here to avoid this
* behavior. What the host sends gets put on the wire.
*/
if (txop == BG_OP_IN_CRC_OUT_CRC) {
txop = BG_OP_RAW_MODE;
rxop = BG_OP_RAW_MODE;
}
}
if (sc->prot_flags & SCSI_PROT_REF_CHECK)
bf_set(lpfc_sli4_sge_dif_re, diseed, checking);
else
bf_set(lpfc_sli4_sge_dif_re, diseed, 0);
/* setup DISEED with the rest of the info */
bf_set(lpfc_sli4_sge_dif_optx, diseed, txop);
bf_set(lpfc_sli4_sge_dif_oprx, diseed, rxop);
bf_set(lpfc_sli4_sge_dif_ai, diseed, 1);
bf_set(lpfc_sli4_sge_dif_me, diseed, 0);
/* Endianness conversion if necessary for DISEED */
diseed->word2 = cpu_to_le32(diseed->word2);
diseed->word3 = cpu_to_le32(diseed->word3);
/* advance sgl and increment bde count */
num_sge++;
sgl++;
j++;
/* setup the first BDE that points to protection buffer */
protphysaddr = sg_dma_address(sgpe) + protgroup_offset;
protgroup_len = sg_dma_len(sgpe) - protgroup_offset;
/* must be integer multiple of the DIF block length */
BUG_ON(protgroup_len % 8);
/* Now setup DIF SGE */
sgl->word2 = 0;
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DIF);
sgl->addr_hi = le32_to_cpu(putPaddrHigh(protphysaddr));
sgl->addr_lo = le32_to_cpu(putPaddrLow(protphysaddr));
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = 0;
protgrp_blks = protgroup_len / 8;
protgrp_bytes = protgrp_blks * blksize;
/* check if DIF SGE is crossing the 4K boundary; if so split */
if ((sgl->addr_lo & 0xfff) + protgroup_len > 0x1000) {
protgroup_remainder = 0x1000 - (sgl->addr_lo & 0xfff);
protgroup_offset += protgroup_remainder;
protgrp_blks = protgroup_remainder / 8;
protgrp_bytes = protgrp_blks * blksize;
} else {
protgroup_offset = 0;
curr_prot++;
}
num_sge++;
/* setup SGE's for data blocks associated with DIF data */
pgdone = 0;
subtotal = 0; /* total bytes processed for current prot grp */
sgl++;
j++;
while (!pgdone) {
/* Check to see if we ran out of space */
if ((num_sge >= phba->cfg_total_seg_cnt) &&
!phba->cfg_xpsgl)
return num_sge + 1;
if (!sgde) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9086 BLKGRD:%s Invalid data segment\n",
__func__);
return 0;
}
if (!((j + 1) % phba->border_sge_num)) {
sgl->word2 = 0;
/* set LSP type */
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_LSP);
sgl_xtra = lpfc_get_sgl_per_hdwq(phba,
lpfc_cmd);
if (unlikely(!sgl_xtra)) {
goto out;
} else {
sgl->addr_lo = cpu_to_le32(
putPaddrLow(sgl_xtra->dma_phys_sgl));
sgl->addr_hi = cpu_to_le32(
putPaddrHigh(sgl_xtra->dma_phys_sgl));
}
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(
phba->cfg_sg_dma_buf_size);
sgl = (struct sli4_sge *)sgl_xtra->dma_sgl;
} else {
dataphysaddr = sg_dma_address(sgde) +
split_offset;
remainder = sg_dma_len(sgde) - split_offset;
if ((subtotal + remainder) <= protgrp_bytes) {
/* we can use this whole buffer */
dma_len = remainder;
split_offset = 0;
if ((subtotal + remainder) ==
protgrp_bytes)
pgdone = 1;
} else {
/* must split this buffer with next
* prot grp
*/
dma_len = protgrp_bytes - subtotal;
split_offset += dma_len;
}
subtotal += dma_len;
sgl->word2 = 0;
sgl->addr_lo = cpu_to_le32(putPaddrLow(
dataphysaddr));
sgl->addr_hi = cpu_to_le32(putPaddrHigh(
dataphysaddr));
bf_set(lpfc_sli4_sge_last, sgl, 0);
bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
sgl->sge_len = cpu_to_le32(dma_len);
dma_offset += dma_len;
num_sge++;
curr_data++;
if (split_offset) {
sgl++;
j++;
break;
}
/* Move to the next s/g segment if possible */
sgde = sg_next(sgde);
sgl++;
}
j++;
}
if (protgroup_offset) {
/* update the reference tag */
reftag += protgrp_blks;
continue;
}
/* are we done ? */
if (curr_prot == protcnt) {
/* mark the last SGL */
sgl--;
bf_set(lpfc_sli4_sge_last, sgl, 1);
alldone = 1;
} else if (curr_prot < protcnt) {
/* advance to next prot buffer */
sgpe = sg_next(sgpe);
/* update the reference tag */
reftag += protgrp_blks;
} else {
/* if we're here, we have a bug */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9085 BLKGRD: bug in %s\n", __func__);
}
} while (!alldone);
out:
return num_sge;
}
/**
* lpfc_prot_group_type - Get prtotection group type of SCSI command
* @phba: The Hba for which this call is being executed.
* @sc: pointer to scsi command we're working on
*
* Given a SCSI command that supports DIF, determine composition of protection
* groups involved in setting up buffer lists
*
* Returns: Protection group type (with or without DIF)
*
**/
static int
lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
{
int ret = LPFC_PG_TYPE_INVALID;
unsigned char op = scsi_get_prot_op(sc);
switch (op) {
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_WRITE_INSERT:
ret = LPFC_PG_TYPE_NO_DIF;
break;
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_WRITE_STRIP:
case SCSI_PROT_READ_PASS:
case SCSI_PROT_WRITE_PASS:
ret = LPFC_PG_TYPE_DIF_BUF;
break;
default:
if (phba)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9021 Unsupported protection op:%d\n",
op);
break;
}
return ret;
}
/**
* lpfc_bg_scsi_adjust_dl - Adjust SCSI data length for BlockGuard
* @phba: The Hba for which this call is being executed.
* @lpfc_cmd: The scsi buffer which is going to be adjusted.
*
* Adjust the data length to account for how much data
* is actually on the wire.
*
* returns the adjusted data length
**/
static int
lpfc_bg_scsi_adjust_dl(struct lpfc_hba *phba,
struct lpfc_io_buf *lpfc_cmd)
{
struct scsi_cmnd *sc = lpfc_cmd->pCmd;
int fcpdl;
fcpdl = scsi_bufflen(sc);
/* Check if there is protection data on the wire */
if (sc->sc_data_direction == DMA_FROM_DEVICE) {
/* Read check for protection data */
if (scsi_get_prot_op(sc) == SCSI_PROT_READ_INSERT)
return fcpdl;
} else {
/* Write check for protection data */
if (scsi_get_prot_op(sc) == SCSI_PROT_WRITE_STRIP)
return fcpdl;
}
/*
* If we are in DIF Type 1 mode every data block has a 8 byte
* DIF (trailer) attached to it. Must ajust FCP data length
* to account for the protection data.
*/
fcpdl += (fcpdl / scsi_prot_interval(sc)) * 8;
return fcpdl;
}
/**
* lpfc_bg_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
* @phba: The Hba for which this call is being executed.
* @lpfc_cmd: The scsi buffer which is going to be prep'ed.
*
* This is the protection/DIF aware version of
* lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
* two functions eventually, but for now, it's here.
* RETURNS 0 - SUCCESS,
* 1 - Failed DMA map, retry.
* 2 - Invalid scsi cmd or prot-type. Do not rety.
**/
static int
lpfc_bg_scsi_prep_dma_buf_s3(struct lpfc_hba *phba,
struct lpfc_io_buf *lpfc_cmd)
{
struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
struct ulp_bde64 *bpl = (struct ulp_bde64 *)lpfc_cmd->dma_sgl;
IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
uint32_t num_bde = 0;
int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
int prot_group_type = 0;
int fcpdl;
int ret = 1;
struct lpfc_vport *vport = phba->pport;
/*
* Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
* fcp_rsp regions to the first data bde entry
*/
bpl += 2;
if (scsi_sg_count(scsi_cmnd)) {
/*
* The driver stores the segment count returned from dma_map_sg
* because this a count of dma-mappings used to map the use_sg
* pages. They are not guaranteed to be the same for those
* architectures that implement an IOMMU.
*/
datasegcnt = dma_map_sg(&phba->pcidev->dev,
scsi_sglist(scsi_cmnd),
scsi_sg_count(scsi_cmnd), datadir);
if (unlikely(!datasegcnt))
return 1;
lpfc_cmd->seg_cnt = datasegcnt;
/* First check if data segment count from SCSI Layer is good */
if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt);
ret = 2;
goto err;
}
prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
switch (prot_group_type) {
case LPFC_PG_TYPE_NO_DIF:
/* Here we need to add a PDE5 and PDE6 to the count */
if ((lpfc_cmd->seg_cnt + 2) > phba->cfg_total_seg_cnt) {
ret = 2;
goto err;
}
num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
datasegcnt);
/* we should have 2 or more entries in buffer list */
if (num_bde < 2) {
ret = 2;
goto err;
}
break;
case LPFC_PG_TYPE_DIF_BUF:
/*
* This type indicates that protection buffers are
* passed to the driver, so that needs to be prepared
* for DMA
*/
protsegcnt = dma_map_sg(&phba->pcidev->dev,
scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd), datadir);
if (unlikely(!protsegcnt)) {
scsi_dma_unmap(scsi_cmnd);
return 1;
}
lpfc_cmd->prot_seg_cnt = protsegcnt;
/*
* There is a minimun of 4 BPLs used for every
* protection data segment.
*/
if ((lpfc_cmd->prot_seg_cnt * 4) >
(phba->cfg_total_seg_cnt - 2)) {
ret = 2;
goto err;
}
num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
datasegcnt, protsegcnt);
/* we should have 3 or more entries in buffer list */
if ((num_bde < 3) ||
(num_bde > phba->cfg_total_seg_cnt)) {
ret = 2;
goto err;
}
break;
case LPFC_PG_TYPE_INVALID:
default:
scsi_dma_unmap(scsi_cmnd);
lpfc_cmd->seg_cnt = 0;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9022 Unexpected protection group %i\n",
prot_group_type);
return 2;
}
}
/*
* Finish initializing those IOCB fields that are dependent on the
* scsi_cmnd request_buffer. Note that the bdeSize is explicitly
* reinitialized since all iocb memory resources are used many times
* for transmit, receive, and continuation bpl's.
*/
iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
iocb_cmd->ulpBdeCount = 1;
iocb_cmd->ulpLe = 1;
fcpdl = lpfc_bg_scsi_adjust_dl(phba, lpfc_cmd);
fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
/*
* Due to difference in data length between DIF/non-DIF paths,
* we need to set word 4 of IOCB here
*/
iocb_cmd->un.fcpi.fcpi_parm = fcpdl;
/*
* For First burst, we may need to adjust the initial transfer
* length for DIF
*/
if (iocb_cmd->un.fcpi.fcpi_XRdy &&
(fcpdl < vport->cfg_first_burst_size))
iocb_cmd->un.fcpi.fcpi_XRdy = fcpdl;
return 0;
err:
if (lpfc_cmd->seg_cnt)
scsi_dma_unmap(scsi_cmnd);
if (lpfc_cmd->prot_seg_cnt)
dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd),
scsi_cmnd->sc_data_direction);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9023 Cannot setup S/G List for HBA"
"IO segs %d/%d BPL %d SCSI %d: %d %d\n",
lpfc_cmd->seg_cnt, lpfc_cmd->prot_seg_cnt,
phba->cfg_total_seg_cnt, phba->cfg_sg_seg_cnt,
prot_group_type, num_bde);
lpfc_cmd->seg_cnt = 0;
lpfc_cmd->prot_seg_cnt = 0;
return ret;
}
/*
* This function calcuates the T10 DIF guard tag
* on the specified data using a CRC algorithmn
* using crc_t10dif.
*/
static uint16_t
lpfc_bg_crc(uint8_t *data, int count)
{
uint16_t crc = 0;
uint16_t x;
crc = crc_t10dif(data, count);
x = cpu_to_be16(crc);
return x;
}
/*
* This function calcuates the T10 DIF guard tag
* on the specified data using a CSUM algorithmn
* using ip_compute_csum.
*/
static uint16_t
lpfc_bg_csum(uint8_t *data, int count)
{
uint16_t ret;
ret = ip_compute_csum(data, count);
return ret;
}
/*
* This function examines the protection data to try to determine
* what type of T10-DIF error occurred.
*/
static void
lpfc_calc_bg_err(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
{
struct scatterlist *sgpe; /* s/g prot entry */
struct scatterlist *sgde; /* s/g data entry */
struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
struct scsi_dif_tuple *src = NULL;
uint8_t *data_src = NULL;
uint16_t guard_tag;
uint16_t start_app_tag, app_tag;
uint32_t start_ref_tag, ref_tag;
int prot, protsegcnt;
int err_type, len, data_len;
int chk_ref, chk_app, chk_guard;
uint16_t sum;
unsigned blksize;
err_type = BGS_GUARD_ERR_MASK;
sum = 0;
guard_tag = 0;
/* First check to see if there is protection data to examine */
prot = scsi_get_prot_op(cmd);
if ((prot == SCSI_PROT_READ_STRIP) ||
(prot == SCSI_PROT_WRITE_INSERT) ||
(prot == SCSI_PROT_NORMAL))
goto out;
/* Currently the driver just supports ref_tag and guard_tag checking */
chk_ref = 1;
chk_app = 0;
chk_guard = 0;
/* Setup a ptr to the protection data provided by the SCSI host */
sgpe = scsi_prot_sglist(cmd);
protsegcnt = lpfc_cmd->prot_seg_cnt;
if (sgpe && protsegcnt) {
/*
* We will only try to verify guard tag if the segment
* data length is a multiple of the blksize.
*/
sgde = scsi_sglist(cmd);
blksize = scsi_prot_interval(cmd);
data_src = (uint8_t *)sg_virt(sgde);
data_len = sgde->length;
if ((data_len & (blksize - 1)) == 0)
chk_guard = 1;
src = (struct scsi_dif_tuple *)sg_virt(sgpe);
start_ref_tag = scsi_prot_ref_tag(cmd);
if (start_ref_tag == LPFC_INVALID_REFTAG)
goto out;
start_app_tag = src->app_tag;
len = sgpe->length;
while (src && protsegcnt) {
while (len) {
/*
* First check to see if a protection data
* check is valid
*/
if ((src->ref_tag == T10_PI_REF_ESCAPE) ||
(src->app_tag == T10_PI_APP_ESCAPE)) {
start_ref_tag++;
goto skipit;
}
/* First Guard Tag checking */
if (chk_guard) {
guard_tag = src->guard_tag;
if (cmd->prot_flags
& SCSI_PROT_IP_CHECKSUM)
sum = lpfc_bg_csum(data_src,
blksize);
else
sum = lpfc_bg_crc(data_src,
blksize);
if ((guard_tag != sum)) {
err_type = BGS_GUARD_ERR_MASK;
goto out;
}
}
/* Reference Tag checking */
ref_tag = be32_to_cpu(src->ref_tag);
if (chk_ref && (ref_tag != start_ref_tag)) {
err_type = BGS_REFTAG_ERR_MASK;
goto out;
}
start_ref_tag++;
/* App Tag checking */
app_tag = src->app_tag;
if (chk_app && (app_tag != start_app_tag)) {
err_type = BGS_APPTAG_ERR_MASK;
goto out;
}
skipit:
len -= sizeof(struct scsi_dif_tuple);
if (len < 0)
len = 0;
src++;
data_src += blksize;
data_len -= blksize;
/*
* Are we at the end of the Data segment?
* The data segment is only used for Guard
* tag checking.
*/
if (chk_guard && (data_len == 0)) {
chk_guard = 0;
sgde = sg_next(sgde);
if (!sgde)
goto out;
data_src = (uint8_t *)sg_virt(sgde);
data_len = sgde->length;
if ((data_len & (blksize - 1)) == 0)
chk_guard = 1;
}
}
/* Goto the next Protection data segment */
sgpe = sg_next(sgpe);
if (sgpe) {
src = (struct scsi_dif_tuple *)sg_virt(sgpe);
len = sgpe->length;
} else {
src = NULL;
}
protsegcnt--;
}
}
out:
if (err_type == BGS_GUARD_ERR_MASK) {
scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x1);
set_host_byte(cmd, DID_ABORT);
phba->bg_guard_err_cnt++;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9069 BLKGRD: reftag %x grd_tag err %x != %x\n",
scsi_prot_ref_tag(cmd),
sum, guard_tag);
} else if (err_type == BGS_REFTAG_ERR_MASK) {
scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x3);
set_host_byte(cmd, DID_ABORT);
phba->bg_reftag_err_cnt++;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9066 BLKGRD: reftag %x ref_tag err %x != %x\n",
scsi_prot_ref_tag(cmd),
ref_tag, start_ref_tag);
} else if (err_type == BGS_APPTAG_ERR_MASK) {
scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x2);
set_host_byte(cmd, DID_ABORT);
phba->bg_apptag_err_cnt++;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9041 BLKGRD: reftag %x app_tag err %x != %x\n",
scsi_prot_ref_tag(cmd),
app_tag, start_app_tag);
}
}
/*
* This function checks for BlockGuard errors detected by
* the HBA. In case of errors, the ASC/ASCQ fields in the
* sense buffer will be set accordingly, paired with
* ILLEGAL_REQUEST to signal to the kernel that the HBA
* detected corruption.
*
* Returns:
* 0 - No error found
* 1 - BlockGuard error found
* -1 - Internal error (bad profile, ...etc)
*/
static int
lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd,
struct lpfc_iocbq *pIocbOut)
{
struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
struct sli3_bg_fields *bgf;
int ret = 0;
struct lpfc_wcqe_complete *wcqe;
u32 status;
u32 bghm = 0;
u32 bgstat = 0;
u64 failing_sector = 0;
if (phba->sli_rev == LPFC_SLI_REV4) {
wcqe = &pIocbOut->wcqe_cmpl;
status = bf_get(lpfc_wcqe_c_status, wcqe);
if (status == CQE_STATUS_DI_ERROR) {
/* Guard Check failed */
if (bf_get(lpfc_wcqe_c_bg_ge, wcqe))
bgstat |= BGS_GUARD_ERR_MASK;
/* AppTag Check failed */
if (bf_get(lpfc_wcqe_c_bg_ae, wcqe))
bgstat |= BGS_APPTAG_ERR_MASK;
/* RefTag Check failed */
if (bf_get(lpfc_wcqe_c_bg_re, wcqe))
bgstat |= BGS_REFTAG_ERR_MASK;
/* Check to see if there was any good data before the
* error
*/
if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
bgstat |= BGS_HI_WATER_MARK_PRESENT_MASK;
bghm = wcqe->total_data_placed;
}
/*
* Set ALL the error bits to indicate we don't know what
* type of error it is.
*/
if (!bgstat)
bgstat |= (BGS_REFTAG_ERR_MASK |
BGS_APPTAG_ERR_MASK |
BGS_GUARD_ERR_MASK);
}
} else {
bgf = &pIocbOut->iocb.unsli3.sli3_bg;
bghm = bgf->bghm;
bgstat = bgf->bgstat;
}
if (lpfc_bgs_get_invalid_prof(bgstat)) {
cmd->result = DID_ERROR << 16;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9072 BLKGRD: Invalid BG Profile in cmd "
"0x%x reftag 0x%x blk cnt 0x%x "
"bgstat=x%x bghm=x%x\n", cmd->cmnd[0],
scsi_prot_ref_tag(cmd),
scsi_logical_block_count(cmd), bgstat, bghm);
ret = (-1);
goto out;
}
if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
cmd->result = DID_ERROR << 16;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9073 BLKGRD: Invalid BG PDIF Block in cmd "
"0x%x reftag 0x%x blk cnt 0x%x "
"bgstat=x%x bghm=x%x\n", cmd->cmnd[0],
scsi_prot_ref_tag(cmd),
scsi_logical_block_count(cmd), bgstat, bghm);
ret = (-1);
goto out;
}
if (lpfc_bgs_get_guard_err(bgstat)) {
ret = 1;
scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x1);
set_host_byte(cmd, DID_ABORT);
phba->bg_guard_err_cnt++;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9055 BLKGRD: Guard Tag error in cmd "
"0x%x reftag 0x%x blk cnt 0x%x "
"bgstat=x%x bghm=x%x\n", cmd->cmnd[0],
scsi_prot_ref_tag(cmd),
scsi_logical_block_count(cmd), bgstat, bghm);
}
if (lpfc_bgs_get_reftag_err(bgstat)) {
ret = 1;
scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x3);
set_host_byte(cmd, DID_ABORT);
phba->bg_reftag_err_cnt++;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9056 BLKGRD: Ref Tag error in cmd "
"0x%x reftag 0x%x blk cnt 0x%x "
"bgstat=x%x bghm=x%x\n", cmd->cmnd[0],
scsi_prot_ref_tag(cmd),
scsi_logical_block_count(cmd), bgstat, bghm);
}
if (lpfc_bgs_get_apptag_err(bgstat)) {
ret = 1;
scsi_build_sense(cmd, 1, ILLEGAL_REQUEST, 0x10, 0x2);
set_host_byte(cmd, DID_ABORT);
phba->bg_apptag_err_cnt++;
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9061 BLKGRD: App Tag error in cmd "
"0x%x reftag 0x%x blk cnt 0x%x "
"bgstat=x%x bghm=x%x\n", cmd->cmnd[0],
scsi_prot_ref_tag(cmd),
scsi_logical_block_count(cmd), bgstat, bghm);
}
if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
/*
* setup sense data descriptor 0 per SPC-4 as an information
* field, and put the failing LBA in it.
* This code assumes there was also a guard/app/ref tag error
* indication.
*/
cmd->sense_buffer[7] = 0xc; /* Additional sense length */
cmd->sense_buffer[8] = 0; /* Information descriptor type */
cmd->sense_buffer[9] = 0xa; /* Additional descriptor length */
cmd->sense_buffer[10] = 0x80; /* Validity bit */
/* bghm is a "on the wire" FC frame based count */
switch (scsi_get_prot_op(cmd)) {
case SCSI_PROT_READ_INSERT:
case SCSI_PROT_WRITE_STRIP:
bghm /= cmd->device->sector_size;
break;
case SCSI_PROT_READ_STRIP:
case SCSI_PROT_WRITE_INSERT:
case SCSI_PROT_READ_PASS:
case SCSI_PROT_WRITE_PASS:
bghm /= (cmd->device->sector_size +
sizeof(struct scsi_dif_tuple));
break;
}
failing_sector = scsi_get_lba(cmd);
failing_sector += bghm;
/* Descriptor Information */
put_unaligned_be64(failing_sector, &cmd->sense_buffer[12]);
}
if (!ret) {
/* No error was reported - problem in FW? */
lpfc_printf_log(phba, KERN_WARNING, LOG_FCP | LOG_BG,
"9057 BLKGRD: Unknown error in cmd "
"0x%x reftag 0x%x blk cnt 0x%x "
"bgstat=x%x bghm=x%x\n", cmd->cmnd[0],
scsi_prot_ref_tag(cmd),
scsi_logical_block_count(cmd), bgstat, bghm);
/* Calculate what type of error it was */
lpfc_calc_bg_err(phba, lpfc_cmd);
}
out:
return ret;
}
/**
* lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
* @phba: The Hba for which this call is being executed.
* @lpfc_cmd: The scsi buffer which is going to be mapped.
*
* This routine does the pci dma mapping for scatter-gather list of scsi cmnd
* field of @lpfc_cmd for device with SLI-4 interface spec.
*
* Return codes:
* 2 - Error - Do not retry
* 1 - Error - Retry
* 0 - Success
**/
static int
lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
{
struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
struct scatterlist *sgel = NULL;
struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
struct sli4_sge *first_data_sgl;
struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq;
struct lpfc_vport *vport = phba->pport;
union lpfc_wqe128 *wqe = &pwqeq->wqe;
dma_addr_t physaddr;
uint32_t dma_len;
uint32_t dma_offset = 0;
int nseg, i, j;
struct ulp_bde64 *bde;
bool lsp_just_set = false;
struct sli4_hybrid_sgl *sgl_xtra = NULL;
/*
* There are three possibilities here - use scatter-gather segment, use
* the single mapping, or neither. Start the lpfc command prep by
* bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
* data bde entry.
*/
if (scsi_sg_count(scsi_cmnd)) {
/*
* The driver stores the segment count returned from dma_map_sg
* because this a count of dma-mappings used to map the use_sg
* pages. They are not guaranteed to be the same for those
* architectures that implement an IOMMU.
*/
nseg = scsi_dma_map(scsi_cmnd);
if (unlikely(nseg <= 0))
return 1;
sgl += 1;
/* clear the last flag in the fcp_rsp map entry */
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 0);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl += 1;
first_data_sgl = sgl;
lpfc_cmd->seg_cnt = nseg;
if (!phba->cfg_xpsgl &&
lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9074 BLKGRD:"
" %s: Too many sg segments from "
"dma_map_sg. Config %d, seg_cnt %d\n",
__func__, phba->cfg_sg_seg_cnt,
lpfc_cmd->seg_cnt);
WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt);
lpfc_cmd->seg_cnt = 0;
scsi_dma_unmap(scsi_cmnd);
return 2;
}
/*
* The driver established a maximum scatter-gather segment count
* during probe that limits the number of sg elements in any
* single scsi command. Just run through the seg_cnt and format
* the sge's.
* When using SLI-3 the driver will try to fit all the BDEs into
* the IOCB. If it can't then the BDEs get added to a BPL as it
* does for SLI-2 mode.
*/
/* for tracking segment boundaries */
sgel = scsi_sglist(scsi_cmnd);
j = 2;
for (i = 0; i < nseg; i++) {
sgl->word2 = 0;
if (nseg == 1) {
bf_set(lpfc_sli4_sge_last, sgl, 1);
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
} else {
bf_set(lpfc_sli4_sge_last, sgl, 0);
/* do we need to expand the segment */
if (!lsp_just_set &&
!((j + 1) % phba->border_sge_num) &&
((nseg - 1) != i)) {
/* set LSP type */
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_LSP);
sgl_xtra = lpfc_get_sgl_per_hdwq(
phba, lpfc_cmd);
if (unlikely(!sgl_xtra)) {
lpfc_cmd->seg_cnt = 0;
scsi_dma_unmap(scsi_cmnd);
return 1;
}
sgl->addr_lo = cpu_to_le32(putPaddrLow(
sgl_xtra->dma_phys_sgl));
sgl->addr_hi = cpu_to_le32(putPaddrHigh(
sgl_xtra->dma_phys_sgl));
} else {
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
}
}
if (!(bf_get(lpfc_sli4_sge_type, sgl) &
LPFC_SGE_TYPE_LSP)) {
if ((nseg - 1) == i)
bf_set(lpfc_sli4_sge_last, sgl, 1);
physaddr = sg_dma_address(sgel);
dma_len = sg_dma_len(sgel);
sgl->addr_lo = cpu_to_le32(putPaddrLow(
physaddr));
sgl->addr_hi = cpu_to_le32(putPaddrHigh(
physaddr));
bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(dma_len);
dma_offset += dma_len;
sgel = sg_next(sgel);
sgl++;
lsp_just_set = false;
} else {
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(
phba->cfg_sg_dma_buf_size);
sgl = (struct sli4_sge *)sgl_xtra->dma_sgl;
i = i - 1;
lsp_just_set = true;
}
j++;
}
/* PBDE support for first data SGE only.
* For FCoE, we key off Performance Hints.
* For FC, we key off lpfc_enable_pbde.
*/
if (nseg == 1 &&
((phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) ||
phba->cfg_enable_pbde)) {
/* Words 13-15 */
bde = (struct ulp_bde64 *)
&wqe->words[13];
bde->addrLow = first_data_sgl->addr_lo;
bde->addrHigh = first_data_sgl->addr_hi;
bde->tus.f.bdeSize =
le32_to_cpu(first_data_sgl->sge_len);
bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
bde->tus.w = cpu_to_le32(bde->tus.w);
/* Word 11 - set PBDE bit */
bf_set(wqe_pbde, &wqe->generic.wqe_com, 1);
} else {
memset(&wqe->words[13], 0, (sizeof(uint32_t) * 3));
/* Word 11 - PBDE bit disabled by default template */
}
} else {
sgl += 1;
/* set the last flag in the fcp_rsp map entry */
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 1);
sgl->word2 = cpu_to_le32(sgl->word2);
if ((phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) ||
phba->cfg_enable_pbde) {
bde = (struct ulp_bde64 *)
&wqe->words[13];
memset(bde, 0, (sizeof(uint32_t) * 3));
}
}
/*
* Finish initializing those IOCB fields that are dependent on the
* scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
* explicitly reinitialized.
* all iocb memory resources are reused.
*/
fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
/* Set first-burst provided it was successfully negotiated */
if (!(phba->hba_flag & HBA_FCOE_MODE) &&
vport->cfg_first_burst_size &&
scsi_cmnd->sc_data_direction == DMA_TO_DEVICE) {
u32 init_len, total_len;
total_len = be32_to_cpu(fcp_cmnd->fcpDl);
init_len = min(total_len, vport->cfg_first_burst_size);
/* Word 4 & 5 */
wqe->fcp_iwrite.initial_xfer_len = init_len;
wqe->fcp_iwrite.total_xfer_len = total_len;
} else {
/* Word 4 */
wqe->fcp_iwrite.total_xfer_len =
be32_to_cpu(fcp_cmnd->fcpDl);
}
/*
* If the OAS driver feature is enabled and the lun is enabled for
* OAS, set the oas iocb related flags.
*/
if ((phba->cfg_fof) && ((struct lpfc_device_data *)
scsi_cmnd->device->hostdata)->oas_enabled) {
lpfc_cmd->cur_iocbq.cmd_flag |= (LPFC_IO_OAS | LPFC_IO_FOF);
lpfc_cmd->cur_iocbq.priority = ((struct lpfc_device_data *)
scsi_cmnd->device->hostdata)->priority;
/* Word 10 */
bf_set(wqe_oas, &wqe->generic.wqe_com, 1);
bf_set(wqe_ccpe, &wqe->generic.wqe_com, 1);
if (lpfc_cmd->cur_iocbq.priority)
bf_set(wqe_ccp, &wqe->generic.wqe_com,
(lpfc_cmd->cur_iocbq.priority << 1));
else
bf_set(wqe_ccp, &wqe->generic.wqe_com,
(phba->cfg_XLanePriority << 1));
}
return 0;
}
/**
* lpfc_bg_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
* @phba: The Hba for which this call is being executed.
* @lpfc_cmd: The scsi buffer which is going to be mapped.
*
* This is the protection/DIF aware version of
* lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
* two functions eventually, but for now, it's here
* Return codes:
* 2 - Error - Do not retry
* 1 - Error - Retry
* 0 - Success
**/
static int
lpfc_bg_scsi_prep_dma_buf_s4(struct lpfc_hba *phba,
struct lpfc_io_buf *lpfc_cmd)
{
struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
struct sli4_sge *sgl = (struct sli4_sge *)(lpfc_cmd->dma_sgl);
struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq;
union lpfc_wqe128 *wqe = &pwqeq->wqe;
uint32_t num_sge = 0;
int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
int prot_group_type = 0;
int fcpdl;
int ret = 1;
struct lpfc_vport *vport = phba->pport;
/*
* Start the lpfc command prep by bumping the sgl beyond fcp_cmnd
* fcp_rsp regions to the first data sge entry
*/
if (scsi_sg_count(scsi_cmnd)) {
/*
* The driver stores the segment count returned from dma_map_sg
* because this a count of dma-mappings used to map the use_sg
* pages. They are not guaranteed to be the same for those
* architectures that implement an IOMMU.
*/
datasegcnt = dma_map_sg(&phba->pcidev->dev,
scsi_sglist(scsi_cmnd),
scsi_sg_count(scsi_cmnd), datadir);
if (unlikely(!datasegcnt))
return 1;
sgl += 1;
/* clear the last flag in the fcp_rsp map entry */
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 0);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl += 1;
lpfc_cmd->seg_cnt = datasegcnt;
/* First check if data segment count from SCSI Layer is good */
if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt &&
!phba->cfg_xpsgl) {
WARN_ON_ONCE(lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt);
ret = 2;
goto err;
}
prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
switch (prot_group_type) {
case LPFC_PG_TYPE_NO_DIF:
/* Here we need to add a DISEED to the count */
if (((lpfc_cmd->seg_cnt + 1) >
phba->cfg_total_seg_cnt) &&
!phba->cfg_xpsgl) {
ret = 2;
goto err;
}
num_sge = lpfc_bg_setup_sgl(phba, scsi_cmnd, sgl,
datasegcnt, lpfc_cmd);
/* we should have 2 or more entries in buffer list */
if (num_sge < 2) {
ret = 2;
goto err;
}
break;
case LPFC_PG_TYPE_DIF_BUF:
/*
* This type indicates that protection buffers are
* passed to the driver, so that needs to be prepared
* for DMA
*/
protsegcnt = dma_map_sg(&phba->pcidev->dev,
scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd), datadir);
if (unlikely(!protsegcnt)) {
scsi_dma_unmap(scsi_cmnd);
return 1;
}
lpfc_cmd->prot_seg_cnt = protsegcnt;
/*
* There is a minimun of 3 SGEs used for every
* protection data segment.
*/
if (((lpfc_cmd->prot_seg_cnt * 3) >
(phba->cfg_total_seg_cnt - 2)) &&
!phba->cfg_xpsgl) {
ret = 2;
goto err;
}
num_sge = lpfc_bg_setup_sgl_prot(phba, scsi_cmnd, sgl,
datasegcnt, protsegcnt, lpfc_cmd);
/* we should have 3 or more entries in buffer list */
if (num_sge < 3 ||
(num_sge > phba->cfg_total_seg_cnt &&
!phba->cfg_xpsgl)) {
ret = 2;
goto err;
}
break;
case LPFC_PG_TYPE_INVALID:
default:
scsi_dma_unmap(scsi_cmnd);
lpfc_cmd->seg_cnt = 0;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9083 Unexpected protection group %i\n",
prot_group_type);
return 2;
}
}
switch (scsi_get_prot_op(scsi_cmnd)) {
case SCSI_PROT_WRITE_STRIP:
case SCSI_PROT_READ_STRIP:
lpfc_cmd->cur_iocbq.cmd_flag |= LPFC_IO_DIF_STRIP;
break;
case SCSI_PROT_WRITE_INSERT:
case SCSI_PROT_READ_INSERT:
lpfc_cmd->cur_iocbq.cmd_flag |= LPFC_IO_DIF_INSERT;
break;
case SCSI_PROT_WRITE_PASS:
case SCSI_PROT_READ_PASS:
lpfc_cmd->cur_iocbq.cmd_flag |= LPFC_IO_DIF_PASS;
break;
}
fcpdl = lpfc_bg_scsi_adjust_dl(phba, lpfc_cmd);
fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
/* Set first-burst provided it was successfully negotiated */
if (!(phba->hba_flag & HBA_FCOE_MODE) &&
vport->cfg_first_burst_size &&
scsi_cmnd->sc_data_direction == DMA_TO_DEVICE) {
u32 init_len, total_len;
total_len = be32_to_cpu(fcp_cmnd->fcpDl);
init_len = min(total_len, vport->cfg_first_burst_size);
/* Word 4 & 5 */
wqe->fcp_iwrite.initial_xfer_len = init_len;
wqe->fcp_iwrite.total_xfer_len = total_len;
} else {
/* Word 4 */
wqe->fcp_iwrite.total_xfer_len =
be32_to_cpu(fcp_cmnd->fcpDl);
}
/*
* If the OAS driver feature is enabled and the lun is enabled for
* OAS, set the oas iocb related flags.
*/
if ((phba->cfg_fof) && ((struct lpfc_device_data *)
scsi_cmnd->device->hostdata)->oas_enabled) {
lpfc_cmd->cur_iocbq.cmd_flag |= (LPFC_IO_OAS | LPFC_IO_FOF);
/* Word 10 */
bf_set(wqe_oas, &wqe->generic.wqe_com, 1);
bf_set(wqe_ccpe, &wqe->generic.wqe_com, 1);
bf_set(wqe_ccp, &wqe->generic.wqe_com,
(phba->cfg_XLanePriority << 1));
}
/* Word 7. DIF Flags */
if (lpfc_cmd->cur_iocbq.cmd_flag & LPFC_IO_DIF_PASS)
bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
else if (lpfc_cmd->cur_iocbq.cmd_flag & LPFC_IO_DIF_STRIP)
bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
else if (lpfc_cmd->cur_iocbq.cmd_flag & LPFC_IO_DIF_INSERT)
bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
lpfc_cmd->cur_iocbq.cmd_flag &= ~(LPFC_IO_DIF_PASS |
LPFC_IO_DIF_STRIP | LPFC_IO_DIF_INSERT);
return 0;
err:
if (lpfc_cmd->seg_cnt)
scsi_dma_unmap(scsi_cmnd);
if (lpfc_cmd->prot_seg_cnt)
dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd),
scsi_prot_sg_count(scsi_cmnd),
scsi_cmnd->sc_data_direction);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9084 Cannot setup S/G List for HBA"
"IO segs %d/%d SGL %d SCSI %d: %d %d\n",
lpfc_cmd->seg_cnt, lpfc_cmd->prot_seg_cnt,
phba->cfg_total_seg_cnt, phba->cfg_sg_seg_cnt,
prot_group_type, num_sge);
lpfc_cmd->seg_cnt = 0;
lpfc_cmd->prot_seg_cnt = 0;
return ret;
}
/**
* lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
* @phba: The Hba for which this call is being executed.
* @lpfc_cmd: The scsi buffer which is going to be mapped.
*
* This routine wraps the actual DMA mapping function pointer from the
* lpfc_hba struct.
*
* Return codes:
* 1 - Error
* 0 - Success
**/
static inline int
lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
{
return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
}
/**
* lpfc_bg_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
* using BlockGuard.
* @phba: The Hba for which this call is being executed.
* @lpfc_cmd: The scsi buffer which is going to be mapped.
*
* This routine wraps the actual DMA mapping function pointer from the
* lpfc_hba struct.
*
* Return codes:
* 1 - Error
* 0 - Success
**/
static inline int
lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd)
{
return phba->lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
}
/**
* lpfc_scsi_prep_cmnd_buf - Wrapper function for IOCB/WQE mapping of scsi
* buffer
* @vport: Pointer to vport object.
* @lpfc_cmd: The scsi buffer which is going to be mapped.
* @tmo: Timeout value for IO
*
* This routine initializes IOCB/WQE data structure from scsi command
*
* Return codes:
* 1 - Error
* 0 - Success
**/
static inline int
lpfc_scsi_prep_cmnd_buf(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd,
uint8_t tmo)
{
return vport->phba->lpfc_scsi_prep_cmnd_buf(vport, lpfc_cmd, tmo);
}
/**
* lpfc_send_scsi_error_event - Posts an event when there is SCSI error
* @phba: Pointer to hba context object.
* @vport: Pointer to vport object.
* @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
* @fcpi_parm: FCP Initiator parameter.
*
* This function posts an event when there is a SCSI command reporting
* error from the scsi device.
**/
static void
lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_cmd, uint32_t fcpi_parm) {
struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
uint32_t resp_info = fcprsp->rspStatus2;
uint32_t scsi_status = fcprsp->rspStatus3;
struct lpfc_fast_path_event *fast_path_evt = NULL;
struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
unsigned long flags;
if (!pnode)
return;
/* If there is queuefull or busy condition send a scsi event */
if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
(cmnd->result == SAM_STAT_BUSY)) {
fast_path_evt = lpfc_alloc_fast_evt(phba);
if (!fast_path_evt)
return;
fast_path_evt->un.scsi_evt.event_type =
FC_REG_SCSI_EVENT;
fast_path_evt->un.scsi_evt.subcategory =
(cmnd->result == SAM_STAT_TASK_SET_FULL) ?
LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
memcpy(&fast_path_evt->un.scsi_evt.wwpn,
&pnode->nlp_portname, sizeof(struct lpfc_name));
memcpy(&fast_path_evt->un.scsi_evt.wwnn,
&pnode->nlp_nodename, sizeof(struct lpfc_name));
} else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
fast_path_evt = lpfc_alloc_fast_evt(phba);
if (!fast_path_evt)
return;
fast_path_evt->un.check_cond_evt.scsi_event.event_type =
FC_REG_SCSI_EVENT;
fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
LPFC_EVENT_CHECK_COND;
fast_path_evt->un.check_cond_evt.scsi_event.lun =
cmnd->device->lun;
memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
&pnode->nlp_portname, sizeof(struct lpfc_name));
memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
&pnode->nlp_nodename, sizeof(struct lpfc_name));
fast_path_evt->un.check_cond_evt.sense_key =
cmnd->sense_buffer[2] & 0xf;
fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
} else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
fcpi_parm &&
((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
((scsi_status == SAM_STAT_GOOD) &&
!(resp_info & (RESID_UNDER | RESID_OVER))))) {
/*
* If status is good or resid does not match with fcp_param and
* there is valid fcpi_parm, then there is a read_check error
*/
fast_path_evt = lpfc_alloc_fast_evt(phba);
if (!fast_path_evt)
return;
fast_path_evt->un.read_check_error.header.event_type =
FC_REG_FABRIC_EVENT;
fast_path_evt->un.read_check_error.header.subcategory =
LPFC_EVENT_FCPRDCHKERR;
memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
&pnode->nlp_portname, sizeof(struct lpfc_name));
memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
&pnode->nlp_nodename, sizeof(struct lpfc_name));
fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
fast_path_evt->un.read_check_error.fcpiparam =
fcpi_parm;
} else
return;
fast_path_evt->vport = vport;
spin_lock_irqsave(&phba->hbalock, flags);
list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
spin_unlock_irqrestore(&phba->hbalock, flags);
lpfc_worker_wake_up(phba);
return;
}
/**
* lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
* @phba: The HBA for which this call is being executed.
* @psb: The scsi buffer which is going to be un-mapped.
*
* This routine does DMA un-mapping of scatter gather list of scsi command
* field of @lpfc_cmd for device with SLI-3 interface spec.
**/
static void
lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_io_buf *psb)
{
/*
* There are only two special cases to consider. (1) the scsi command
* requested scatter-gather usage or (2) the scsi command allocated
* a request buffer, but did not request use_sg. There is a third
* case, but it does not require resource deallocation.
*/
if (psb->seg_cnt > 0)
scsi_dma_unmap(psb->pCmd);
if (psb->prot_seg_cnt > 0)
dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
scsi_prot_sg_count(psb->pCmd),
psb->pCmd->sc_data_direction);
}
/**
* lpfc_unblock_requests - allow further commands to be queued.
* @phba: pointer to phba object
*
* For single vport, just call scsi_unblock_requests on physical port.
* For multiple vports, send scsi_unblock_requests for all the vports.
*/
void
lpfc_unblock_requests(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
struct Scsi_Host *shost;
int i;
if (phba->sli_rev == LPFC_SLI_REV4 &&
!phba->sli4_hba.max_cfg_param.vpi_used) {
shost = lpfc_shost_from_vport(phba->pport);
scsi_unblock_requests(shost);
return;
}
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
shost = lpfc_shost_from_vport(vports[i]);
scsi_unblock_requests(shost);
}
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_block_requests - prevent further commands from being queued.
* @phba: pointer to phba object
*
* For single vport, just call scsi_block_requests on physical port.
* For multiple vports, send scsi_block_requests for all the vports.
*/
void
lpfc_block_requests(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
struct Scsi_Host *shost;
int i;
if (atomic_read(&phba->cmf_stop_io))
return;
if (phba->sli_rev == LPFC_SLI_REV4 &&
!phba->sli4_hba.max_cfg_param.vpi_used) {
shost = lpfc_shost_from_vport(phba->pport);
scsi_block_requests(shost);
return;
}
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
shost = lpfc_shost_from_vport(vports[i]);
scsi_block_requests(shost);
}
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_update_cmf_cmpl - Adjust CMF counters for IO completion
* @phba: The HBA for which this call is being executed.
* @time: The latency of the IO that completed (in ns)
* @size: The size of the IO that completed
* @shost: SCSI host the IO completed on (NULL for a NVME IO)
*
* The routine adjusts the various Burst and Bandwidth counters used in
* Congestion management and E2E. If time is set to LPFC_CGN_NOT_SENT,
* that means the IO was never issued to the HBA, so this routine is
* just being called to cleanup the counter from a previous
* lpfc_update_cmf_cmd call.
*/
int
lpfc_update_cmf_cmpl(struct lpfc_hba *phba,
uint64_t time, uint32_t size, struct Scsi_Host *shost)
{
struct lpfc_cgn_stat *cgs;
if (time != LPFC_CGN_NOT_SENT) {
/* lat is ns coming in, save latency in us */
if (time < 1000)
time = 1;
else
time = div_u64(time + 500, 1000); /* round it */
cgs = this_cpu_ptr(phba->cmf_stat);
atomic64_add(size, &cgs->rcv_bytes);
atomic64_add(time, &cgs->rx_latency);
atomic_inc(&cgs->rx_io_cnt);
}
return 0;
}
/**
* lpfc_update_cmf_cmd - Adjust CMF counters for IO submission
* @phba: The HBA for which this call is being executed.
* @size: The size of the IO that will be issued
*
* The routine adjusts the various Burst and Bandwidth counters used in
* Congestion management and E2E.
*/
int
lpfc_update_cmf_cmd(struct lpfc_hba *phba, uint32_t size)
{
uint64_t total;
struct lpfc_cgn_stat *cgs;
int cpu;
/* At this point we are either LPFC_CFG_MANAGED or LPFC_CFG_MONITOR */
if (phba->cmf_active_mode == LPFC_CFG_MANAGED &&
phba->cmf_max_bytes_per_interval) {
total = 0;
for_each_present_cpu(cpu) {
cgs = per_cpu_ptr(phba->cmf_stat, cpu);
total += atomic64_read(&cgs->total_bytes);
}
if (total >= phba->cmf_max_bytes_per_interval) {
if (!atomic_xchg(&phba->cmf_bw_wait, 1)) {
lpfc_block_requests(phba);
phba->cmf_last_ts =
lpfc_calc_cmf_latency(phba);
}
atomic_inc(&phba->cmf_busy);
return -EBUSY;
}
if (size > atomic_read(&phba->rx_max_read_cnt))
atomic_set(&phba->rx_max_read_cnt, size);
}
cgs = this_cpu_ptr(phba->cmf_stat);
atomic64_add(size, &cgs->total_bytes);
return 0;
}
/**
* lpfc_handle_fcp_err - FCP response handler
* @vport: The virtual port for which this call is being executed.
* @lpfc_cmd: Pointer to lpfc_io_buf data structure.
* @fcpi_parm: FCP Initiator parameter.
*
* This routine is called to process response IOCB with status field
* IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
* based upon SCSI and FCP error.
**/
static void
lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd,
uint32_t fcpi_parm)
{
struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
uint32_t resp_info = fcprsp->rspStatus2;
uint32_t scsi_status = fcprsp->rspStatus3;
uint32_t *lp;
uint32_t host_status = DID_OK;
uint32_t rsplen = 0;
uint32_t fcpDl;
uint32_t logit = LOG_FCP | LOG_FCP_ERROR;
/*
* If this is a task management command, there is no
* scsi packet associated with this lpfc_cmd. The driver
* consumes it.
*/
if (fcpcmd->fcpCntl2) {
scsi_status = 0;
goto out;
}
if (resp_info & RSP_LEN_VALID) {
rsplen = be32_to_cpu(fcprsp->rspRspLen);
if (rsplen != 0 && rsplen != 4 && rsplen != 8) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"2719 Invalid response length: "
"tgt x%x lun x%llx cmnd x%x rsplen "
"x%x\n", cmnd->device->id,
cmnd->device->lun, cmnd->cmnd[0],
rsplen);
host_status = DID_ERROR;
goto out;
}
if (fcprsp->rspInfo3 != RSP_NO_FAILURE) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"2757 Protocol failure detected during "
"processing of FCP I/O op: "
"tgt x%x lun x%llx cmnd x%x rspInfo3 x%x\n",
cmnd->device->id,
cmnd->device->lun, cmnd->cmnd[0],
fcprsp->rspInfo3);
host_status = DID_ERROR;
goto out;
}
}
if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
if (snslen > SCSI_SENSE_BUFFERSIZE)
snslen = SCSI_SENSE_BUFFERSIZE;
if (resp_info & RSP_LEN_VALID)
rsplen = be32_to_cpu(fcprsp->rspRspLen);
memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
}
lp = (uint32_t *)cmnd->sense_buffer;
/* special handling for under run conditions */
if (!scsi_status && (resp_info & RESID_UNDER)) {
/* don't log under runs if fcp set... */
if (vport->cfg_log_verbose & LOG_FCP)
logit = LOG_FCP_ERROR;
/* unless operator says so */
if (vport->cfg_log_verbose & LOG_FCP_UNDER)
logit = LOG_FCP_UNDER;
}
lpfc_printf_vlog(vport, KERN_WARNING, logit,
"9024 FCP command x%x failed: x%x SNS x%x x%x "
"Data: x%x x%x x%x x%x x%x\n",
cmnd->cmnd[0], scsi_status,
be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
be32_to_cpu(fcprsp->rspResId),
be32_to_cpu(fcprsp->rspSnsLen),
be32_to_cpu(fcprsp->rspRspLen),
fcprsp->rspInfo3);
scsi_set_resid(cmnd, 0);
fcpDl = be32_to_cpu(fcpcmd->fcpDl);
if (resp_info & RESID_UNDER) {
scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_UNDER,
"9025 FCP Underrun, expected %d, "
"residual %d Data: x%x x%x x%x\n",
fcpDl,
scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
cmnd->underflow);
/*
* If there is an under run, check if under run reported by
* storage array is same as the under run reported by HBA.
* If this is not same, there is a dropped frame.
*/
if (fcpi_parm && (scsi_get_resid(cmnd) != fcpi_parm)) {
lpfc_printf_vlog(vport, KERN_WARNING,
LOG_FCP | LOG_FCP_ERROR,
"9026 FCP Read Check Error "
"and Underrun Data: x%x x%x x%x x%x\n",
fcpDl,
scsi_get_resid(cmnd), fcpi_parm,
cmnd->cmnd[0]);
scsi_set_resid(cmnd, scsi_bufflen(cmnd));
host_status = DID_ERROR;
}
/*
* The cmnd->underflow is the minimum number of bytes that must
* be transferred for this command. Provided a sense condition
* is not present, make sure the actual amount transferred is at
* least the underflow value or fail.
*/
if (!(resp_info & SNS_LEN_VALID) &&
(scsi_status == SAM_STAT_GOOD) &&
(scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
< cmnd->underflow)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"9027 FCP command x%x residual "
"underrun converted to error "
"Data: x%x x%x x%x\n",
cmnd->cmnd[0], scsi_bufflen(cmnd),
scsi_get_resid(cmnd), cmnd->underflow);
host_status = DID_ERROR;
}
} else if (resp_info & RESID_OVER) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"9028 FCP command x%x residual overrun error. "
"Data: x%x x%x\n", cmnd->cmnd[0],
scsi_bufflen(cmnd), scsi_get_resid(cmnd));
host_status = DID_ERROR;
/*
* Check SLI validation that all the transfer was actually done
* (fcpi_parm should be zero). Apply check only to reads.
*/
} else if (fcpi_parm) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
"9029 FCP %s Check Error Data: "
"x%x x%x x%x x%x x%x\n",
((cmnd->sc_data_direction == DMA_FROM_DEVICE) ?
"Read" : "Write"),
fcpDl, be32_to_cpu(fcprsp->rspResId),
fcpi_parm, cmnd->cmnd[0], scsi_status);
/* There is some issue with the LPe12000 that causes it
* to miscalculate the fcpi_parm and falsely trip this
* recovery logic. Detect this case and don't error when true.
*/
if (fcpi_parm > fcpDl)
goto out;
switch (scsi_status) {
case SAM_STAT_GOOD:
case SAM_STAT_CHECK_CONDITION:
/* Fabric dropped a data frame. Fail any successful
* command in which we detected dropped frames.
* A status of good or some check conditions could
* be considered a successful command.
*/
host_status = DID_ERROR;
break;
}
scsi_set_resid(cmnd, scsi_bufflen(cmnd));
}
out:
cmnd->result = host_status << 16 | scsi_status;
lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, fcpi_parm);
}
/**
* lpfc_fcp_io_cmd_wqe_cmpl - Complete a FCP IO
* @phba: The hba for which this call is being executed.
* @pwqeIn: The command WQE for the scsi cmnd.
* @pwqeOut: Pointer to driver response WQE object.
*
* This routine assigns scsi command result by looking into response WQE
* status field appropriately. This routine handles QUEUE FULL condition as
* well by ramping down device queue depth.
**/
static void
lpfc_fcp_io_cmd_wqe_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeIn,
struct lpfc_iocbq *pwqeOut)
{
struct lpfc_io_buf *lpfc_cmd =
(struct lpfc_io_buf *)pwqeIn->context1;
struct lpfc_wcqe_complete *wcqe = &pwqeOut->wcqe_cmpl;
struct lpfc_vport *vport = pwqeIn->vport;
struct lpfc_rport_data *rdata;
struct lpfc_nodelist *ndlp;
struct scsi_cmnd *cmd;
unsigned long flags;
struct lpfc_fast_path_event *fast_path_evt;
struct Scsi_Host *shost;
u32 logit = LOG_FCP;
u32 status, idx;
u32 lat;
u8 wait_xb_clr = 0;
/* Sanity check on return of outstanding command */
if (!lpfc_cmd) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"9032 Null lpfc_cmd pointer. No "
"release, skip completion\n");
return;
}
rdata = lpfc_cmd->rdata;
ndlp = rdata->pnode;
/* Sanity check on return of outstanding command */
cmd = lpfc_cmd->pCmd;
if (!cmd) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"9042 I/O completion: Not an active IO\n");
lpfc_release_scsi_buf(phba, lpfc_cmd);
return;
}
/* Guard against abort handler being called at same time */
spin_lock(&lpfc_cmd->buf_lock);
idx = lpfc_cmd->cur_iocbq.hba_wqidx;
if (phba->sli4_hba.hdwq)
phba->sli4_hba.hdwq[idx].scsi_cstat.io_cmpls++;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (unlikely(phba->hdwqstat_on & LPFC_CHECK_SCSI_IO))
this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
#endif
shost = cmd->device->host;
status = bf_get(lpfc_wcqe_c_status, wcqe);
lpfc_cmd->status = (status & LPFC_IOCB_STATUS_MASK);
lpfc_cmd->result = (wcqe->parameter & IOERR_PARAM_MASK);
lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
if (phba->cfg_fcp_wait_abts_rsp)
wait_xb_clr = 1;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (lpfc_cmd->prot_data_type) {
struct scsi_dif_tuple *src = NULL;
src = (struct scsi_dif_tuple *)lpfc_cmd->prot_data_segment;
/*
* Used to restore any changes to protection
* data for error injection.
*/
switch (lpfc_cmd->prot_data_type) {
case LPFC_INJERR_REFTAG:
src->ref_tag =
lpfc_cmd->prot_data;
break;
case LPFC_INJERR_APPTAG:
src->app_tag =
(uint16_t)lpfc_cmd->prot_data;
break;
case LPFC_INJERR_GUARD:
src->guard_tag =
(uint16_t)lpfc_cmd->prot_data;
break;
default:
break;
}
lpfc_cmd->prot_data = 0;
lpfc_cmd->prot_data_type = 0;
lpfc_cmd->prot_data_segment = NULL;
}
#endif
if (unlikely(lpfc_cmd->status)) {
if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
(lpfc_cmd->result & IOERR_DRVR_MASK))
lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
else if (lpfc_cmd->status >= IOSTAT_CNT)
lpfc_cmd->status = IOSTAT_DEFAULT;
if (lpfc_cmd->status == IOSTAT_FCP_RSP_ERROR &&
!lpfc_cmd->fcp_rsp->rspStatus3 &&
(lpfc_cmd->fcp_rsp->rspStatus2 & RESID_UNDER) &&
!(vport->cfg_log_verbose & LOG_FCP_UNDER))
logit = 0;
else
logit = LOG_FCP | LOG_FCP_UNDER;
lpfc_printf_vlog(vport, KERN_WARNING, logit,
"9034 FCP cmd x%x failed <%d/%lld> "
"status: x%x result: x%x "
"sid: x%x did: x%x oxid: x%x "
"Data: x%x x%x x%x\n",
cmd->cmnd[0],
cmd->device ? cmd->device->id : 0xffff,
cmd->device ? cmd->device->lun : 0xffff,
lpfc_cmd->status, lpfc_cmd->result,
vport->fc_myDID,
(ndlp) ? ndlp->nlp_DID : 0,
lpfc_cmd->cur_iocbq.sli4_xritag,
wcqe->parameter, wcqe->total_data_placed,
lpfc_cmd->cur_iocbq.iotag);
}
switch (lpfc_cmd->status) {
case IOSTAT_SUCCESS:
cmd->result = DID_OK << 16;
break;
case IOSTAT_FCP_RSP_ERROR:
lpfc_handle_fcp_err(vport, lpfc_cmd,
pwqeIn->wqe.fcp_iread.total_xfer_len -
wcqe->total_data_placed);
break;
case IOSTAT_NPORT_BSY:
case IOSTAT_FABRIC_BSY:
cmd->result = DID_TRANSPORT_DISRUPTED << 16;
fast_path_evt = lpfc_alloc_fast_evt(phba);
if (!fast_path_evt)
break;
fast_path_evt->un.fabric_evt.event_type =
FC_REG_FABRIC_EVENT;
fast_path_evt->un.fabric_evt.subcategory =
(lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
if (ndlp) {
memcpy(&fast_path_evt->un.fabric_evt.wwpn,
&ndlp->nlp_portname,
sizeof(struct lpfc_name));
memcpy(&fast_path_evt->un.fabric_evt.wwnn,
&ndlp->nlp_nodename,
sizeof(struct lpfc_name));
}
fast_path_evt->vport = vport;
fast_path_evt->work_evt.evt =
LPFC_EVT_FASTPATH_MGMT_EVT;
spin_lock_irqsave(&phba->hbalock, flags);
list_add_tail(&fast_path_evt->work_evt.evt_listp,
&phba->work_list);
spin_unlock_irqrestore(&phba->hbalock, flags);
lpfc_worker_wake_up(phba);
lpfc_printf_vlog(vport, KERN_WARNING, logit,
"9035 Fabric/Node busy FCP cmd x%x failed"
" <%d/%lld> "
"status: x%x result: x%x "
"sid: x%x did: x%x oxid: x%x "
"Data: x%x x%x x%x\n",
cmd->cmnd[0],
cmd->device ? cmd->device->id : 0xffff,
cmd->device ? cmd->device->lun : 0xffff,
lpfc_cmd->status, lpfc_cmd->result,
vport->fc_myDID,
(ndlp) ? ndlp->nlp_DID : 0,
lpfc_cmd->cur_iocbq.sli4_xritag,
wcqe->parameter,
wcqe->total_data_placed,
lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
break;
case IOSTAT_REMOTE_STOP:
if (ndlp) {
/* This I/O was aborted by the target, we don't
* know the rxid and because we did not send the
* ABTS we cannot generate and RRQ.
*/
lpfc_set_rrq_active(phba, ndlp,
lpfc_cmd->cur_iocbq.sli4_lxritag,
0, 0);
}
fallthrough;
case IOSTAT_LOCAL_REJECT:
if (lpfc_cmd->result & IOERR_DRVR_MASK)
lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR ||
lpfc_cmd->result ==
IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR ||
lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR ||
lpfc_cmd->result ==
IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) {
cmd->result = DID_NO_CONNECT << 16;
break;
}
if (lpfc_cmd->result == IOERR_INVALID_RPI ||
lpfc_cmd->result == IOERR_NO_RESOURCES ||
lpfc_cmd->result == IOERR_ABORT_REQUESTED ||
lpfc_cmd->result == IOERR_RPI_SUSPENDED ||
lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) {
cmd->result = DID_REQUEUE << 16;
break;
}
if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
status == CQE_STATUS_DI_ERROR) {
if (scsi_get_prot_op(cmd) !=
SCSI_PROT_NORMAL) {
/*
* This is a response for a BG enabled
* cmd. Parse BG error
*/
lpfc_parse_bg_err(phba, lpfc_cmd, pwqeOut);
break;
} else {
lpfc_printf_vlog(vport, KERN_WARNING,
LOG_BG,
"9040 non-zero BGSTAT "
"on unprotected cmd\n");
}
}
lpfc_printf_vlog(vport, KERN_WARNING, logit,
"9036 Local Reject FCP cmd x%x failed"
" <%d/%lld> "
"status: x%x result: x%x "
"sid: x%x did: x%x oxid: x%x "
"Data: x%x x%x x%x\n",
cmd->cmnd[0],
cmd->device ? cmd->device->id : 0xffff,
cmd->device ? cmd->device->lun : 0xffff,
lpfc_cmd->status, lpfc_cmd->result,
vport->fc_myDID,
(ndlp) ? ndlp->nlp_DID : 0,
lpfc_cmd->cur_iocbq.sli4_xritag,
wcqe->parameter,
wcqe->total_data_placed,
lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
fallthrough;
default:
if (lpfc_cmd->status >= IOSTAT_CNT)
lpfc_cmd->status = IOSTAT_DEFAULT;
cmd->result = DID_ERROR << 16;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"9037 FCP Completion Error: xri %x "
"status x%x result x%x [x%x] "
"placed x%x\n",
lpfc_cmd->cur_iocbq.sli4_xritag,
lpfc_cmd->status, lpfc_cmd->result,
wcqe->parameter,
wcqe->total_data_placed);
}
if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
u32 *lp = (u32 *)cmd->sense_buffer;
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"9039 Iodone <%d/%llu> cmd x%px, error "
"x%x SNS x%x x%x LBA x%llx Data: x%x x%x\n",
cmd->device->id, cmd->device->lun, cmd,
cmd->result, *lp, *(lp + 3),
(u64)scsi_get_lba(cmd),
cmd->retries, scsi_get_resid(cmd));
}
lpfc_update_stats(vport, lpfc_cmd);
if (vport->cfg_max_scsicmpl_time &&
time_after(jiffies, lpfc_cmd->start_time +
msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
spin_lock_irqsave(shost->host_lock, flags);
if (ndlp) {
if (ndlp->cmd_qdepth >
atomic_read(&ndlp->cmd_pending) &&
(atomic_read(&ndlp->cmd_pending) >
LPFC_MIN_TGT_QDEPTH) &&
(cmd->cmnd[0] == READ_10 ||
cmd->cmnd[0] == WRITE_10))
ndlp->cmd_qdepth =
atomic_read(&ndlp->cmd_pending);
ndlp->last_change_time = jiffies;
}
spin_unlock_irqrestore(shost->host_lock, flags);
}
lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (lpfc_cmd->ts_cmd_start) {
lpfc_cmd->ts_isr_cmpl = lpfc_cmd->cur_iocbq.isr_timestamp;
lpfc_cmd->ts_data_io = ktime_get_ns();
phba->ktime_last_cmd = lpfc_cmd->ts_data_io;
lpfc_io_ktime(phba, lpfc_cmd);
}
#endif
if (likely(!wait_xb_clr))
lpfc_cmd->pCmd = NULL;
spin_unlock(&lpfc_cmd->buf_lock);
/* Check if IO qualified for CMF */
if (phba->cmf_active_mode != LPFC_CFG_OFF &&
cmd->sc_data_direction == DMA_FROM_DEVICE &&
(scsi_sg_count(cmd))) {
/* Used when calculating average latency */
lat = ktime_get_ns() - lpfc_cmd->rx_cmd_start;
lpfc_update_cmf_cmpl(phba, lat, scsi_bufflen(cmd), shost);
}
if (wait_xb_clr)
goto out;
/* The sdev is not guaranteed to be valid post scsi_done upcall. */
scsi_done(cmd);
/*
* If there is an abort thread waiting for command completion
* wake up the thread.
*/
spin_lock(&lpfc_cmd->buf_lock);
lpfc_cmd->cur_iocbq.cmd_flag &= ~LPFC_DRIVER_ABORTED;
if (lpfc_cmd->waitq)
wake_up(lpfc_cmd->waitq);
spin_unlock(&lpfc_cmd->buf_lock);
out:
lpfc_release_scsi_buf(phba, lpfc_cmd);
}
/**
* lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
* @phba: The Hba for which this call is being executed.
* @pIocbIn: The command IOCBQ for the scsi cmnd.
* @pIocbOut: The response IOCBQ for the scsi cmnd.
*
* This routine assigns scsi command result by looking into response IOCB
* status field appropriately. This routine handles QUEUE FULL condition as
* well by ramping down device queue depth.
**/
static void
lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
struct lpfc_iocbq *pIocbOut)
{
struct lpfc_io_buf *lpfc_cmd =
(struct lpfc_io_buf *) pIocbIn->context1;
struct lpfc_vport *vport = pIocbIn->vport;
struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
struct lpfc_nodelist *pnode = rdata->pnode;
struct scsi_cmnd *cmd;
unsigned long flags;
struct lpfc_fast_path_event *fast_path_evt;
struct Scsi_Host *shost;
int idx;
uint32_t logit = LOG_FCP;
/* Guard against abort handler being called at same time */
spin_lock(&lpfc_cmd->buf_lock);
/* Sanity check on return of outstanding command */
cmd = lpfc_cmd->pCmd;
if (!cmd || !phba) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"2621 IO completion: Not an active IO\n");
spin_unlock(&lpfc_cmd->buf_lock);
return;
}
idx = lpfc_cmd->cur_iocbq.hba_wqidx;
if (phba->sli4_hba.hdwq)
phba->sli4_hba.hdwq[idx].scsi_cstat.io_cmpls++;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (unlikely(phba->hdwqstat_on & LPFC_CHECK_SCSI_IO))
this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
#endif
shost = cmd->device->host;
lpfc_cmd->result = (pIocbOut->iocb.un.ulpWord[4] & IOERR_PARAM_MASK);
lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
/* pick up SLI4 exchange busy status from HBA */
lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
if (pIocbOut->cmd_flag & LPFC_EXCHANGE_BUSY)
lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (lpfc_cmd->prot_data_type) {
struct scsi_dif_tuple *src = NULL;
src = (struct scsi_dif_tuple *)lpfc_cmd->prot_data_segment;
/*
* Used to restore any changes to protection
* data for error injection.
*/
switch (lpfc_cmd->prot_data_type) {
case LPFC_INJERR_REFTAG:
src->ref_tag =
lpfc_cmd->prot_data;
break;
case LPFC_INJERR_APPTAG:
src->app_tag =
(uint16_t)lpfc_cmd->prot_data;
break;
case LPFC_INJERR_GUARD:
src->guard_tag =
(uint16_t)lpfc_cmd->prot_data;
break;
default:
break;
}
lpfc_cmd->prot_data = 0;
lpfc_cmd->prot_data_type = 0;
lpfc_cmd->prot_data_segment = NULL;
}
#endif
if (unlikely(lpfc_cmd->status)) {
if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
(lpfc_cmd->result & IOERR_DRVR_MASK))
lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
else if (lpfc_cmd->status >= IOSTAT_CNT)
lpfc_cmd->status = IOSTAT_DEFAULT;
if (lpfc_cmd->status == IOSTAT_FCP_RSP_ERROR &&
!lpfc_cmd->fcp_rsp->rspStatus3 &&
(lpfc_cmd->fcp_rsp->rspStatus2 & RESID_UNDER) &&
!(vport->cfg_log_verbose & LOG_FCP_UNDER))
logit = 0;
else
logit = LOG_FCP | LOG_FCP_UNDER;
lpfc_printf_vlog(vport, KERN_WARNING, logit,
"9030 FCP cmd x%x failed <%d/%lld> "
"status: x%x result: x%x "
"sid: x%x did: x%x oxid: x%x "
"Data: x%x x%x\n",
cmd->cmnd[0],
cmd->device ? cmd->device->id : 0xffff,
cmd->device ? cmd->device->lun : 0xffff,
lpfc_cmd->status, lpfc_cmd->result,
vport->fc_myDID,
(pnode) ? pnode->nlp_DID : 0,
phba->sli_rev == LPFC_SLI_REV4 ?
lpfc_cmd->cur_iocbq.sli4_xritag : 0xffff,
pIocbOut->iocb.ulpContext,
lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
switch (lpfc_cmd->status) {
case IOSTAT_FCP_RSP_ERROR:
/* Call FCP RSP handler to determine result */
lpfc_handle_fcp_err(vport, lpfc_cmd,
pIocbOut->iocb.un.fcpi.fcpi_parm);
break;
case IOSTAT_NPORT_BSY:
case IOSTAT_FABRIC_BSY:
cmd->result = DID_TRANSPORT_DISRUPTED << 16;
fast_path_evt = lpfc_alloc_fast_evt(phba);
if (!fast_path_evt)
break;
fast_path_evt->un.fabric_evt.event_type =
FC_REG_FABRIC_EVENT;
fast_path_evt->un.fabric_evt.subcategory =
(lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
if (pnode) {
memcpy(&fast_path_evt->un.fabric_evt.wwpn,
&pnode->nlp_portname,
sizeof(struct lpfc_name));
memcpy(&fast_path_evt->un.fabric_evt.wwnn,
&pnode->nlp_nodename,
sizeof(struct lpfc_name));
}
fast_path_evt->vport = vport;
fast_path_evt->work_evt.evt =
LPFC_EVT_FASTPATH_MGMT_EVT;
spin_lock_irqsave(&phba->hbalock, flags);
list_add_tail(&fast_path_evt->work_evt.evt_listp,
&phba->work_list);
spin_unlock_irqrestore(&phba->hbalock, flags);
lpfc_worker_wake_up(phba);
break;
case IOSTAT_LOCAL_REJECT:
case IOSTAT_REMOTE_STOP:
if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR ||
lpfc_cmd->result ==
IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR ||
lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR ||
lpfc_cmd->result ==
IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) {
cmd->result = DID_NO_CONNECT << 16;
break;
}
if (lpfc_cmd->result == IOERR_INVALID_RPI ||
lpfc_cmd->result == IOERR_NO_RESOURCES ||
lpfc_cmd->result == IOERR_ABORT_REQUESTED ||
lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) {
cmd->result = DID_REQUEUE << 16;
break;
}
if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
/*
* This is a response for a BG enabled
* cmd. Parse BG error
*/
lpfc_parse_bg_err(phba, lpfc_cmd,
pIocbOut);
break;
} else {
lpfc_printf_vlog(vport, KERN_WARNING,
LOG_BG,
"9031 non-zero BGSTAT "
"on unprotected cmd\n");
}
}
if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP)
&& (phba->sli_rev == LPFC_SLI_REV4)
&& pnode) {
/* This IO was aborted by the target, we don't
* know the rxid and because we did not send the
* ABTS we cannot generate and RRQ.
*/
lpfc_set_rrq_active(phba, pnode,
lpfc_cmd->cur_iocbq.sli4_lxritag,
0, 0);
}
fallthrough;
default:
cmd->result = DID_ERROR << 16;
break;
}
if (!pnode || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
cmd->result = DID_TRANSPORT_DISRUPTED << 16 |
SAM_STAT_BUSY;
} else
cmd->result = DID_OK << 16;
if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
uint32_t *lp = (uint32_t *)cmd->sense_buffer;
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0710 Iodone <%d/%llu> cmd x%px, error "
"x%x SNS x%x x%x Data: x%x x%x\n",
cmd->device->id, cmd->device->lun, cmd,
cmd->result, *lp, *(lp + 3), cmd->retries,
scsi_get_resid(cmd));
}
lpfc_update_stats(vport, lpfc_cmd);
if (vport->cfg_max_scsicmpl_time &&
time_after(jiffies, lpfc_cmd->start_time +
msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
spin_lock_irqsave(shost->host_lock, flags);
if (pnode) {
if (pnode->cmd_qdepth >
atomic_read(&pnode->cmd_pending) &&
(atomic_read(&pnode->cmd_pending) >
LPFC_MIN_TGT_QDEPTH) &&
((cmd->cmnd[0] == READ_10) ||
(cmd->cmnd[0] == WRITE_10)))
pnode->cmd_qdepth =
atomic_read(&pnode->cmd_pending);
pnode->last_change_time = jiffies;
}
spin_unlock_irqrestore(shost->host_lock, flags);
}
lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
lpfc_cmd->pCmd = NULL;
spin_unlock(&lpfc_cmd->buf_lock);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (lpfc_cmd->ts_cmd_start) {
lpfc_cmd->ts_isr_cmpl = pIocbIn->isr_timestamp;
lpfc_cmd->ts_data_io = ktime_get_ns();
phba->ktime_last_cmd = lpfc_cmd->ts_data_io;
lpfc_io_ktime(phba, lpfc_cmd);
}
#endif
/* The sdev is not guaranteed to be valid post scsi_done upcall. */
scsi_done(cmd);
/*
* If there is an abort thread waiting for command completion
* wake up the thread.
*/
spin_lock(&lpfc_cmd->buf_lock);
lpfc_cmd->cur_iocbq.cmd_flag &= ~LPFC_DRIVER_ABORTED;
if (lpfc_cmd->waitq)
wake_up(lpfc_cmd->waitq);
spin_unlock(&lpfc_cmd->buf_lock);
lpfc_release_scsi_buf(phba, lpfc_cmd);
}
/**
* lpfc_scsi_prep_cmnd_buf_s3 - SLI-3 IOCB init for the IO
* @vport: Pointer to vport object.
* @lpfc_cmd: The scsi buffer which is going to be prep'ed.
* @tmo: timeout value for the IO
*
* Based on the data-direction of the command, initialize IOCB
* in the I/O buffer. Fill in the IOCB fields which are independent
* of the scsi buffer
*
* RETURNS 0 - SUCCESS,
**/
static int lpfc_scsi_prep_cmnd_buf_s3(struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_cmd,
uint8_t tmo)
{
IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
struct lpfc_iocbq *piocbq = &lpfc_cmd->cur_iocbq;
struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
struct lpfc_nodelist *pnode = lpfc_cmd->ndlp;
int datadir = scsi_cmnd->sc_data_direction;
u32 fcpdl;
piocbq->iocb.un.fcpi.fcpi_XRdy = 0;
/*
* There are three possibilities here - use scatter-gather segment, use
* the single mapping, or neither. Start the lpfc command prep by
* bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
* data bde entry.
*/
if (scsi_sg_count(scsi_cmnd)) {
if (datadir == DMA_TO_DEVICE) {
iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
iocb_cmd->ulpPU = PARM_READ_CHECK;
if (vport->cfg_first_burst_size &&
(pnode->nlp_flag & NLP_FIRSTBURST)) {
u32 xrdy_len;
fcpdl = scsi_bufflen(scsi_cmnd);
xrdy_len = min(fcpdl,
vport->cfg_first_burst_size);
piocbq->iocb.un.fcpi.fcpi_XRdy = xrdy_len;
}
fcp_cmnd->fcpCntl3 = WRITE_DATA;
} else {
iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
iocb_cmd->ulpPU = PARM_READ_CHECK;
fcp_cmnd->fcpCntl3 = READ_DATA;
}
} else {
iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
iocb_cmd->un.fcpi.fcpi_parm = 0;
iocb_cmd->ulpPU = 0;
fcp_cmnd->fcpCntl3 = 0;
}
/*
* Finish initializing those IOCB fields that are independent
* of the scsi_cmnd request_buffer
*/
piocbq->iocb.ulpContext = pnode->nlp_rpi;
if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
piocbq->iocb.ulpFCP2Rcvy = 1;
else
piocbq->iocb.ulpFCP2Rcvy = 0;
piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
piocbq->context1 = lpfc_cmd;
if (!piocbq->cmd_cmpl)
piocbq->cmd_cmpl = lpfc_scsi_cmd_iocb_cmpl;
piocbq->iocb.ulpTimeout = tmo;
piocbq->vport = vport;
return 0;
}
/**
* lpfc_scsi_prep_cmnd_buf_s4 - SLI-4 WQE init for the IO
* @vport: Pointer to vport object.
* @lpfc_cmd: The scsi buffer which is going to be prep'ed.
* @tmo: timeout value for the IO
*
* Based on the data-direction of the command copy WQE template
* to I/O buffer WQE. Fill in the WQE fields which are independent
* of the scsi buffer
*
* RETURNS 0 - SUCCESS,
**/
static int lpfc_scsi_prep_cmnd_buf_s4(struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_cmd,
uint8_t tmo)
{
struct lpfc_hba *phba = vport->phba;
struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
struct lpfc_sli4_hdw_queue *hdwq = NULL;
struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq;
struct lpfc_nodelist *pnode = lpfc_cmd->ndlp;
union lpfc_wqe128 *wqe = &pwqeq->wqe;
u16 idx = lpfc_cmd->hdwq_no;
int datadir = scsi_cmnd->sc_data_direction;
hdwq = &phba->sli4_hba.hdwq[idx];
/* Initialize 64 bytes only */
memset(wqe, 0, sizeof(union lpfc_wqe128));
/*
* There are three possibilities here - use scatter-gather segment, use
* the single mapping, or neither.
*/
if (scsi_sg_count(scsi_cmnd)) {
if (datadir == DMA_TO_DEVICE) {
/* From the iwrite template, initialize words 7 - 11 */
memcpy(&wqe->words[7],
&lpfc_iwrite_cmd_template.words[7],
sizeof(uint32_t) * 5);
fcp_cmnd->fcpCntl3 = WRITE_DATA;
if (hdwq)
hdwq->scsi_cstat.output_requests++;
} else {
/* From the iread template, initialize words 7 - 11 */
memcpy(&wqe->words[7],
&lpfc_iread_cmd_template.words[7],
sizeof(uint32_t) * 5);
/* Word 7 */
bf_set(wqe_tmo, &wqe->fcp_iread.wqe_com, tmo);
fcp_cmnd->fcpCntl3 = READ_DATA;
if (hdwq)
hdwq->scsi_cstat.input_requests++;
/* For a CMF Managed port, iod must be zero'ed */
if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
bf_set(wqe_iod, &wqe->fcp_iread.wqe_com,
LPFC_WQE_IOD_NONE);
}
} else {
/* From the icmnd template, initialize words 4 - 11 */
memcpy(&wqe->words[4], &lpfc_icmnd_cmd_template.words[4],
sizeof(uint32_t) * 8);
/* Word 7 */
bf_set(wqe_tmo, &wqe->fcp_icmd.wqe_com, tmo);
fcp_cmnd->fcpCntl3 = 0;
if (hdwq)
hdwq->scsi_cstat.control_requests++;
}
/*
* Finish initializing those WQE fields that are independent
* of the request_buffer
*/
/* Word 3 */
bf_set(payload_offset_len, &wqe->fcp_icmd,
sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe->generic.wqe_com,
phba->sli4_hba.rpi_ids[pnode->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe->generic.wqe_com, pwqeq->sli4_xritag);
/* Word 7*/
if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
bf_set(wqe_erp, &wqe->generic.wqe_com, 1);
bf_set(wqe_class, &wqe->generic.wqe_com,
(pnode->nlp_fcp_info & 0x0f));
/* Word 8 */
wqe->generic.wqe_com.abort_tag = pwqeq->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe->generic.wqe_com, pwqeq->iotag);
pwqeq->vport = vport;
pwqeq->vport = vport;
pwqeq->context1 = lpfc_cmd;
pwqeq->hba_wqidx = lpfc_cmd->hdwq_no;
pwqeq->cmd_cmpl = lpfc_fcp_io_cmd_wqe_cmpl;
return 0;
}
/**
* lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
* @vport: The virtual port for which this call is being executed.
* @lpfc_cmd: The scsi command which needs to send.
* @pnode: Pointer to lpfc_nodelist.
*
* This routine initializes fcp_cmnd and iocb data structure from scsi command
* to transfer for device with SLI3 interface spec.
**/
static int
lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd,
struct lpfc_nodelist *pnode)
{
struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
u8 *ptr;
if (!pnode)
return 0;
lpfc_cmd->fcp_rsp->rspSnsLen = 0;
/* clear task management bits */
lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;
int_to_scsilun(lpfc_cmd->pCmd->device->lun,
&lpfc_cmd->fcp_cmnd->fcp_lun);
ptr = &fcp_cmnd->fcpCdb[0];
memcpy(ptr, scsi_cmnd->cmnd, scsi_cmnd->cmd_len);
if (scsi_cmnd->cmd_len < LPFC_FCP_CDB_LEN) {
ptr += scsi_cmnd->cmd_len;
memset(ptr, 0, (LPFC_FCP_CDB_LEN - scsi_cmnd->cmd_len));
}
fcp_cmnd->fcpCntl1 = SIMPLE_Q;
lpfc_scsi_prep_cmnd_buf(vport, lpfc_cmd, lpfc_cmd->timeout);
return 0;
}
/**
* lpfc_scsi_prep_task_mgmt_cmd_s3 - Convert SLI3 scsi TM cmd to FCP info unit
* @vport: The virtual port for which this call is being executed.
* @lpfc_cmd: Pointer to lpfc_io_buf data structure.
* @lun: Logical unit number.
* @task_mgmt_cmd: SCSI task management command.
*
* This routine creates FCP information unit corresponding to @task_mgmt_cmd
* for device with SLI-3 interface spec.
*
* Return codes:
* 0 - Error
* 1 - Success
**/
static int
lpfc_scsi_prep_task_mgmt_cmd_s3(struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_cmd,
u64 lun, u8 task_mgmt_cmd)
{
struct lpfc_iocbq *piocbq;
IOCB_t *piocb;
struct fcp_cmnd *fcp_cmnd;
struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
struct lpfc_nodelist *ndlp = rdata->pnode;
if (!ndlp || ndlp->nlp_state != NLP_STE_MAPPED_NODE)
return 0;
piocbq = &(lpfc_cmd->cur_iocbq);
piocbq->vport = vport;
piocb = &piocbq->iocb;
fcp_cmnd = lpfc_cmd->fcp_cmnd;
/* Clear out any old data in the FCP command area */
memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
if (!(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
piocb->ulpCommand = CMD_FCP_ICMND64_CR;
piocb->ulpContext = ndlp->nlp_rpi;
piocb->ulpFCP2Rcvy = (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) ? 1 : 0;
piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);
piocb->ulpPU = 0;
piocb->un.fcpi.fcpi_parm = 0;
/* ulpTimeout is only one byte */
if (lpfc_cmd->timeout > 0xff) {
/*
* Do not timeout the command at the firmware level.
* The driver will provide the timeout mechanism.
*/
piocb->ulpTimeout = 0;
} else
piocb->ulpTimeout = lpfc_cmd->timeout;
return 1;
}
/**
* lpfc_scsi_prep_task_mgmt_cmd_s4 - Convert SLI4 scsi TM cmd to FCP info unit
* @vport: The virtual port for which this call is being executed.
* @lpfc_cmd: Pointer to lpfc_io_buf data structure.
* @lun: Logical unit number.
* @task_mgmt_cmd: SCSI task management command.
*
* This routine creates FCP information unit corresponding to @task_mgmt_cmd
* for device with SLI-4 interface spec.
*
* Return codes:
* 0 - Error
* 1 - Success
**/
static int
lpfc_scsi_prep_task_mgmt_cmd_s4(struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_cmd,
u64 lun, u8 task_mgmt_cmd)
{
struct lpfc_iocbq *pwqeq = &lpfc_cmd->cur_iocbq;
union lpfc_wqe128 *wqe = &pwqeq->wqe;
struct fcp_cmnd *fcp_cmnd;
struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
struct lpfc_nodelist *ndlp = rdata->pnode;
if (!ndlp || ndlp->nlp_state != NLP_STE_MAPPED_NODE)
return 0;
pwqeq->vport = vport;
/* Initialize 64 bytes only */
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* From the icmnd template, initialize words 4 - 11 */
memcpy(&wqe->words[4], &lpfc_icmnd_cmd_template.words[4],
sizeof(uint32_t) * 8);
fcp_cmnd = lpfc_cmd->fcp_cmnd;
/* Clear out any old data in the FCP command area */
memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
fcp_cmnd->fcpCntl3 = 0;
fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
bf_set(payload_offset_len, &wqe->fcp_icmd,
sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
bf_set(cmd_buff_len, &wqe->fcp_icmd, 0);
bf_set(wqe_ctxt_tag, &wqe->generic.wqe_com, /* ulpContext */
vport->phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
((ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) ? 1 : 0));
bf_set(wqe_class, &wqe->fcp_icmd.wqe_com,
(ndlp->nlp_fcp_info & 0x0f));
/* ulpTimeout is only one byte */
if (lpfc_cmd->timeout > 0xff) {
/*
* Do not timeout the command at the firmware level.
* The driver will provide the timeout mechanism.
*/
bf_set(wqe_tmo, &wqe->fcp_icmd.wqe_com, 0);
} else {
bf_set(wqe_tmo, &wqe->fcp_icmd.wqe_com, lpfc_cmd->timeout);
}
lpfc_prep_embed_io(vport->phba, lpfc_cmd);
bf_set(wqe_xri_tag, &wqe->generic.wqe_com, pwqeq->sli4_xritag);
wqe->generic.wqe_com.abort_tag = pwqeq->iotag;
bf_set(wqe_reqtag, &wqe->generic.wqe_com, pwqeq->iotag);
lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);
return 1;
}
/**
* lpfc_scsi_api_table_setup - Set up scsi api function jump table
* @phba: The hba struct for which this call is being executed.
* @dev_grp: The HBA PCI-Device group number.
*
* This routine sets up the SCSI interface API function jump table in @phba
* struct.
* Returns: 0 - success, -ENODEV - failure.
**/
int
lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{
phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
switch (dev_grp) {
case LPFC_PCI_DEV_LP:
phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
phba->lpfc_bg_scsi_prep_dma_buf = lpfc_bg_scsi_prep_dma_buf_s3;
phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3;
phba->lpfc_scsi_prep_cmnd_buf = lpfc_scsi_prep_cmnd_buf_s3;
phba->lpfc_scsi_prep_task_mgmt_cmd =
lpfc_scsi_prep_task_mgmt_cmd_s3;
break;
case LPFC_PCI_DEV_OC:
phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
phba->lpfc_bg_scsi_prep_dma_buf = lpfc_bg_scsi_prep_dma_buf_s4;
phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4;
phba->lpfc_scsi_prep_cmnd_buf = lpfc_scsi_prep_cmnd_buf_s4;
phba->lpfc_scsi_prep_task_mgmt_cmd =
lpfc_scsi_prep_task_mgmt_cmd_s4;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1418 Invalid HBA PCI-device group: 0x%x\n",
dev_grp);
return -ENODEV;
}
phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
return 0;
}
/**
* lpfc_tskmgmt_def_cmpl - IOCB completion routine for task management command
* @phba: The Hba for which this call is being executed.
* @cmdiocbq: Pointer to lpfc_iocbq data structure.
* @rspiocbq: Pointer to lpfc_iocbq data structure.
*
* This routine is IOCB completion routine for device reset and target reset
* routine. This routine release scsi buffer associated with lpfc_cmd.
**/
static void
lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
struct lpfc_iocbq *cmdiocbq,
struct lpfc_iocbq *rspiocbq)
{
struct lpfc_io_buf *lpfc_cmd =
(struct lpfc_io_buf *) cmdiocbq->context1;
if (lpfc_cmd)
lpfc_release_scsi_buf(phba, lpfc_cmd);
return;
}
/**
* lpfc_check_pci_resettable - Walks list of devices on pci_dev's bus to check
* if issuing a pci_bus_reset is possibly unsafe
* @phba: lpfc_hba pointer.
*
* Description:
* Walks the bus_list to ensure only PCI devices with Emulex
* vendor id, device ids that support hot reset, and only one occurrence
* of function 0.
*
* Returns:
* -EBADSLT, detected invalid device
* 0, successful
*/
int
lpfc_check_pci_resettable(struct lpfc_hba *phba)
{
const struct pci_dev *pdev = phba->pcidev;
struct pci_dev *ptr = NULL;
u8 counter = 0;
/* Walk the list of devices on the pci_dev's bus */
list_for_each_entry(ptr, &pdev->bus->devices, bus_list) {
/* Check for Emulex Vendor ID */
if (ptr->vendor != PCI_VENDOR_ID_EMULEX) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"8346 Non-Emulex vendor found: "
"0x%04x\n", ptr->vendor);
return -EBADSLT;
}
/* Check for valid Emulex Device ID */
if (phba->sli_rev != LPFC_SLI_REV4 ||
phba->hba_flag & HBA_FCOE_MODE) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"8347 Incapable PCI reset device: "
"0x%04x\n", ptr->device);
return -EBADSLT;
}
/* Check for only one function 0 ID to ensure only one HBA on
* secondary bus
*/
if (ptr->devfn == 0) {
if (++counter > 1) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"8348 More than one device on "
"secondary bus found\n");
return -EBADSLT;
}
}
}
return 0;
}
/**
* lpfc_info - Info entry point of scsi_host_template data structure
* @host: The scsi host for which this call is being executed.
*
* This routine provides module information about hba.
*
* Reutrn code:
* Pointer to char - Success.
**/
const char *
lpfc_info(struct Scsi_Host *host)
{
struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
struct lpfc_hba *phba = vport->phba;
int link_speed = 0;
static char lpfcinfobuf[384];
char tmp[384] = {0};
memset(lpfcinfobuf, 0, sizeof(lpfcinfobuf));
if (phba && phba->pcidev){
/* Model Description */
scnprintf(tmp, sizeof(tmp), phba->ModelDesc);
if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >=
sizeof(lpfcinfobuf))
goto buffer_done;
/* PCI Info */
scnprintf(tmp, sizeof(tmp),
" on PCI bus %02x device %02x irq %d",
phba->pcidev->bus->number, phba->pcidev->devfn,
phba->pcidev->irq);
if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >=
sizeof(lpfcinfobuf))
goto buffer_done;
/* Port Number */
if (phba->Port[0]) {
scnprintf(tmp, sizeof(tmp), " port %s", phba->Port);
if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >=
sizeof(lpfcinfobuf))
goto buffer_done;
}
/* Link Speed */
link_speed = lpfc_sli_port_speed_get(phba);
if (link_speed != 0) {
scnprintf(tmp, sizeof(tmp),
" Logical Link Speed: %d Mbps", link_speed);
if (strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf)) >=
sizeof(lpfcinfobuf))
goto buffer_done;
}
/* PCI resettable */
if (!lpfc_check_pci_resettable(phba)) {
scnprintf(tmp, sizeof(tmp), " PCI resettable");
strlcat(lpfcinfobuf, tmp, sizeof(lpfcinfobuf));
}
}
buffer_done:
return lpfcinfobuf;
}
/**
* lpfc_poll_rearm_timer - Routine to modify fcp_poll timer of hba
* @phba: The Hba for which this call is being executed.
*
* This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo.
* The default value of cfg_poll_tmo is 10 milliseconds.
**/
static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
{
unsigned long poll_tmo_expires =
(jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));
if (!list_empty(&phba->sli.sli3_ring[LPFC_FCP_RING].txcmplq))
mod_timer(&phba->fcp_poll_timer,
poll_tmo_expires);
}
/**
* lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
* @phba: The Hba for which this call is being executed.
*
* This routine starts the fcp_poll_timer of @phba.
**/
void lpfc_poll_start_timer(struct lpfc_hba * phba)
{
lpfc_poll_rearm_timer(phba);
}
/**
* lpfc_poll_timeout - Restart polling timer
* @t: Timer construct where lpfc_hba data structure pointer is obtained.
*
* This routine restarts fcp_poll timer, when FCP ring polling is enable
* and FCP Ring interrupt is disable.
**/
void lpfc_poll_timeout(struct timer_list *t)
{
struct lpfc_hba *phba = from_timer(phba, t, fcp_poll_timer);
if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
lpfc_sli_handle_fast_ring_event(phba,
&phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ);
if (phba->cfg_poll & DISABLE_FCP_RING_INT)
lpfc_poll_rearm_timer(phba);
}
}
/*
* lpfc_get_vmid_from_hashtable - search the UUID in the hash table
* @vport: The virtual port for which this call is being executed.
* @hash: calculated hash value
* @buf: uuid associated with the VE
* Return the VMID entry associated with the UUID
* Make sure to acquire the appropriate lock before invoking this routine.
*/
struct lpfc_vmid *lpfc_get_vmid_from_hashtable(struct lpfc_vport *vport,
u32 hash, u8 *buf)
{
struct lpfc_vmid *vmp;
hash_for_each_possible(vport->hash_table, vmp, hnode, hash) {
if (memcmp(&vmp->host_vmid[0], buf, 16) == 0)
return vmp;
}
return NULL;
}
/*
* lpfc_put_vmid_in_hashtable - put the VMID in the hash table
* @vport: The virtual port for which this call is being executed.
* @hash - calculated hash value
* @vmp: Pointer to a VMID entry representing a VM sending I/O
*
* This routine will insert the newly acquired VMID entity in the hash table.
* Make sure to acquire the appropriate lock before invoking this routine.
*/
static void
lpfc_put_vmid_in_hashtable(struct lpfc_vport *vport, u32 hash,
struct lpfc_vmid *vmp)
{
hash_add(vport->hash_table, &vmp->hnode, hash);
}
/*
* lpfc_vmid_hash_fn - create a hash value of the UUID
* @vmid: uuid associated with the VE
* @len: length of the VMID string
* Returns the calculated hash value
*/
int lpfc_vmid_hash_fn(const char *vmid, int len)
{
int c;
int hash = 0;
if (len == 0)
return 0;
while (len--) {
c = *vmid++;
if (c >= 'A' && c <= 'Z')
c += 'a' - 'A';
hash = (hash + (c << LPFC_VMID_HASH_SHIFT) +
(c >> LPFC_VMID_HASH_SHIFT)) * 19;
}
return hash & LPFC_VMID_HASH_MASK;
}
/*
* lpfc_vmid_update_entry - update the vmid entry in the hash table
* @vport: The virtual port for which this call is being executed.
* @cmd: address of scsi cmd descriptor
* @vmp: Pointer to a VMID entry representing a VM sending I/O
* @tag: VMID tag
*/
static void lpfc_vmid_update_entry(struct lpfc_vport *vport, struct scsi_cmnd
*cmd, struct lpfc_vmid *vmp,
union lpfc_vmid_io_tag *tag)
{
u64 *lta;
if (vport->vmid_priority_tagging)
tag->cs_ctl_vmid = vmp->un.cs_ctl_vmid;
else
tag->app_id = vmp->un.app_id;
if (cmd->sc_data_direction == DMA_TO_DEVICE)
vmp->io_wr_cnt++;
else
vmp->io_rd_cnt++;
/* update the last access timestamp in the table */
lta = per_cpu_ptr(vmp->last_io_time, raw_smp_processor_id());
*lta = jiffies;
}
static void lpfc_vmid_assign_cs_ctl(struct lpfc_vport *vport,
struct lpfc_vmid *vmid)
{
u32 hash;
struct lpfc_vmid *pvmid;
if (vport->port_type == LPFC_PHYSICAL_PORT) {
vmid->un.cs_ctl_vmid = lpfc_vmid_get_cs_ctl(vport);
} else {
hash = lpfc_vmid_hash_fn(vmid->host_vmid, vmid->vmid_len);
pvmid =
lpfc_get_vmid_from_hashtable(vport->phba->pport, hash,
vmid->host_vmid);
if (pvmid)
vmid->un.cs_ctl_vmid = pvmid->un.cs_ctl_vmid;
else
vmid->un.cs_ctl_vmid = lpfc_vmid_get_cs_ctl(vport);
}
}
/*
* lpfc_vmid_get_appid - get the VMID associated with the UUID
* @vport: The virtual port for which this call is being executed.
* @uuid: UUID associated with the VE
* @cmd: address of scsi_cmd descriptor
* @tag: VMID tag
* Returns status of the function
*/
static int lpfc_vmid_get_appid(struct lpfc_vport *vport, char *uuid, struct
scsi_cmnd * cmd, union lpfc_vmid_io_tag *tag)
{
struct lpfc_vmid *vmp = NULL;
int hash, len, rc, i;
/* check if QFPA is complete */
if (lpfc_vmid_is_type_priority_tag(vport) && !(vport->vmid_flag &
LPFC_VMID_QFPA_CMPL)) {
vport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA;
return -EAGAIN;
}
/* search if the UUID has already been mapped to the VMID */
len = strlen(uuid);
hash = lpfc_vmid_hash_fn(uuid, len);
/* search for the VMID in the table */
read_lock(&vport->vmid_lock);
vmp = lpfc_get_vmid_from_hashtable(vport, hash, uuid);
/* if found, check if its already registered */
if (vmp && vmp->flag & LPFC_VMID_REGISTERED) {
read_unlock(&vport->vmid_lock);
lpfc_vmid_update_entry(vport, cmd, vmp, tag);
rc = 0;
} else if (vmp && (vmp->flag & LPFC_VMID_REQ_REGISTER ||
vmp->flag & LPFC_VMID_DE_REGISTER)) {
/* else if register or dereg request has already been sent */
/* Hence VMID tag will not be added for this I/O */
read_unlock(&vport->vmid_lock);
rc = -EBUSY;
} else {
/* The VMID was not found in the hashtable. At this point, */
/* drop the read lock first before proceeding further */
read_unlock(&vport->vmid_lock);
/* start the process to obtain one as per the */
/* type of the VMID indicated */
write_lock(&vport->vmid_lock);
vmp = lpfc_get_vmid_from_hashtable(vport, hash, uuid);
/* while the read lock was released, in case the entry was */
/* added by other context or is in process of being added */
if (vmp && vmp->flag & LPFC_VMID_REGISTERED) {
lpfc_vmid_update_entry(vport, cmd, vmp, tag);
write_unlock(&vport->vmid_lock);
return 0;
} else if (vmp && vmp->flag & LPFC_VMID_REQ_REGISTER) {
write_unlock(&vport->vmid_lock);
return -EBUSY;
}
/* else search and allocate a free slot in the hash table */
if (vport->cur_vmid_cnt < vport->max_vmid) {
for (i = 0; i < vport->max_vmid; i++) {
vmp = vport->vmid + i;
if (vmp->flag == LPFC_VMID_SLOT_FREE)
break;
}
if (i == vport->max_vmid)
vmp = NULL;
} else {
vmp = NULL;
}
if (!vmp) {
write_unlock(&vport->vmid_lock);
return -ENOMEM;
}
/* Add the vmid and register */
lpfc_put_vmid_in_hashtable(vport, hash, vmp);
vmp->vmid_len = len;
memcpy(vmp->host_vmid, uuid, vmp->vmid_len);
vmp->io_rd_cnt = 0;
vmp->io_wr_cnt = 0;
vmp->flag = LPFC_VMID_SLOT_USED;
vmp->delete_inactive =
vport->vmid_inactivity_timeout ? 1 : 0;
/* if type priority tag, get next available VMID */
if (lpfc_vmid_is_type_priority_tag(vport))
lpfc_vmid_assign_cs_ctl(vport, vmp);
/* allocate the per cpu variable for holding */
/* the last access time stamp only if VMID is enabled */
if (!vmp->last_io_time)
vmp->last_io_time = __alloc_percpu(sizeof(u64),
__alignof__(struct
lpfc_vmid));
if (!vmp->last_io_time) {
hash_del(&vmp->hnode);
vmp->flag = LPFC_VMID_SLOT_FREE;
write_unlock(&vport->vmid_lock);
return -EIO;
}
write_unlock(&vport->vmid_lock);
/* complete transaction with switch */
if (lpfc_vmid_is_type_priority_tag(vport))
rc = lpfc_vmid_uvem(vport, vmp, true);
else
rc = lpfc_vmid_cmd(vport, SLI_CTAS_RAPP_IDENT, vmp);
if (!rc) {
write_lock(&vport->vmid_lock);
vport->cur_vmid_cnt++;
vmp->flag |= LPFC_VMID_REQ_REGISTER;
write_unlock(&vport->vmid_lock);
} else {
write_lock(&vport->vmid_lock);
hash_del(&vmp->hnode);
vmp->flag = LPFC_VMID_SLOT_FREE;
free_percpu(vmp->last_io_time);
write_unlock(&vport->vmid_lock);
return -EIO;
}
/* finally, enable the idle timer once */
if (!(vport->phba->pport->vmid_flag & LPFC_VMID_TIMER_ENBLD)) {
mod_timer(&vport->phba->inactive_vmid_poll,
jiffies +
msecs_to_jiffies(1000 * LPFC_VMID_TIMER));
vport->phba->pport->vmid_flag |= LPFC_VMID_TIMER_ENBLD;
}
}
return rc;
}
/*
* lpfc_is_command_vm_io - get the UUID from blk cgroup
* @cmd: Pointer to scsi_cmnd data structure
* Returns UUID if present, otherwise NULL
*/
static char *lpfc_is_command_vm_io(struct scsi_cmnd *cmd)
{
struct bio *bio = scsi_cmd_to_rq(cmd)->bio;
return bio ? blkcg_get_fc_appid(bio) : NULL;
}
/**
* lpfc_queuecommand - scsi_host_template queuecommand entry point
* @shost: kernel scsi host pointer.
* @cmnd: Pointer to scsi_cmnd data structure.
*
* Driver registers this routine to scsi midlayer to submit a @cmd to process.
* This routine prepares an IOCB from scsi command and provides to firmware.
* The @done callback is invoked after driver finished processing the command.
*
* Return value :
* 0 - Success
* SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
**/
static int
lpfc_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *cmnd)
{
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *cur_iocbq = NULL;
struct lpfc_rport_data *rdata;
struct lpfc_nodelist *ndlp;
struct lpfc_io_buf *lpfc_cmd;
struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
int err, idx;
u8 *uuid = NULL;
uint64_t start;
start = ktime_get_ns();
rdata = lpfc_rport_data_from_scsi_device(cmnd->device);
/* sanity check on references */
if (unlikely(!rdata) || unlikely(!rport))
goto out_fail_command;
err = fc_remote_port_chkready(rport);
if (err) {
cmnd->result = err;
goto out_fail_command;
}
ndlp = rdata->pnode;
if ((scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) &&
(!(phba->sli3_options & LPFC_SLI3_BG_ENABLED))) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"9058 BLKGRD: ERROR: rcvd protected cmd:%02x"
" op:%02x str=%s without registering for"
" BlockGuard - Rejecting command\n",
cmnd->cmnd[0], scsi_get_prot_op(cmnd),
dif_op_str[scsi_get_prot_op(cmnd)]);
goto out_fail_command;
}
/*
* Catch race where our node has transitioned, but the
* transport is still transitioning.
*/
if (!ndlp)
goto out_tgt_busy1;
/* Check if IO qualifies for CMF */
if (phba->cmf_active_mode != LPFC_CFG_OFF &&
cmnd->sc_data_direction == DMA_FROM_DEVICE &&
(scsi_sg_count(cmnd))) {
/* Latency start time saved in rx_cmd_start later in routine */
err = lpfc_update_cmf_cmd(phba, scsi_bufflen(cmnd));
if (err)
goto out_tgt_busy1;
}
if (lpfc_ndlp_check_qdepth(phba, ndlp)) {
if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_ERROR,
"3377 Target Queue Full, scsi Id:%d "
"Qdepth:%d Pending command:%d"
" WWNN:%02x:%02x:%02x:%02x:"
"%02x:%02x:%02x:%02x, "
" WWPN:%02x:%02x:%02x:%02x:"
"%02x:%02x:%02x:%02x",
ndlp->nlp_sid, ndlp->cmd_qdepth,
atomic_read(&ndlp->cmd_pending),
ndlp->nlp_nodename.u.wwn[0],
ndlp->nlp_nodename.u.wwn[1],
ndlp->nlp_nodename.u.wwn[2],
ndlp->nlp_nodename.u.wwn[3],
ndlp->nlp_nodename.u.wwn[4],
ndlp->nlp_nodename.u.wwn[5],
ndlp->nlp_nodename.u.wwn[6],
ndlp->nlp_nodename.u.wwn[7],
ndlp->nlp_portname.u.wwn[0],
ndlp->nlp_portname.u.wwn[1],
ndlp->nlp_portname.u.wwn[2],
ndlp->nlp_portname.u.wwn[3],
ndlp->nlp_portname.u.wwn[4],
ndlp->nlp_portname.u.wwn[5],
ndlp->nlp_portname.u.wwn[6],
ndlp->nlp_portname.u.wwn[7]);
goto out_tgt_busy2;
}
}
lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp, cmnd);
if (lpfc_cmd == NULL) {
lpfc_rampdown_queue_depth(phba);
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_ERROR,
"0707 driver's buffer pool is empty, "
"IO busied\n");
goto out_host_busy;
}
lpfc_cmd->rx_cmd_start = start;
cur_iocbq = &lpfc_cmd->cur_iocbq;
/*
* Store the midlayer's command structure for the completion phase
* and complete the command initialization.
*/
lpfc_cmd->pCmd = cmnd;
lpfc_cmd->rdata = rdata;
lpfc_cmd->ndlp = ndlp;
cur_iocbq->cmd_cmpl = NULL;
cmnd->host_scribble = (unsigned char *)lpfc_cmd;
err = lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);
if (err)
goto out_host_busy_release_buf;
if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
if (vport->phba->cfg_enable_bg) {
lpfc_printf_vlog(vport,
KERN_INFO, LOG_SCSI_CMD,
"9033 BLKGRD: rcvd %s cmd:x%x "
"reftag x%x cnt %u pt %x\n",
dif_op_str[scsi_get_prot_op(cmnd)],
cmnd->cmnd[0],
scsi_prot_ref_tag(cmnd),
scsi_logical_block_count(cmnd),
(cmnd->cmnd[1]>>5));
}
err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
} else {
if (vport->phba->cfg_enable_bg) {
lpfc_printf_vlog(vport,
KERN_INFO, LOG_SCSI_CMD,
"9038 BLKGRD: rcvd PROT_NORMAL cmd: "
"x%x reftag x%x cnt %u pt %x\n",
cmnd->cmnd[0],
scsi_prot_ref_tag(cmnd),
scsi_logical_block_count(cmnd),
(cmnd->cmnd[1]>>5));
}
err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
}
if (unlikely(err)) {
if (err == 2) {
cmnd->result = DID_ERROR << 16;
goto out_fail_command_release_buf;
}
goto out_host_busy_free_buf;
}
/* check the necessary and sufficient condition to support VMID */
if (lpfc_is_vmid_enabled(phba) &&
(ndlp->vmid_support ||
phba->pport->vmid_priority_tagging ==
LPFC_VMID_PRIO_TAG_ALL_TARGETS)) {
/* is the I/O generated by a VM, get the associated virtual */
/* entity id */
uuid = lpfc_is_command_vm_io(cmnd);
if (uuid) {
err = lpfc_vmid_get_appid(vport, uuid, cmnd,
(union lpfc_vmid_io_tag *)
&cur_iocbq->vmid_tag);
if (!err)
cur_iocbq->cmd_flag |= LPFC_IO_VMID;
}
}
atomic_inc(&ndlp->cmd_pending);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (unlikely(phba->hdwqstat_on & LPFC_CHECK_SCSI_IO))
this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
#endif
/* Issue I/O to adapter */
err = lpfc_sli_issue_fcp_io(phba, LPFC_FCP_RING, cur_iocbq,
SLI_IOCB_RET_IOCB);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (start) {
lpfc_cmd->ts_cmd_start = start;
lpfc_cmd->ts_last_cmd = phba->ktime_last_cmd;
lpfc_cmd->ts_cmd_wqput = ktime_get_ns();
} else {
lpfc_cmd->ts_cmd_start = 0;
}
#endif
if (err) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"3376 FCP could not issue iocb err %x "
"FCP cmd x%x <%d/%llu> "
"sid: x%x did: x%x oxid: x%x "
"Data: x%x x%x x%x x%x\n",
err, cmnd->cmnd[0],
cmnd->device ? cmnd->device->id : 0xffff,
cmnd->device ? cmnd->device->lun : (u64)-1,
vport->fc_myDID, ndlp->nlp_DID,
phba->sli_rev == LPFC_SLI_REV4 ?
cur_iocbq->sli4_xritag : 0xffff,
phba->sli_rev == LPFC_SLI_REV4 ?
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi] :
cur_iocbq->iocb.ulpContext,
cur_iocbq->iotag,
phba->sli_rev == LPFC_SLI_REV4 ?
bf_get(wqe_tmo,
&cur_iocbq->wqe.generic.wqe_com) :
cur_iocbq->iocb.ulpTimeout,
(uint32_t)(scsi_cmd_to_rq(cmnd)->timeout / 1000));
goto out_host_busy_free_buf;
}
if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
lpfc_sli_handle_fast_ring_event(phba,
&phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ);
if (phba->cfg_poll & DISABLE_FCP_RING_INT)
lpfc_poll_rearm_timer(phba);
}
if (phba->cfg_xri_rebalancing)
lpfc_keep_pvt_pool_above_lowwm(phba, lpfc_cmd->hdwq_no);
return 0;
out_host_busy_free_buf:
idx = lpfc_cmd->hdwq_no;
lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
if (phba->sli4_hba.hdwq) {
switch (lpfc_cmd->fcp_cmnd->fcpCntl3) {
case WRITE_DATA:
phba->sli4_hba.hdwq[idx].scsi_cstat.output_requests--;
break;
case READ_DATA:
phba->sli4_hba.hdwq[idx].scsi_cstat.input_requests--;
break;
default:
phba->sli4_hba.hdwq[idx].scsi_cstat.control_requests--;
}
}
out_host_busy_release_buf:
lpfc_release_scsi_buf(phba, lpfc_cmd);
out_host_busy:
lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT, scsi_bufflen(cmnd),
shost);
return SCSI_MLQUEUE_HOST_BUSY;
out_tgt_busy2:
lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT, scsi_bufflen(cmnd),
shost);
out_tgt_busy1:
return SCSI_MLQUEUE_TARGET_BUSY;
out_fail_command_release_buf:
lpfc_release_scsi_buf(phba, lpfc_cmd);
lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT, scsi_bufflen(cmnd),
shost);
out_fail_command:
scsi_done(cmnd);
return 0;
}
/*
* lpfc_vmid_vport_cleanup - cleans up the resources associated with a vport
* @vport: The virtual port for which this call is being executed.
*/
void lpfc_vmid_vport_cleanup(struct lpfc_vport *vport)
{
u32 bucket;
struct lpfc_vmid *cur;
if (vport->port_type == LPFC_PHYSICAL_PORT)
del_timer_sync(&vport->phba->inactive_vmid_poll);
kfree(vport->qfpa_res);
kfree(vport->vmid_priority.vmid_range);
kfree(vport->vmid);
if (!hash_empty(vport->hash_table))
hash_for_each(vport->hash_table, bucket, cur, hnode)
hash_del(&cur->hnode);
vport->qfpa_res = NULL;
vport->vmid_priority.vmid_range = NULL;
vport->vmid = NULL;
vport->cur_vmid_cnt = 0;
}
/**
* lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
* @cmnd: Pointer to scsi_cmnd data structure.
*
* This routine aborts @cmnd pending in base driver.
*
* Return code :
* 0x2003 - Error
* 0x2002 - Success
**/
static int
lpfc_abort_handler(struct scsi_cmnd *cmnd)
{
struct Scsi_Host *shost = cmnd->device->host;
struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *iocb;
struct lpfc_io_buf *lpfc_cmd;
int ret = SUCCESS, status = 0;
struct lpfc_sli_ring *pring_s4 = NULL;
struct lpfc_sli_ring *pring = NULL;
int ret_val;
unsigned long flags;
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
status = fc_block_rport(rport);
if (status != 0 && status != SUCCESS)
return status;
lpfc_cmd = (struct lpfc_io_buf *)cmnd->host_scribble;
if (!lpfc_cmd)
return ret;
spin_lock_irqsave(&phba->hbalock, flags);
/* driver queued commands are in process of being flushed */
if (phba->hba_flag & HBA_IOQ_FLUSH) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"3168 SCSI Layer abort requested I/O has been "
"flushed by LLD.\n");
ret = FAILED;
goto out_unlock;
}
/* Guard against IO completion being called at same time */
spin_lock(&lpfc_cmd->buf_lock);
if (!lpfc_cmd->pCmd) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"2873 SCSI Layer I/O Abort Request IO CMPL Status "
"x%x ID %d LUN %llu\n",
SUCCESS, cmnd->device->id, cmnd->device->lun);
goto out_unlock_buf;
}
iocb = &lpfc_cmd->cur_iocbq;
if (phba->sli_rev == LPFC_SLI_REV4) {
pring_s4 = phba->sli4_hba.hdwq[iocb->hba_wqidx].io_wq->pring;
if (!pring_s4) {
ret = FAILED;
goto out_unlock_buf;
}
spin_lock(&pring_s4->ring_lock);
}
/* the command is in process of being cancelled */
if (!(iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ)) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"3169 SCSI Layer abort requested I/O has been "
"cancelled by LLD.\n");
ret = FAILED;
goto out_unlock_ring;
}
/*
* If pCmd field of the corresponding lpfc_io_buf structure
* points to a different SCSI command, then the driver has
* already completed this command, but the midlayer did not
* see the completion before the eh fired. Just return SUCCESS.
*/
if (lpfc_cmd->pCmd != cmnd) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"3170 SCSI Layer abort requested I/O has been "
"completed by LLD.\n");
goto out_unlock_ring;
}
BUG_ON(iocb->context1 != lpfc_cmd);
/* abort issued in recovery is still in progress */
if (iocb->cmd_flag & LPFC_DRIVER_ABORTED) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"3389 SCSI Layer I/O Abort Request is pending\n");
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring_s4->ring_lock);
spin_unlock(&lpfc_cmd->buf_lock);
spin_unlock_irqrestore(&phba->hbalock, flags);
goto wait_for_cmpl;
}
lpfc_cmd->waitq = &waitq;
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring_s4->ring_lock);
else
pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocb,
lpfc_sli_abort_fcp_cmpl);
/* Make sure HBA is alive */
lpfc_issue_hb_tmo(phba);
if (ret_val != IOCB_SUCCESS) {
/* Indicate the IO is not being aborted by the driver. */
lpfc_cmd->waitq = NULL;
spin_unlock(&lpfc_cmd->buf_lock);
spin_unlock_irqrestore(&phba->hbalock, flags);
ret = FAILED;
goto out;
}
/* no longer need the lock after this point */
spin_unlock(&lpfc_cmd->buf_lock);
spin_unlock_irqrestore(&phba->hbalock, flags);
if (phba->cfg_poll & DISABLE_FCP_RING_INT)
lpfc_sli_handle_fast_ring_event(phba,
&phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ);
wait_for_cmpl:
/*
* cmd_flag is set to LPFC_DRIVER_ABORTED before we wait
* for abort to complete.
*/
wait_event_timeout(waitq,
(lpfc_cmd->pCmd != cmnd),
msecs_to_jiffies(2*vport->cfg_devloss_tmo*1000));
spin_lock(&lpfc_cmd->buf_lock);
if (lpfc_cmd->pCmd == cmnd) {
ret = FAILED;
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0748 abort handler timed out waiting "
"for aborting I/O (xri:x%x) to complete: "
"ret %#x, ID %d, LUN %llu\n",
iocb->sli4_xritag, ret,
cmnd->device->id, cmnd->device->lun);
}
lpfc_cmd->waitq = NULL;
spin_unlock(&lpfc_cmd->buf_lock);
goto out;
out_unlock_ring:
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring_s4->ring_lock);
out_unlock_buf:
spin_unlock(&lpfc_cmd->buf_lock);
out_unlock:
spin_unlock_irqrestore(&phba->hbalock, flags);
out:
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"0749 SCSI Layer I/O Abort Request Status x%x ID %d "
"LUN %llu\n", ret, cmnd->device->id,
cmnd->device->lun);
return ret;
}
static char *
lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
{
switch (task_mgmt_cmd) {
case FCP_ABORT_TASK_SET:
return "ABORT_TASK_SET";
case FCP_CLEAR_TASK_SET:
return "FCP_CLEAR_TASK_SET";
case FCP_BUS_RESET:
return "FCP_BUS_RESET";
case FCP_LUN_RESET:
return "FCP_LUN_RESET";
case FCP_TARGET_RESET:
return "FCP_TARGET_RESET";
case FCP_CLEAR_ACA:
return "FCP_CLEAR_ACA";
case FCP_TERMINATE_TASK:
return "FCP_TERMINATE_TASK";
default:
return "unknown";
}
}
/**
* lpfc_check_fcp_rsp - check the returned fcp_rsp to see if task failed
* @vport: The virtual port for which this call is being executed.
* @lpfc_cmd: Pointer to lpfc_io_buf data structure.
*
* This routine checks the FCP RSP INFO to see if the tsk mgmt command succeded
*
* Return code :
* 0x2003 - Error
* 0x2002 - Success
**/
static int
lpfc_check_fcp_rsp(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_cmd)
{
struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
uint32_t rsp_info;
uint32_t rsp_len;
uint8_t rsp_info_code;
int ret = FAILED;
if (fcprsp == NULL)
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0703 fcp_rsp is missing\n");
else {
rsp_info = fcprsp->rspStatus2;
rsp_len = be32_to_cpu(fcprsp->rspRspLen);
rsp_info_code = fcprsp->rspInfo3;
lpfc_printf_vlog(vport, KERN_INFO,
LOG_FCP,
"0706 fcp_rsp valid 0x%x,"
" rsp len=%d code 0x%x\n",
rsp_info,
rsp_len, rsp_info_code);
/* If FCP_RSP_LEN_VALID bit is one, then the FCP_RSP_LEN
* field specifies the number of valid bytes of FCP_RSP_INFO.
* The FCP_RSP_LEN field shall be set to 0x04 or 0x08
*/
if ((fcprsp->rspStatus2 & RSP_LEN_VALID) &&
((rsp_len == 8) || (rsp_len == 4))) {
switch (rsp_info_code) {
case RSP_NO_FAILURE:
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0715 Task Mgmt No Failure\n");
ret = SUCCESS;
break;
case RSP_TM_NOT_SUPPORTED: /* TM rejected */
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0716 Task Mgmt Target "
"reject\n");
break;
case RSP_TM_NOT_COMPLETED: /* TM failed */
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0717 Task Mgmt Target "
"failed TM\n");
break;
case RSP_TM_INVALID_LU: /* TM to invalid LU! */
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0718 Task Mgmt to invalid "
"LUN\n");
break;
}
}
}
return ret;
}
/**
* lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
* @vport: The virtual port for which this call is being executed.
* @rport: Pointer to remote port
* @tgt_id: Target ID of remote device.
* @lun_id: Lun number for the TMF
* @task_mgmt_cmd: type of TMF to send
*
* This routine builds and sends a TMF (SCSI Task Mgmt Function) to
* a remote port.
*
* Return Code:
* 0x2003 - Error
* 0x2002 - Success.
**/
static int
lpfc_send_taskmgmt(struct lpfc_vport *vport, struct fc_rport *rport,
unsigned int tgt_id, uint64_t lun_id,
uint8_t task_mgmt_cmd)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_io_buf *lpfc_cmd;
struct lpfc_iocbq *iocbq;
struct lpfc_iocbq *iocbqrsp;
struct lpfc_rport_data *rdata;
struct lpfc_nodelist *pnode;
int ret;
int status;
rdata = rport->dd_data;
if (!rdata || !rdata->pnode)
return FAILED;
pnode = rdata->pnode;
lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode, NULL);
if (lpfc_cmd == NULL)
return FAILED;
lpfc_cmd->timeout = phba->cfg_task_mgmt_tmo;
lpfc_cmd->rdata = rdata;
lpfc_cmd->pCmd = NULL;
lpfc_cmd->ndlp = pnode;
status = phba->lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
task_mgmt_cmd);
if (!status) {
lpfc_release_scsi_buf(phba, lpfc_cmd);
return FAILED;
}
iocbq = &lpfc_cmd->cur_iocbq;
iocbqrsp = lpfc_sli_get_iocbq(phba);
if (iocbqrsp == NULL) {
lpfc_release_scsi_buf(phba, lpfc_cmd);
return FAILED;
}
iocbq->cmd_cmpl = lpfc_tskmgmt_def_cmpl;
iocbq->vport = vport;
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0702 Issue %s to TGT %d LUN %llu "
"rpi x%x nlp_flag x%x Data: x%x x%x\n",
lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
pnode->nlp_rpi, pnode->nlp_flag, iocbq->sli4_xritag,
iocbq->cmd_flag);
status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
iocbq, iocbqrsp, lpfc_cmd->timeout);
if ((status != IOCB_SUCCESS) ||
(get_job_ulpstatus(phba, iocbqrsp) != IOSTAT_SUCCESS)) {
if (status != IOCB_SUCCESS ||
get_job_ulpstatus(phba, iocbqrsp) != IOSTAT_FCP_RSP_ERROR)
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0727 TMF %s to TGT %d LUN %llu "
"failed (%d, %d) cmd_flag x%x\n",
lpfc_taskmgmt_name(task_mgmt_cmd),
tgt_id, lun_id,
get_job_ulpstatus(phba, iocbqrsp),
get_job_word4(phba, iocbqrsp),
iocbq->cmd_flag);
/* if ulpStatus != IOCB_SUCCESS, then status == IOCB_SUCCESS */
if (status == IOCB_SUCCESS) {
if (get_job_ulpstatus(phba, iocbqrsp) ==
IOSTAT_FCP_RSP_ERROR)
/* Something in the FCP_RSP was invalid.
* Check conditions */
ret = lpfc_check_fcp_rsp(vport, lpfc_cmd);
else
ret = FAILED;
} else if ((status == IOCB_TIMEDOUT) ||
(status == IOCB_ABORTED)) {
ret = TIMEOUT_ERROR;
} else {
ret = FAILED;
}
} else
ret = SUCCESS;
lpfc_sli_release_iocbq(phba, iocbqrsp);
if (status != IOCB_TIMEDOUT)
lpfc_release_scsi_buf(phba, lpfc_cmd);
return ret;
}
/**
* lpfc_chk_tgt_mapped -
* @vport: The virtual port to check on
* @rport: Pointer to fc_rport data structure.
*
* This routine delays until the scsi target (aka rport) for the
* command exists (is present and logged in) or we declare it non-existent.
*
* Return code :
* 0x2003 - Error
* 0x2002 - Success
**/
static int
lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct fc_rport *rport)
{
struct lpfc_rport_data *rdata;
struct lpfc_nodelist *pnode = NULL;
unsigned long later;
rdata = rport->dd_data;
if (!rdata) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
"0797 Tgt Map rport failure: rdata x%px\n", rdata);
return FAILED;
}
pnode = rdata->pnode;
/*
* If target is not in a MAPPED state, delay until
* target is rediscovered or devloss timeout expires.
*/
later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
while (time_after(later, jiffies)) {
if (!pnode)
return FAILED;
if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
return SUCCESS;
schedule_timeout_uninterruptible(msecs_to_jiffies(500));
rdata = rport->dd_data;
if (!rdata)
return FAILED;
pnode = rdata->pnode;
}
if (!pnode || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
return FAILED;
return SUCCESS;
}
/**
* lpfc_reset_flush_io_context -
* @vport: The virtual port (scsi_host) for the flush context
* @tgt_id: If aborting by Target contect - specifies the target id
* @lun_id: If aborting by Lun context - specifies the lun id
* @context: specifies the context level to flush at.
*
* After a reset condition via TMF, we need to flush orphaned i/o
* contexts from the adapter. This routine aborts any contexts
* outstanding, then waits for their completions. The wait is
* bounded by devloss_tmo though.
*
* Return code :
* 0x2003 - Error
* 0x2002 - Success
**/
static int
lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
uint64_t lun_id, lpfc_ctx_cmd context)
{
struct lpfc_hba *phba = vport->phba;
unsigned long later;
int cnt;
cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
if (cnt)
lpfc_sli_abort_taskmgmt(vport,
&phba->sli.sli3_ring[LPFC_FCP_RING],
tgt_id, lun_id, context);
later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
while (time_after(later, jiffies) && cnt) {
schedule_timeout_uninterruptible(msecs_to_jiffies(20));
cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
}
if (cnt) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0724 I/O flush failure for context %s : cnt x%x\n",
((context == LPFC_CTX_LUN) ? "LUN" :
((context == LPFC_CTX_TGT) ? "TGT" :
((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
cnt);
return FAILED;
}
return SUCCESS;
}
/**
* lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
* @cmnd: Pointer to scsi_cmnd data structure.
*
* This routine does a device reset by sending a LUN_RESET task management
* command.
*
* Return code :
* 0x2003 - Error
* 0x2002 - Success
**/
static int
lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
{
struct Scsi_Host *shost = cmnd->device->host;
struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_rport_data *rdata;
struct lpfc_nodelist *pnode;
unsigned tgt_id = cmnd->device->id;
uint64_t lun_id = cmnd->device->lun;
struct lpfc_scsi_event_header scsi_event;
int status;
u32 logit = LOG_FCP;
rdata = rport->dd_data;
if (!rdata || !rdata->pnode) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0798 Device Reset rdata failure: rdata x%px\n",
rdata);
return FAILED;
}
pnode = rdata->pnode;
status = fc_block_rport(rport);
if (status != 0 && status != SUCCESS)
return status;
status = lpfc_chk_tgt_mapped(vport, rport);
if (status == FAILED) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0721 Device Reset rport failure: rdata x%px\n", rdata);
return FAILED;
}
scsi_event.event_type = FC_REG_SCSI_EVENT;
scsi_event.subcategory = LPFC_EVENT_LUNRESET;
scsi_event.lun = lun_id;
memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
status = lpfc_send_taskmgmt(vport, rport, tgt_id, lun_id,
FCP_LUN_RESET);
if (status != SUCCESS)
logit = LOG_TRACE_EVENT;
lpfc_printf_vlog(vport, KERN_ERR, logit,
"0713 SCSI layer issued Device Reset (%d, %llu) "
"return x%x\n", tgt_id, lun_id, status);
/*
* We have to clean up i/o as : they may be orphaned by the TMF;
* or if the TMF failed, they may be in an indeterminate state.
* So, continue on.
* We will report success if all the i/o aborts successfully.
*/
if (status == SUCCESS)
status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
LPFC_CTX_LUN);
return status;
}
/**
* lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
* @cmnd: Pointer to scsi_cmnd data structure.
*
* This routine does a target reset by sending a TARGET_RESET task management
* command.
*
* Return code :
* 0x2003 - Error
* 0x2002 - Success
**/
static int
lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
{
struct Scsi_Host *shost = cmnd->device->host;
struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_rport_data *rdata;
struct lpfc_nodelist *pnode;
unsigned tgt_id = cmnd->device->id;
uint64_t lun_id = cmnd->device->lun;
struct lpfc_scsi_event_header scsi_event;
int status;
u32 logit = LOG_FCP;
u32 dev_loss_tmo = vport->cfg_devloss_tmo;
unsigned long flags;
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
rdata = rport->dd_data;
if (!rdata || !rdata->pnode) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0799 Target Reset rdata failure: rdata x%px\n",
rdata);
return FAILED;
}
pnode = rdata->pnode;
status = fc_block_rport(rport);
if (status != 0 && status != SUCCESS)
return status;
status = lpfc_chk_tgt_mapped(vport, rport);
if (status == FAILED) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0722 Target Reset rport failure: rdata x%px\n", rdata);
if (pnode) {
spin_lock_irqsave(&pnode->lock, flags);
pnode->nlp_flag &= ~NLP_NPR_ADISC;
pnode->nlp_fcp_info &= ~NLP_FCP_2_DEVICE;
spin_unlock_irqrestore(&pnode->lock, flags);
}
lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
LPFC_CTX_TGT);
return FAST_IO_FAIL;
}
scsi_event.event_type = FC_REG_SCSI_EVENT;
scsi_event.subcategory = LPFC_EVENT_TGTRESET;
scsi_event.lun = 0;
memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
status = lpfc_send_taskmgmt(vport, rport, tgt_id, lun_id,
FCP_TARGET_RESET);
if (status != SUCCESS) {
logit = LOG_TRACE_EVENT;
/* Issue LOGO, if no LOGO is outstanding */
spin_lock_irqsave(&pnode->lock, flags);
if (!(pnode->save_flags & NLP_WAIT_FOR_LOGO) &&
!pnode->logo_waitq) {
pnode->logo_waitq = &waitq;
pnode->nlp_fcp_info &= ~NLP_FCP_2_DEVICE;
pnode->nlp_flag |= NLP_ISSUE_LOGO;
pnode->save_flags |= NLP_WAIT_FOR_LOGO;
spin_unlock_irqrestore(&pnode->lock, flags);
lpfc_unreg_rpi(vport, pnode);
wait_event_timeout(waitq,
(!(pnode->save_flags &
NLP_WAIT_FOR_LOGO)),
msecs_to_jiffies(dev_loss_tmo *
1000));
if (pnode->save_flags & NLP_WAIT_FOR_LOGO) {
lpfc_printf_vlog(vport, KERN_ERR, logit,
"0725 SCSI layer TGTRST "
"failed & LOGO TMO (%d, %llu) "
"return x%x\n",
tgt_id, lun_id, status);
spin_lock_irqsave(&pnode->lock, flags);
pnode->save_flags &= ~NLP_WAIT_FOR_LOGO;
} else {
spin_lock_irqsave(&pnode->lock, flags);
}
pnode->logo_waitq = NULL;
spin_unlock_irqrestore(&pnode->lock, flags);
status = SUCCESS;
} else {
spin_unlock_irqrestore(&pnode->lock, flags);
status = FAILED;
}
}
lpfc_printf_vlog(vport, KERN_ERR, logit,
"0723 SCSI layer issued Target Reset (%d, %llu) "
"return x%x\n", tgt_id, lun_id, status);
/*
* We have to clean up i/o as : they may be orphaned by the TMF;
* or if the TMF failed, they may be in an indeterminate state.
* So, continue on.
* We will report success if all the i/o aborts successfully.
*/
if (status == SUCCESS)
status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
LPFC_CTX_TGT);
return status;
}
/**
* lpfc_host_reset_handler - scsi_host_template eh_host_reset_handler entry pt
* @cmnd: Pointer to scsi_cmnd data structure.
*
* This routine does host reset to the adaptor port. It brings the HBA
* offline, performs a board restart, and then brings the board back online.
* The lpfc_offline calls lpfc_sli_hba_down which will abort and local
* reject all outstanding SCSI commands to the host and error returned
* back to SCSI mid-level. As this will be SCSI mid-level's last resort
* of error handling, it will only return error if resetting of the adapter
* is not successful; in all other cases, will return success.
*
* Return code :
* 0x2003 - Error
* 0x2002 - Success
**/
static int
lpfc_host_reset_handler(struct scsi_cmnd *cmnd)
{
struct Scsi_Host *shost = cmnd->device->host;
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
int rc, ret = SUCCESS;
lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
"3172 SCSI layer issued Host Reset Data:\n");
lpfc_offline_prep(phba, LPFC_MBX_WAIT);
lpfc_offline(phba);
rc = lpfc_sli_brdrestart(phba);
if (rc)
goto error;
/* Wait for successful restart of adapter */
if (phba->sli_rev < LPFC_SLI_REV4) {
rc = lpfc_sli_chipset_init(phba);
if (rc)
goto error;
}
rc = lpfc_online(phba);
if (rc)
goto error;
lpfc_unblock_mgmt_io(phba);
return ret;
error:
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"3323 Failed host reset\n");
lpfc_unblock_mgmt_io(phba);
return FAILED;
}
/**
* lpfc_slave_alloc - scsi_host_template slave_alloc entry point
* @sdev: Pointer to scsi_device.
*
* This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's
* globally available list of scsi buffers. This routine also makes sure scsi
* buffer is not allocated more than HBA limit conveyed to midlayer. This list
* of scsi buffer exists for the lifetime of the driver.
*
* Return codes:
* non-0 - Error
* 0 - Success
**/
static int
lpfc_slave_alloc(struct scsi_device *sdev)
{
struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
struct lpfc_hba *phba = vport->phba;
struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
uint32_t total = 0;
uint32_t num_to_alloc = 0;
int num_allocated = 0;
uint32_t sdev_cnt;
struct lpfc_device_data *device_data;
unsigned long flags;
struct lpfc_name target_wwpn;
if (!rport || fc_remote_port_chkready(rport))
return -ENXIO;
if (phba->cfg_fof) {
/*
* Check to see if the device data structure for the lun
* exists. If not, create one.
*/
u64_to_wwn(rport->port_name, target_wwpn.u.wwn);
spin_lock_irqsave(&phba->devicelock, flags);
device_data = __lpfc_get_device_data(phba,
&phba->luns,
&vport->fc_portname,
&target_wwpn,
sdev->lun);
if (!device_data) {
spin_unlock_irqrestore(&phba->devicelock, flags);
device_data = lpfc_create_device_data(phba,
&vport->fc_portname,
&target_wwpn,
sdev->lun,
phba->cfg_XLanePriority,
true);
if (!device_data)
return -ENOMEM;
spin_lock_irqsave(&phba->devicelock, flags);
list_add_tail(&device_data->listentry, &phba->luns);
}
device_data->rport_data = rport->dd_data;
device_data->available = true;
spin_unlock_irqrestore(&phba->devicelock, flags);
sdev->hostdata = device_data;
} else {
sdev->hostdata = rport->dd_data;
}
sdev_cnt = atomic_inc_return(&phba->sdev_cnt);
/* For SLI4, all IO buffers are pre-allocated */
if (phba->sli_rev == LPFC_SLI_REV4)
return 0;
/* This code path is now ONLY for SLI3 adapters */
/*
* Populate the cmds_per_lun count scsi_bufs into this host's globally
* available list of scsi buffers. Don't allocate more than the
* HBA limit conveyed to the midlayer via the host structure. The
* formula accounts for the lun_queue_depth + error handlers + 1
* extra. This list of scsi bufs exists for the lifetime of the driver.
*/
total = phba->total_scsi_bufs;
num_to_alloc = vport->cfg_lun_queue_depth + 2;
/* If allocated buffers are enough do nothing */
if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total)
return 0;
/* Allow some exchanges to be available always to complete discovery */
if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"0704 At limitation of %d preallocated "
"command buffers\n", total);
return 0;
/* Allow some exchanges to be available always to complete discovery */
} else if (total + num_to_alloc >
phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
"0705 Allocation request of %d "
"command buffers will exceed max of %d. "
"Reducing allocation request to %d.\n",
num_to_alloc, phba->cfg_hba_queue_depth,
(phba->cfg_hba_queue_depth - total));
num_to_alloc = phba->cfg_hba_queue_depth - total;
}
num_allocated = lpfc_new_scsi_buf_s3(vport, num_to_alloc);
if (num_to_alloc != num_allocated) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"0708 Allocation request of %d "
"command buffers did not succeed. "
"Allocated %d buffers.\n",
num_to_alloc, num_allocated);
}
if (num_allocated > 0)
phba->total_scsi_bufs += num_allocated;
return 0;
}
/**
* lpfc_slave_configure - scsi_host_template slave_configure entry point
* @sdev: Pointer to scsi_device.
*
* This routine configures following items
* - Tag command queuing support for @sdev if supported.
* - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
*
* Return codes:
* 0 - Success
**/
static int
lpfc_slave_configure(struct scsi_device *sdev)
{
struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
struct lpfc_hba *phba = vport->phba;
scsi_change_queue_depth(sdev, vport->cfg_lun_queue_depth);
if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
lpfc_sli_handle_fast_ring_event(phba,
&phba->sli.sli3_ring[LPFC_FCP_RING], HA_R0RE_REQ);
if (phba->cfg_poll & DISABLE_FCP_RING_INT)
lpfc_poll_rearm_timer(phba);
}
return 0;
}
/**
* lpfc_slave_destroy - slave_destroy entry point of SHT data structure
* @sdev: Pointer to scsi_device.
*
* This routine sets @sdev hostatdata filed to null.
**/
static void
lpfc_slave_destroy(struct scsi_device *sdev)
{
struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
struct lpfc_hba *phba = vport->phba;
unsigned long flags;
struct lpfc_device_data *device_data = sdev->hostdata;
atomic_dec(&phba->sdev_cnt);
if ((phba->cfg_fof) && (device_data)) {
spin_lock_irqsave(&phba->devicelock, flags);
device_data->available = false;
if (!device_data->oas_enabled)
lpfc_delete_device_data(phba, device_data);
spin_unlock_irqrestore(&phba->devicelock, flags);
}
sdev->hostdata = NULL;
return;
}
/**
* lpfc_create_device_data - creates and initializes device data structure for OAS
* @phba: Pointer to host bus adapter structure.
* @vport_wwpn: Pointer to vport's wwpn information
* @target_wwpn: Pointer to target's wwpn information
* @lun: Lun on target
* @pri: Priority
* @atomic_create: Flag to indicate if memory should be allocated using the
* GFP_ATOMIC flag or not.
*
* This routine creates a device data structure which will contain identifying
* information for the device (host wwpn, target wwpn, lun), state of OAS,
* whether or not the corresponding lun is available by the system,
* and pointer to the rport data.
*
* Return codes:
* NULL - Error
* Pointer to lpfc_device_data - Success
**/
struct lpfc_device_data*
lpfc_create_device_data(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn,
struct lpfc_name *target_wwpn, uint64_t lun,
uint32_t pri, bool atomic_create)
{
struct lpfc_device_data *lun_info;
int memory_flags;
if (unlikely(!phba) || !vport_wwpn || !target_wwpn ||
!(phba->cfg_fof))
return NULL;
/* Attempt to create the device data to contain lun info */
if (atomic_create)
memory_flags = GFP_ATOMIC;
else
memory_flags = GFP_KERNEL;
lun_info = mempool_alloc(phba->device_data_mem_pool, memory_flags);
if (!lun_info)
return NULL;
INIT_LIST_HEAD(&lun_info->listentry);
lun_info->rport_data = NULL;
memcpy(&lun_info->device_id.vport_wwpn, vport_wwpn,
sizeof(struct lpfc_name));
memcpy(&lun_info->device_id.target_wwpn, target_wwpn,
sizeof(struct lpfc_name));
lun_info->device_id.lun = lun;
lun_info->oas_enabled = false;
lun_info->priority = pri;
lun_info->available = false;
return lun_info;
}
/**
* lpfc_delete_device_data - frees a device data structure for OAS
* @phba: Pointer to host bus adapter structure.
* @lun_info: Pointer to device data structure to free.
*
* This routine frees the previously allocated device data structure passed.
*
**/
void
lpfc_delete_device_data(struct lpfc_hba *phba,
struct lpfc_device_data *lun_info)
{
if (unlikely(!phba) || !lun_info ||
!(phba->cfg_fof))
return;
if (!list_empty(&lun_info->listentry))
list_del(&lun_info->listentry);
mempool_free(lun_info, phba->device_data_mem_pool);
return;
}
/**
* __lpfc_get_device_data - returns the device data for the specified lun
* @phba: Pointer to host bus adapter structure.
* @list: Point to list to search.
* @vport_wwpn: Pointer to vport's wwpn information
* @target_wwpn: Pointer to target's wwpn information
* @lun: Lun on target
*
* This routine searches the list passed for the specified lun's device data.
* This function does not hold locks, it is the responsibility of the caller
* to ensure the proper lock is held before calling the function.
*
* Return codes:
* NULL - Error
* Pointer to lpfc_device_data - Success
**/
struct lpfc_device_data*
__lpfc_get_device_data(struct lpfc_hba *phba, struct list_head *list,
struct lpfc_name *vport_wwpn,
struct lpfc_name *target_wwpn, uint64_t lun)
{
struct lpfc_device_data *lun_info;
if (unlikely(!phba) || !list || !vport_wwpn || !target_wwpn ||
!phba->cfg_fof)
return NULL;
/* Check to see if the lun is already enabled for OAS. */
list_for_each_entry(lun_info, list, listentry) {
if ((memcmp(&lun_info->device_id.vport_wwpn, vport_wwpn,
sizeof(struct lpfc_name)) == 0) &&
(memcmp(&lun_info->device_id.target_wwpn, target_wwpn,
sizeof(struct lpfc_name)) == 0) &&
(lun_info->device_id.lun == lun))
return lun_info;
}
return NULL;
}
/**
* lpfc_find_next_oas_lun - searches for the next oas lun
* @phba: Pointer to host bus adapter structure.
* @vport_wwpn: Pointer to vport's wwpn information
* @target_wwpn: Pointer to target's wwpn information
* @starting_lun: Pointer to the lun to start searching for
* @found_vport_wwpn: Pointer to the found lun's vport wwpn information
* @found_target_wwpn: Pointer to the found lun's target wwpn information
* @found_lun: Pointer to the found lun.
* @found_lun_status: Pointer to status of the found lun.
* @found_lun_pri: Pointer to priority of the found lun.
*
* This routine searches the luns list for the specified lun
* or the first lun for the vport/target. If the vport wwpn contains
* a zero value then a specific vport is not specified. In this case
* any vport which contains the lun will be considered a match. If the
* target wwpn contains a zero value then a specific target is not specified.
* In this case any target which contains the lun will be considered a
* match. If the lun is found, the lun, vport wwpn, target wwpn and lun status
* are returned. The function will also return the next lun if available.
* If the next lun is not found, starting_lun parameter will be set to
* NO_MORE_OAS_LUN.
*
* Return codes:
* non-0 - Error
* 0 - Success
**/
bool
lpfc_find_next_oas_lun(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn,
struct lpfc_name *target_wwpn, uint64_t *starting_lun,
struct lpfc_name *found_vport_wwpn,
struct lpfc_name *found_target_wwpn,
uint64_t *found_lun,
uint32_t *found_lun_status,
uint32_t *found_lun_pri)
{
unsigned long flags;
struct lpfc_device_data *lun_info;
struct lpfc_device_id *device_id;
uint64_t lun;
bool found = false;
if (unlikely(!phba) || !vport_wwpn || !target_wwpn ||
!starting_lun || !found_vport_wwpn ||
!found_target_wwpn || !found_lun || !found_lun_status ||
(*starting_lun == NO_MORE_OAS_LUN) ||
!phba->cfg_fof)
return false;
lun = *starting_lun;
*found_lun = NO_MORE_OAS_LUN;
*starting_lun = NO_MORE_OAS_LUN;
/* Search for lun or the lun closet in value */
spin_lock_irqsave(&phba->devicelock, flags);
list_for_each_entry(lun_info, &phba->luns, listentry) {
if (((wwn_to_u64(vport_wwpn->u.wwn) == 0) ||
(memcmp(&lun_info->device_id.vport_wwpn, vport_wwpn,
sizeof(struct lpfc_name)) == 0)) &&
((wwn_to_u64(target_wwpn->u.wwn) == 0) ||
(memcmp(&lun_info->device_id.target_wwpn, target_wwpn,
sizeof(struct lpfc_name)) == 0)) &&
(lun_info->oas_enabled)) {
device_id = &lun_info->device_id;
if ((!found) &&
((lun == FIND_FIRST_OAS_LUN) ||
(device_id->lun == lun))) {
*found_lun = device_id->lun;
memcpy(found_vport_wwpn,
&device_id->vport_wwpn,
sizeof(struct lpfc_name));
memcpy(found_target_wwpn,
&device_id->target_wwpn,
sizeof(struct lpfc_name));
if (lun_info->available)
*found_lun_status =
OAS_LUN_STATUS_EXISTS;
else
*found_lun_status = 0;
*found_lun_pri = lun_info->priority;
if (phba->cfg_oas_flags & OAS_FIND_ANY_VPORT)
memset(vport_wwpn, 0x0,
sizeof(struct lpfc_name));
if (phba->cfg_oas_flags & OAS_FIND_ANY_TARGET)
memset(target_wwpn, 0x0,
sizeof(struct lpfc_name));
found = true;
} else if (found) {
*starting_lun = device_id->lun;
memcpy(vport_wwpn, &device_id->vport_wwpn,
sizeof(struct lpfc_name));
memcpy(target_wwpn, &device_id->target_wwpn,
sizeof(struct lpfc_name));
break;
}
}
}
spin_unlock_irqrestore(&phba->devicelock, flags);
return found;
}
/**
* lpfc_enable_oas_lun - enables a lun for OAS operations
* @phba: Pointer to host bus adapter structure.
* @vport_wwpn: Pointer to vport's wwpn information
* @target_wwpn: Pointer to target's wwpn information
* @lun: Lun
* @pri: Priority
*
* This routine enables a lun for oas operations. The routines does so by
* doing the following :
*
* 1) Checks to see if the device data for the lun has been created.
* 2) If found, sets the OAS enabled flag if not set and returns.
* 3) Otherwise, creates a device data structure.
* 4) If successfully created, indicates the device data is for an OAS lun,
* indicates the lun is not available and add to the list of luns.
*
* Return codes:
* false - Error
* true - Success
**/
bool
lpfc_enable_oas_lun(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn,
struct lpfc_name *target_wwpn, uint64_t lun, uint8_t pri)
{
struct lpfc_device_data *lun_info;
unsigned long flags;
if (unlikely(!phba) || !vport_wwpn || !target_wwpn ||
!phba->cfg_fof)
return false;
spin_lock_irqsave(&phba->devicelock, flags);
/* Check to see if the device data for the lun has been created */
lun_info = __lpfc_get_device_data(phba, &phba->luns, vport_wwpn,
target_wwpn, lun);
if (lun_info) {
if (!lun_info->oas_enabled)
lun_info->oas_enabled = true;
lun_info->priority = pri;
spin_unlock_irqrestore(&phba->devicelock, flags);
return true;
}
/* Create an lun info structure and add to list of luns */
lun_info = lpfc_create_device_data(phba, vport_wwpn, target_wwpn, lun,
pri, true);
if (lun_info) {
lun_info->oas_enabled = true;
lun_info->priority = pri;
lun_info->available = false;
list_add_tail(&lun_info->listentry, &phba->luns);
spin_unlock_irqrestore(&phba->devicelock, flags);
return true;
}
spin_unlock_irqrestore(&phba->devicelock, flags);
return false;
}
/**
* lpfc_disable_oas_lun - disables a lun for OAS operations
* @phba: Pointer to host bus adapter structure.
* @vport_wwpn: Pointer to vport's wwpn information
* @target_wwpn: Pointer to target's wwpn information
* @lun: Lun
* @pri: Priority
*
* This routine disables a lun for oas operations. The routines does so by
* doing the following :
*
* 1) Checks to see if the device data for the lun is created.
* 2) If present, clears the flag indicating this lun is for OAS.
* 3) If the lun is not available by the system, the device data is
* freed.
*
* Return codes:
* false - Error
* true - Success
**/
bool
lpfc_disable_oas_lun(struct lpfc_hba *phba, struct lpfc_name *vport_wwpn,
struct lpfc_name *target_wwpn, uint64_t lun, uint8_t pri)
{
struct lpfc_device_data *lun_info;
unsigned long flags;
if (unlikely(!phba) || !vport_wwpn || !target_wwpn ||
!phba->cfg_fof)
return false;
spin_lock_irqsave(&phba->devicelock, flags);
/* Check to see if the lun is available. */
lun_info = __lpfc_get_device_data(phba,
&phba->luns, vport_wwpn,
target_wwpn, lun);
if (lun_info) {
lun_info->oas_enabled = false;
lun_info->priority = pri;
if (!lun_info->available)
lpfc_delete_device_data(phba, lun_info);
spin_unlock_irqrestore(&phba->devicelock, flags);
return true;
}
spin_unlock_irqrestore(&phba->devicelock, flags);
return false;
}
static int
lpfc_no_command(struct Scsi_Host *shost, struct scsi_cmnd *cmnd)
{
return SCSI_MLQUEUE_HOST_BUSY;
}
static int
lpfc_no_slave(struct scsi_device *sdev)
{
return -ENODEV;
}
struct scsi_host_template lpfc_template_nvme = {
.module = THIS_MODULE,
.name = LPFC_DRIVER_NAME,
.proc_name = LPFC_DRIVER_NAME,
.info = lpfc_info,
.queuecommand = lpfc_no_command,
.slave_alloc = lpfc_no_slave,
.slave_configure = lpfc_no_slave,
.scan_finished = lpfc_scan_finished,
.this_id = -1,
.sg_tablesize = 1,
.cmd_per_lun = 1,
.shost_groups = lpfc_hba_groups,
.max_sectors = 0xFFFFFFFF,
.vendor_id = LPFC_NL_VENDOR_ID,
.track_queue_depth = 0,
};
struct scsi_host_template lpfc_template = {
.module = THIS_MODULE,
.name = LPFC_DRIVER_NAME,
.proc_name = LPFC_DRIVER_NAME,
.info = lpfc_info,
.queuecommand = lpfc_queuecommand,
.eh_timed_out = fc_eh_timed_out,
.eh_should_retry_cmd = fc_eh_should_retry_cmd,
.eh_abort_handler = lpfc_abort_handler,
.eh_device_reset_handler = lpfc_device_reset_handler,
.eh_target_reset_handler = lpfc_target_reset_handler,
.eh_host_reset_handler = lpfc_host_reset_handler,
.slave_alloc = lpfc_slave_alloc,
.slave_configure = lpfc_slave_configure,
.slave_destroy = lpfc_slave_destroy,
.scan_finished = lpfc_scan_finished,
.this_id = -1,
.sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT,
.cmd_per_lun = LPFC_CMD_PER_LUN,
.shost_groups = lpfc_hba_groups,
.max_sectors = 0xFFFFFFFF,
.vendor_id = LPFC_NL_VENDOR_ID,
.change_queue_depth = scsi_change_queue_depth,
.track_queue_depth = 1,
};