linux/arch/powerpc/kernel/prom_init.c
Sukadev Bhattiprolu 687da8fce1 powerpc/prom: Increase minimum RMA size to 512MB
When booting very large systems with a large initrd, we run out of
space early in boot for either RTAS or the flattened device tree (FDT).
Boot fails with messages like:

	Could not allocate memory for RTAS
or
	No memory for flatten_device_tree (no room)

Increasing the minimum RMA size to 512MB fixes the problem. This
should not have an impact on smaller LPARs (with 256MB memory),
as the firmware will cap the RMA to the memory assigned to the LPAR.

Fix is based on input/discussions with Michael Ellerman. Thanks to
Praveen K. Pandey for testing on a large system.

Reported-by: Praveen K. Pandey <preveen.pandey@in.ibm.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-04 13:27:59 +10:00

3260 lines
84 KiB
C

/*
* Procedures for interfacing to Open Firmware.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG_PROM
#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/opal.h>
#include <asm/asm-prototypes.h>
#include <linux/linux_logo.h>
/*
* Eventually bump that one up
*/
#define DEVTREE_CHUNK_SIZE 0x100000
/*
* This is the size of the local memory reserve map that gets copied
* into the boot params passed to the kernel. That size is totally
* flexible as the kernel just reads the list until it encounters an
* entry with size 0, so it can be changed without breaking binary
* compatibility
*/
#define MEM_RESERVE_MAP_SIZE 8
/*
* prom_init() is called very early on, before the kernel text
* and data have been mapped to KERNELBASE. At this point the code
* is running at whatever address it has been loaded at.
* On ppc32 we compile with -mrelocatable, which means that references
* to extern and static variables get relocated automatically.
* ppc64 objects are always relocatable, we just need to relocate the
* TOC.
*
* Because OF may have mapped I/O devices into the area starting at
* KERNELBASE, particularly on CHRP machines, we can't safely call
* OF once the kernel has been mapped to KERNELBASE. Therefore all
* OF calls must be done within prom_init().
*
* ADDR is used in calls to call_prom. The 4th and following
* arguments to call_prom should be 32-bit values.
* On ppc64, 64 bit values are truncated to 32 bits (and
* fortunately don't get interpreted as two arguments).
*/
#define ADDR(x) (u32)(unsigned long)(x)
#ifdef CONFIG_PPC64
#define OF_WORKAROUNDS 0
#else
#define OF_WORKAROUNDS of_workarounds
int of_workarounds;
#endif
#define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */
#define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */
#define PROM_BUG() do { \
prom_printf("kernel BUG at %s line 0x%x!\n", \
__FILE__, __LINE__); \
__asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
} while (0)
#ifdef DEBUG_PROM
#define prom_debug(x...) prom_printf(x)
#else
#define prom_debug(x...)
#endif
typedef u32 prom_arg_t;
struct prom_args {
__be32 service;
__be32 nargs;
__be32 nret;
__be32 args[10];
};
struct prom_t {
ihandle root;
phandle chosen;
int cpu;
ihandle stdout;
ihandle mmumap;
ihandle memory;
};
struct mem_map_entry {
__be64 base;
__be64 size;
};
typedef __be32 cell_t;
extern void __start(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7, unsigned long r8,
unsigned long r9);
#ifdef CONFIG_PPC64
extern int enter_prom(struct prom_args *args, unsigned long entry);
#else
static inline int enter_prom(struct prom_args *args, unsigned long entry)
{
return ((int (*)(struct prom_args *))entry)(args);
}
#endif
extern void copy_and_flush(unsigned long dest, unsigned long src,
unsigned long size, unsigned long offset);
/* prom structure */
static struct prom_t __initdata prom;
static unsigned long prom_entry __initdata;
#define PROM_SCRATCH_SIZE 256
static char __initdata of_stdout_device[256];
static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
static unsigned long __initdata dt_header_start;
static unsigned long __initdata dt_struct_start, dt_struct_end;
static unsigned long __initdata dt_string_start, dt_string_end;
static unsigned long __initdata prom_initrd_start, prom_initrd_end;
#ifdef CONFIG_PPC64
static int __initdata prom_iommu_force_on;
static int __initdata prom_iommu_off;
static unsigned long __initdata prom_tce_alloc_start;
static unsigned long __initdata prom_tce_alloc_end;
#endif
static bool __initdata prom_radix_disable;
struct platform_support {
bool hash_mmu;
bool radix_mmu;
bool radix_gtse;
};
/* Platforms codes are now obsolete in the kernel. Now only used within this
* file and ultimately gone too. Feel free to change them if you need, they
* are not shared with anything outside of this file anymore
*/
#define PLATFORM_PSERIES 0x0100
#define PLATFORM_PSERIES_LPAR 0x0101
#define PLATFORM_LPAR 0x0001
#define PLATFORM_POWERMAC 0x0400
#define PLATFORM_GENERIC 0x0500
#define PLATFORM_OPAL 0x0600
static int __initdata of_platform;
static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
static unsigned long __initdata prom_memory_limit;
static unsigned long __initdata alloc_top;
static unsigned long __initdata alloc_top_high;
static unsigned long __initdata alloc_bottom;
static unsigned long __initdata rmo_top;
static unsigned long __initdata ram_top;
static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
static int __initdata mem_reserve_cnt;
static cell_t __initdata regbuf[1024];
static bool rtas_has_query_cpu_stopped;
/*
* Error results ... some OF calls will return "-1" on error, some
* will return 0, some will return either. To simplify, here are
* macros to use with any ihandle or phandle return value to check if
* it is valid
*/
#define PROM_ERROR (-1u)
#define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
#define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
/* This is the one and *ONLY* place where we actually call open
* firmware.
*/
static int __init call_prom(const char *service, int nargs, int nret, ...)
{
int i;
struct prom_args args;
va_list list;
args.service = cpu_to_be32(ADDR(service));
args.nargs = cpu_to_be32(nargs);
args.nret = cpu_to_be32(nret);
va_start(list, nret);
for (i = 0; i < nargs; i++)
args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t));
va_end(list);
for (i = 0; i < nret; i++)
args.args[nargs+i] = 0;
if (enter_prom(&args, prom_entry) < 0)
return PROM_ERROR;
return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0;
}
static int __init call_prom_ret(const char *service, int nargs, int nret,
prom_arg_t *rets, ...)
{
int i;
struct prom_args args;
va_list list;
args.service = cpu_to_be32(ADDR(service));
args.nargs = cpu_to_be32(nargs);
args.nret = cpu_to_be32(nret);
va_start(list, rets);
for (i = 0; i < nargs; i++)
args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t));
va_end(list);
for (i = 0; i < nret; i++)
args.args[nargs+i] = 0;
if (enter_prom(&args, prom_entry) < 0)
return PROM_ERROR;
if (rets != NULL)
for (i = 1; i < nret; ++i)
rets[i-1] = be32_to_cpu(args.args[nargs+i]);
return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0;
}
static void __init prom_print(const char *msg)
{
const char *p, *q;
if (prom.stdout == 0)
return;
for (p = msg; *p != 0; p = q) {
for (q = p; *q != 0 && *q != '\n'; ++q)
;
if (q > p)
call_prom("write", 3, 1, prom.stdout, p, q - p);
if (*q == 0)
break;
++q;
call_prom("write", 3, 1, prom.stdout, ADDR("\r\n"), 2);
}
}
static void __init prom_print_hex(unsigned long val)
{
int i, nibbles = sizeof(val)*2;
char buf[sizeof(val)*2+1];
for (i = nibbles-1; i >= 0; i--) {
buf[i] = (val & 0xf) + '0';
if (buf[i] > '9')
buf[i] += ('a'-'0'-10);
val >>= 4;
}
buf[nibbles] = '\0';
call_prom("write", 3, 1, prom.stdout, buf, nibbles);
}
/* max number of decimal digits in an unsigned long */
#define UL_DIGITS 21
static void __init prom_print_dec(unsigned long val)
{
int i, size;
char buf[UL_DIGITS+1];
for (i = UL_DIGITS-1; i >= 0; i--) {
buf[i] = (val % 10) + '0';
val = val/10;
if (val == 0)
break;
}
/* shift stuff down */
size = UL_DIGITS - i;
call_prom("write", 3, 1, prom.stdout, buf+i, size);
}
static void __init prom_printf(const char *format, ...)
{
const char *p, *q, *s;
va_list args;
unsigned long v;
long vs;
va_start(args, format);
for (p = format; *p != 0; p = q) {
for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
;
if (q > p)
call_prom("write", 3, 1, prom.stdout, p, q - p);
if (*q == 0)
break;
if (*q == '\n') {
++q;
call_prom("write", 3, 1, prom.stdout,
ADDR("\r\n"), 2);
continue;
}
++q;
if (*q == 0)
break;
switch (*q) {
case 's':
++q;
s = va_arg(args, const char *);
prom_print(s);
break;
case 'x':
++q;
v = va_arg(args, unsigned long);
prom_print_hex(v);
break;
case 'd':
++q;
vs = va_arg(args, int);
if (vs < 0) {
prom_print("-");
vs = -vs;
}
prom_print_dec(vs);
break;
case 'l':
++q;
if (*q == 0)
break;
else if (*q == 'x') {
++q;
v = va_arg(args, unsigned long);
prom_print_hex(v);
} else if (*q == 'u') { /* '%lu' */
++q;
v = va_arg(args, unsigned long);
prom_print_dec(v);
} else if (*q == 'd') { /* %ld */
++q;
vs = va_arg(args, long);
if (vs < 0) {
prom_print("-");
vs = -vs;
}
prom_print_dec(vs);
}
break;
}
}
va_end(args);
}
static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
unsigned long align)
{
if (align == 0 && (OF_WORKAROUNDS & OF_WA_CLAIM)) {
/*
* Old OF requires we claim physical and virtual separately
* and then map explicitly (assuming virtual mode)
*/
int ret;
prom_arg_t result;
ret = call_prom_ret("call-method", 5, 2, &result,
ADDR("claim"), prom.memory,
align, size, virt);
if (ret != 0 || result == -1)
return -1;
ret = call_prom_ret("call-method", 5, 2, &result,
ADDR("claim"), prom.mmumap,
align, size, virt);
if (ret != 0) {
call_prom("call-method", 4, 1, ADDR("release"),
prom.memory, size, virt);
return -1;
}
/* the 0x12 is M (coherence) + PP == read/write */
call_prom("call-method", 6, 1,
ADDR("map"), prom.mmumap, 0x12, size, virt, virt);
return virt;
}
return call_prom("claim", 3, 1, (prom_arg_t)virt, (prom_arg_t)size,
(prom_arg_t)align);
}
static void __init __attribute__((noreturn)) prom_panic(const char *reason)
{
prom_print(reason);
/* Do not call exit because it clears the screen on pmac
* it also causes some sort of double-fault on early pmacs */
if (of_platform == PLATFORM_POWERMAC)
asm("trap\n");
/* ToDo: should put up an SRC here on pSeries */
call_prom("exit", 0, 0);
for (;;) /* should never get here */
;
}
static int __init prom_next_node(phandle *nodep)
{
phandle node;
if ((node = *nodep) != 0
&& (*nodep = call_prom("child", 1, 1, node)) != 0)
return 1;
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
return 1;
for (;;) {
if ((node = call_prom("parent", 1, 1, node)) == 0)
return 0;
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
return 1;
}
}
static inline int prom_getprop(phandle node, const char *pname,
void *value, size_t valuelen)
{
return call_prom("getprop", 4, 1, node, ADDR(pname),
(u32)(unsigned long) value, (u32) valuelen);
}
static inline int prom_getproplen(phandle node, const char *pname)
{
return call_prom("getproplen", 2, 1, node, ADDR(pname));
}
static void add_string(char **str, const char *q)
{
char *p = *str;
while (*q)
*p++ = *q++;
*p++ = ' ';
*str = p;
}
static char *tohex(unsigned int x)
{
static char digits[] = "0123456789abcdef";
static char result[9];
int i;
result[8] = 0;
i = 8;
do {
--i;
result[i] = digits[x & 0xf];
x >>= 4;
} while (x != 0 && i > 0);
return &result[i];
}
static int __init prom_setprop(phandle node, const char *nodename,
const char *pname, void *value, size_t valuelen)
{
char cmd[256], *p;
if (!(OF_WORKAROUNDS & OF_WA_LONGTRAIL))
return call_prom("setprop", 4, 1, node, ADDR(pname),
(u32)(unsigned long) value, (u32) valuelen);
/* gah... setprop doesn't work on longtrail, have to use interpret */
p = cmd;
add_string(&p, "dev");
add_string(&p, nodename);
add_string(&p, tohex((u32)(unsigned long) value));
add_string(&p, tohex(valuelen));
add_string(&p, tohex(ADDR(pname)));
add_string(&p, tohex(strlen(pname)));
add_string(&p, "property");
*p = 0;
return call_prom("interpret", 1, 1, (u32)(unsigned long) cmd);
}
/* We can't use the standard versions because of relocation headaches. */
#define isxdigit(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'f') \
|| ('A' <= (c) && (c) <= 'F'))
#define isdigit(c) ('0' <= (c) && (c) <= '9')
#define islower(c) ('a' <= (c) && (c) <= 'z')
#define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
static unsigned long prom_strtoul(const char *cp, const char **endp)
{
unsigned long result = 0, base = 10, value;
if (*cp == '0') {
base = 8;
cp++;
if (toupper(*cp) == 'X') {
cp++;
base = 16;
}
}
while (isxdigit(*cp) &&
(value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
result = result * base + value;
cp++;
}
if (endp)
*endp = cp;
return result;
}
static unsigned long prom_memparse(const char *ptr, const char **retptr)
{
unsigned long ret = prom_strtoul(ptr, retptr);
int shift = 0;
/*
* We can't use a switch here because GCC *may* generate a
* jump table which won't work, because we're not running at
* the address we're linked at.
*/
if ('G' == **retptr || 'g' == **retptr)
shift = 30;
if ('M' == **retptr || 'm' == **retptr)
shift = 20;
if ('K' == **retptr || 'k' == **retptr)
shift = 10;
if (shift) {
ret <<= shift;
(*retptr)++;
}
return ret;
}
/*
* Early parsing of the command line passed to the kernel, used for
* "mem=x" and the options that affect the iommu
*/
static void __init early_cmdline_parse(void)
{
const char *opt;
char *p;
int l = 0;
prom_cmd_line[0] = 0;
p = prom_cmd_line;
if ((long)prom.chosen > 0)
l = prom_getprop(prom.chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
#ifdef CONFIG_CMDLINE
if (l <= 0 || p[0] == '\0') /* dbl check */
strlcpy(prom_cmd_line,
CONFIG_CMDLINE, sizeof(prom_cmd_line));
#endif /* CONFIG_CMDLINE */
prom_printf("command line: %s\n", prom_cmd_line);
#ifdef CONFIG_PPC64
opt = strstr(prom_cmd_line, "iommu=");
if (opt) {
prom_printf("iommu opt is: %s\n", opt);
opt += 6;
while (*opt && *opt == ' ')
opt++;
if (!strncmp(opt, "off", 3))
prom_iommu_off = 1;
else if (!strncmp(opt, "force", 5))
prom_iommu_force_on = 1;
}
#endif
opt = strstr(prom_cmd_line, "mem=");
if (opt) {
opt += 4;
prom_memory_limit = prom_memparse(opt, (const char **)&opt);
#ifdef CONFIG_PPC64
/* Align to 16 MB == size of ppc64 large page */
prom_memory_limit = ALIGN(prom_memory_limit, 0x1000000);
#endif
}
opt = strstr(prom_cmd_line, "disable_radix");
if (opt) {
prom_debug("Radix disabled from cmdline\n");
prom_radix_disable = true;
}
}
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* The architecture vector has an array of PVR mask/value pairs,
* followed by # option vectors - 1, followed by the option vectors.
*
* See prom.h for the definition of the bits specified in the
* architecture vector.
*/
/* Firmware expects the value to be n - 1, where n is the # of vectors */
#define NUM_VECTORS(n) ((n) - 1)
/*
* Firmware expects 1 + n - 2, where n is the length of the option vector in
* bytes. The 1 accounts for the length byte itself, the - 2 .. ?
*/
#define VECTOR_LENGTH(n) (1 + (n) - 2)
struct option_vector1 {
u8 byte1;
u8 arch_versions;
u8 arch_versions3;
} __packed;
struct option_vector2 {
u8 byte1;
__be16 reserved;
__be32 real_base;
__be32 real_size;
__be32 virt_base;
__be32 virt_size;
__be32 load_base;
__be32 min_rma;
__be32 min_load;
u8 min_rma_percent;
u8 max_pft_size;
} __packed;
struct option_vector3 {
u8 byte1;
u8 byte2;
} __packed;
struct option_vector4 {
u8 byte1;
u8 min_vp_cap;
} __packed;
struct option_vector5 {
u8 byte1;
u8 byte2;
u8 byte3;
u8 cmo;
u8 associativity;
u8 bin_opts;
u8 micro_checkpoint;
u8 reserved0;
__be32 max_cpus;
__be16 papr_level;
__be16 reserved1;
u8 platform_facilities;
u8 reserved2;
__be16 reserved3;
u8 subprocessors;
u8 byte22;
u8 intarch;
u8 mmu;
u8 hash_ext;
u8 radix_ext;
} __packed;
struct option_vector6 {
u8 reserved;
u8 secondary_pteg;
u8 os_name;
} __packed;
struct ibm_arch_vec {
struct { u32 mask, val; } pvrs[12];
u8 num_vectors;
u8 vec1_len;
struct option_vector1 vec1;
u8 vec2_len;
struct option_vector2 vec2;
u8 vec3_len;
struct option_vector3 vec3;
u8 vec4_len;
struct option_vector4 vec4;
u8 vec5_len;
struct option_vector5 vec5;
u8 vec6_len;
struct option_vector6 vec6;
} __packed;
struct ibm_arch_vec __cacheline_aligned ibm_architecture_vec = {
.pvrs = {
{
.mask = cpu_to_be32(0xfffe0000), /* POWER5/POWER5+ */
.val = cpu_to_be32(0x003a0000),
},
{
.mask = cpu_to_be32(0xffff0000), /* POWER6 */
.val = cpu_to_be32(0x003e0000),
},
{
.mask = cpu_to_be32(0xffff0000), /* POWER7 */
.val = cpu_to_be32(0x003f0000),
},
{
.mask = cpu_to_be32(0xffff0000), /* POWER8E */
.val = cpu_to_be32(0x004b0000),
},
{
.mask = cpu_to_be32(0xffff0000), /* POWER8NVL */
.val = cpu_to_be32(0x004c0000),
},
{
.mask = cpu_to_be32(0xffff0000), /* POWER8 */
.val = cpu_to_be32(0x004d0000),
},
{
.mask = cpu_to_be32(0xffff0000), /* POWER9 */
.val = cpu_to_be32(0x004e0000),
},
{
.mask = cpu_to_be32(0xffffffff), /* all 3.00-compliant */
.val = cpu_to_be32(0x0f000005),
},
{
.mask = cpu_to_be32(0xffffffff), /* all 2.07-compliant */
.val = cpu_to_be32(0x0f000004),
},
{
.mask = cpu_to_be32(0xffffffff), /* all 2.06-compliant */
.val = cpu_to_be32(0x0f000003),
},
{
.mask = cpu_to_be32(0xffffffff), /* all 2.05-compliant */
.val = cpu_to_be32(0x0f000002),
},
{
.mask = cpu_to_be32(0xfffffffe), /* all 2.04-compliant and earlier */
.val = cpu_to_be32(0x0f000001),
},
},
.num_vectors = NUM_VECTORS(6),
.vec1_len = VECTOR_LENGTH(sizeof(struct option_vector1)),
.vec1 = {
.byte1 = 0,
.arch_versions = OV1_PPC_2_00 | OV1_PPC_2_01 | OV1_PPC_2_02 | OV1_PPC_2_03 |
OV1_PPC_2_04 | OV1_PPC_2_05 | OV1_PPC_2_06 | OV1_PPC_2_07,
.arch_versions3 = OV1_PPC_3_00,
},
.vec2_len = VECTOR_LENGTH(sizeof(struct option_vector2)),
/* option vector 2: Open Firmware options supported */
.vec2 = {
.byte1 = OV2_REAL_MODE,
.reserved = 0,
.real_base = cpu_to_be32(0xffffffff),
.real_size = cpu_to_be32(0xffffffff),
.virt_base = cpu_to_be32(0xffffffff),
.virt_size = cpu_to_be32(0xffffffff),
.load_base = cpu_to_be32(0xffffffff),
.min_rma = cpu_to_be32(512), /* 512MB min RMA */
.min_load = cpu_to_be32(0xffffffff), /* full client load */
.min_rma_percent = 0, /* min RMA percentage of total RAM */
.max_pft_size = 48, /* max log_2(hash table size) */
},
.vec3_len = VECTOR_LENGTH(sizeof(struct option_vector3)),
/* option vector 3: processor options supported */
.vec3 = {
.byte1 = 0, /* don't ignore, don't halt */
.byte2 = OV3_FP | OV3_VMX | OV3_DFP,
},
.vec4_len = VECTOR_LENGTH(sizeof(struct option_vector4)),
/* option vector 4: IBM PAPR implementation */
.vec4 = {
.byte1 = 0, /* don't halt */
.min_vp_cap = OV4_MIN_ENT_CAP, /* minimum VP entitled capacity */
},
.vec5_len = VECTOR_LENGTH(sizeof(struct option_vector5)),
/* option vector 5: PAPR/OF options */
.vec5 = {
.byte1 = 0, /* don't ignore, don't halt */
.byte2 = OV5_FEAT(OV5_LPAR) | OV5_FEAT(OV5_SPLPAR) | OV5_FEAT(OV5_LARGE_PAGES) |
OV5_FEAT(OV5_DRCONF_MEMORY) | OV5_FEAT(OV5_DONATE_DEDICATE_CPU) |
#ifdef CONFIG_PCI_MSI
/* PCIe/MSI support. Without MSI full PCIe is not supported */
OV5_FEAT(OV5_MSI),
#else
0,
#endif
.byte3 = 0,
.cmo =
#ifdef CONFIG_PPC_SMLPAR
OV5_FEAT(OV5_CMO) | OV5_FEAT(OV5_XCMO),
#else
0,
#endif
.associativity = OV5_FEAT(OV5_TYPE1_AFFINITY) | OV5_FEAT(OV5_PRRN),
.bin_opts = OV5_FEAT(OV5_RESIZE_HPT) | OV5_FEAT(OV5_HP_EVT),
.micro_checkpoint = 0,
.reserved0 = 0,
.max_cpus = cpu_to_be32(NR_CPUS), /* number of cores supported */
.papr_level = 0,
.reserved1 = 0,
.platform_facilities = OV5_FEAT(OV5_PFO_HW_RNG) | OV5_FEAT(OV5_PFO_HW_ENCR) | OV5_FEAT(OV5_PFO_HW_842),
.reserved2 = 0,
.reserved3 = 0,
.subprocessors = 1,
.intarch = 0,
.mmu = 0,
.hash_ext = 0,
.radix_ext = 0,
},
/* option vector 6: IBM PAPR hints */
.vec6_len = VECTOR_LENGTH(sizeof(struct option_vector6)),
.vec6 = {
.reserved = 0,
.secondary_pteg = 0,
.os_name = OV6_LINUX,
},
};
/* Old method - ELF header with PT_NOTE sections only works on BE */
#ifdef __BIG_ENDIAN__
static struct fake_elf {
Elf32_Ehdr elfhdr;
Elf32_Phdr phdr[2];
struct chrpnote {
u32 namesz;
u32 descsz;
u32 type;
char name[8]; /* "PowerPC" */
struct chrpdesc {
u32 real_mode;
u32 real_base;
u32 real_size;
u32 virt_base;
u32 virt_size;
u32 load_base;
} chrpdesc;
} chrpnote;
struct rpanote {
u32 namesz;
u32 descsz;
u32 type;
char name[24]; /* "IBM,RPA-Client-Config" */
struct rpadesc {
u32 lpar_affinity;
u32 min_rmo_size;
u32 min_rmo_percent;
u32 max_pft_size;
u32 splpar;
u32 min_load;
u32 new_mem_def;
u32 ignore_me;
} rpadesc;
} rpanote;
} fake_elf = {
.elfhdr = {
.e_ident = { 0x7f, 'E', 'L', 'F',
ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
.e_type = ET_EXEC, /* yeah right */
.e_machine = EM_PPC,
.e_version = EV_CURRENT,
.e_phoff = offsetof(struct fake_elf, phdr),
.e_phentsize = sizeof(Elf32_Phdr),
.e_phnum = 2
},
.phdr = {
[0] = {
.p_type = PT_NOTE,
.p_offset = offsetof(struct fake_elf, chrpnote),
.p_filesz = sizeof(struct chrpnote)
}, [1] = {
.p_type = PT_NOTE,
.p_offset = offsetof(struct fake_elf, rpanote),
.p_filesz = sizeof(struct rpanote)
}
},
.chrpnote = {
.namesz = sizeof("PowerPC"),
.descsz = sizeof(struct chrpdesc),
.type = 0x1275,
.name = "PowerPC",
.chrpdesc = {
.real_mode = ~0U, /* ~0 means "don't care" */
.real_base = ~0U,
.real_size = ~0U,
.virt_base = ~0U,
.virt_size = ~0U,
.load_base = ~0U
},
},
.rpanote = {
.namesz = sizeof("IBM,RPA-Client-Config"),
.descsz = sizeof(struct rpadesc),
.type = 0x12759999,
.name = "IBM,RPA-Client-Config",
.rpadesc = {
.lpar_affinity = 0,
.min_rmo_size = 64, /* in megabytes */
.min_rmo_percent = 0,
.max_pft_size = 48, /* 2^48 bytes max PFT size */
.splpar = 1,
.min_load = ~0U,
.new_mem_def = 0
}
}
};
#endif /* __BIG_ENDIAN__ */
static int __init prom_count_smt_threads(void)
{
phandle node;
char type[64];
unsigned int plen;
/* Pick up th first CPU node we can find */
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, "cpu"))
continue;
/*
* There is an entry for each smt thread, each entry being
* 4 bytes long. All cpus should have the same number of
* smt threads, so return after finding the first.
*/
plen = prom_getproplen(node, "ibm,ppc-interrupt-server#s");
if (plen == PROM_ERROR)
break;
plen >>= 2;
prom_debug("Found %lu smt threads per core\n", (unsigned long)plen);
/* Sanity check */
if (plen < 1 || plen > 64) {
prom_printf("Threads per core %lu out of bounds, assuming 1\n",
(unsigned long)plen);
return 1;
}
return plen;
}
prom_debug("No threads found, assuming 1 per core\n");
return 1;
}
static void __init prom_parse_mmu_model(u8 val,
struct platform_support *support)
{
switch (val) {
case OV5_FEAT(OV5_MMU_DYNAMIC):
case OV5_FEAT(OV5_MMU_EITHER): /* Either Available */
prom_debug("MMU - either supported\n");
support->radix_mmu = !prom_radix_disable;
support->hash_mmu = true;
break;
case OV5_FEAT(OV5_MMU_RADIX): /* Only Radix */
prom_debug("MMU - radix only\n");
if (prom_radix_disable) {
/*
* If we __have__ to do radix, we're better off ignoring
* the command line rather than not booting.
*/
prom_printf("WARNING: Ignoring cmdline option disable_radix\n");
}
support->radix_mmu = true;
break;
case OV5_FEAT(OV5_MMU_HASH):
prom_debug("MMU - hash only\n");
support->hash_mmu = true;
break;
default:
prom_debug("Unknown mmu support option: 0x%x\n", val);
break;
}
}
static void __init prom_parse_platform_support(u8 index, u8 val,
struct platform_support *support)
{
switch (index) {
case OV5_INDX(OV5_MMU_SUPPORT): /* MMU Model */
prom_parse_mmu_model(val & OV5_FEAT(OV5_MMU_SUPPORT), support);
break;
case OV5_INDX(OV5_RADIX_GTSE): /* Radix Extensions */
if (val & OV5_FEAT(OV5_RADIX_GTSE)) {
prom_debug("Radix - GTSE supported\n");
support->radix_gtse = true;
}
break;
}
}
static void __init prom_check_platform_support(void)
{
struct platform_support supported = {
.hash_mmu = false,
.radix_mmu = false,
.radix_gtse = false
};
int prop_len = prom_getproplen(prom.chosen,
"ibm,arch-vec-5-platform-support");
if (prop_len > 1) {
int i;
u8 vec[prop_len];
prom_debug("Found ibm,arch-vec-5-platform-support, len: %d\n",
prop_len);
prom_getprop(prom.chosen, "ibm,arch-vec-5-platform-support",
&vec, sizeof(vec));
for (i = 0; i < prop_len; i += 2) {
prom_debug("%d: index = 0x%x val = 0x%x\n", i / 2
, vec[i]
, vec[i + 1]);
prom_parse_platform_support(vec[i], vec[i + 1],
&supported);
}
}
if (supported.radix_mmu && supported.radix_gtse) {
/* Radix preferred - but we require GTSE for now */
prom_debug("Asking for radix with GTSE\n");
ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_RADIX);
ibm_architecture_vec.vec5.radix_ext = OV5_FEAT(OV5_RADIX_GTSE);
} else if (supported.hash_mmu) {
/* Default to hash mmu (if we can) */
prom_debug("Asking for hash\n");
ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_HASH);
} else {
/* We're probably on a legacy hypervisor */
prom_debug("Assuming legacy hash support\n");
}
}
static void __init prom_send_capabilities(void)
{
ihandle root;
prom_arg_t ret;
u32 cores;
/* Check ibm,arch-vec-5-platform-support and fixup vec5 if required */
prom_check_platform_support();
root = call_prom("open", 1, 1, ADDR("/"));
if (root != 0) {
/* We need to tell the FW about the number of cores we support.
*
* To do that, we count the number of threads on the first core
* (we assume this is the same for all cores) and use it to
* divide NR_CPUS.
*/
cores = DIV_ROUND_UP(NR_CPUS, prom_count_smt_threads());
prom_printf("Max number of cores passed to firmware: %lu (NR_CPUS = %lu)\n",
cores, NR_CPUS);
ibm_architecture_vec.vec5.max_cpus = cpu_to_be32(cores);
/* try calling the ibm,client-architecture-support method */
prom_printf("Calling ibm,client-architecture-support...");
if (call_prom_ret("call-method", 3, 2, &ret,
ADDR("ibm,client-architecture-support"),
root,
ADDR(&ibm_architecture_vec)) == 0) {
/* the call exists... */
if (ret)
prom_printf("\nWARNING: ibm,client-architecture"
"-support call FAILED!\n");
call_prom("close", 1, 0, root);
prom_printf(" done\n");
return;
}
call_prom("close", 1, 0, root);
prom_printf(" not implemented\n");
}
#ifdef __BIG_ENDIAN__
{
ihandle elfloader;
/* no ibm,client-architecture-support call, try the old way */
elfloader = call_prom("open", 1, 1,
ADDR("/packages/elf-loader"));
if (elfloader == 0) {
prom_printf("couldn't open /packages/elf-loader\n");
return;
}
call_prom("call-method", 3, 1, ADDR("process-elf-header"),
elfloader, ADDR(&fake_elf));
call_prom("close", 1, 0, elfloader);
}
#endif /* __BIG_ENDIAN__ */
}
#endif /* #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) */
/*
* Memory allocation strategy... our layout is normally:
*
* at 14Mb or more we have vmlinux, then a gap and initrd. In some
* rare cases, initrd might end up being before the kernel though.
* We assume this won't override the final kernel at 0, we have no
* provision to handle that in this version, but it should hopefully
* never happen.
*
* alloc_top is set to the top of RMO, eventually shrink down if the
* TCEs overlap
*
* alloc_bottom is set to the top of kernel/initrd
*
* from there, allocations are done this way : rtas is allocated
* topmost, and the device-tree is allocated from the bottom. We try
* to grow the device-tree allocation as we progress. If we can't,
* then we fail, we don't currently have a facility to restart
* elsewhere, but that shouldn't be necessary.
*
* Note that calls to reserve_mem have to be done explicitly, memory
* allocated with either alloc_up or alloc_down isn't automatically
* reserved.
*/
/*
* Allocates memory in the RMO upward from the kernel/initrd
*
* When align is 0, this is a special case, it means to allocate in place
* at the current location of alloc_bottom or fail (that is basically
* extending the previous allocation). Used for the device-tree flattening
*/
static unsigned long __init alloc_up(unsigned long size, unsigned long align)
{
unsigned long base = alloc_bottom;
unsigned long addr = 0;
if (align)
base = _ALIGN_UP(base, align);
prom_debug("alloc_up(%x, %x)\n", size, align);
if (ram_top == 0)
prom_panic("alloc_up() called with mem not initialized\n");
if (align)
base = _ALIGN_UP(alloc_bottom, align);
else
base = alloc_bottom;
for(; (base + size) <= alloc_top;
base = _ALIGN_UP(base + 0x100000, align)) {
prom_debug(" trying: 0x%x\n\r", base);
addr = (unsigned long)prom_claim(base, size, 0);
if (addr != PROM_ERROR && addr != 0)
break;
addr = 0;
if (align == 0)
break;
}
if (addr == 0)
return 0;
alloc_bottom = addr + size;
prom_debug(" -> %x\n", addr);
prom_debug(" alloc_bottom : %x\n", alloc_bottom);
prom_debug(" alloc_top : %x\n", alloc_top);
prom_debug(" alloc_top_hi : %x\n", alloc_top_high);
prom_debug(" rmo_top : %x\n", rmo_top);
prom_debug(" ram_top : %x\n", ram_top);
return addr;
}
/*
* Allocates memory downward, either from top of RMO, or if highmem
* is set, from the top of RAM. Note that this one doesn't handle
* failures. It does claim memory if highmem is not set.
*/
static unsigned long __init alloc_down(unsigned long size, unsigned long align,
int highmem)
{
unsigned long base, addr = 0;
prom_debug("alloc_down(%x, %x, %s)\n", size, align,
highmem ? "(high)" : "(low)");
if (ram_top == 0)
prom_panic("alloc_down() called with mem not initialized\n");
if (highmem) {
/* Carve out storage for the TCE table. */
addr = _ALIGN_DOWN(alloc_top_high - size, align);
if (addr <= alloc_bottom)
return 0;
/* Will we bump into the RMO ? If yes, check out that we
* didn't overlap existing allocations there, if we did,
* we are dead, we must be the first in town !
*/
if (addr < rmo_top) {
/* Good, we are first */
if (alloc_top == rmo_top)
alloc_top = rmo_top = addr;
else
return 0;
}
alloc_top_high = addr;
goto bail;
}
base = _ALIGN_DOWN(alloc_top - size, align);
for (; base > alloc_bottom;
base = _ALIGN_DOWN(base - 0x100000, align)) {
prom_debug(" trying: 0x%x\n\r", base);
addr = (unsigned long)prom_claim(base, size, 0);
if (addr != PROM_ERROR && addr != 0)
break;
addr = 0;
}
if (addr == 0)
return 0;
alloc_top = addr;
bail:
prom_debug(" -> %x\n", addr);
prom_debug(" alloc_bottom : %x\n", alloc_bottom);
prom_debug(" alloc_top : %x\n", alloc_top);
prom_debug(" alloc_top_hi : %x\n", alloc_top_high);
prom_debug(" rmo_top : %x\n", rmo_top);
prom_debug(" ram_top : %x\n", ram_top);
return addr;
}
/*
* Parse a "reg" cell
*/
static unsigned long __init prom_next_cell(int s, cell_t **cellp)
{
cell_t *p = *cellp;
unsigned long r = 0;
/* Ignore more than 2 cells */
while (s > sizeof(unsigned long) / 4) {
p++;
s--;
}
r = be32_to_cpu(*p++);
#ifdef CONFIG_PPC64
if (s > 1) {
r <<= 32;
r |= be32_to_cpu(*(p++));
}
#endif
*cellp = p;
return r;
}
/*
* Very dumb function for adding to the memory reserve list, but
* we don't need anything smarter at this point
*
* XXX Eventually check for collisions. They should NEVER happen.
* If problems seem to show up, it would be a good start to track
* them down.
*/
static void __init reserve_mem(u64 base, u64 size)
{
u64 top = base + size;
unsigned long cnt = mem_reserve_cnt;
if (size == 0)
return;
/* We need to always keep one empty entry so that we
* have our terminator with "size" set to 0 since we are
* dumb and just copy this entire array to the boot params
*/
base = _ALIGN_DOWN(base, PAGE_SIZE);
top = _ALIGN_UP(top, PAGE_SIZE);
size = top - base;
if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
prom_panic("Memory reserve map exhausted !\n");
mem_reserve_map[cnt].base = cpu_to_be64(base);
mem_reserve_map[cnt].size = cpu_to_be64(size);
mem_reserve_cnt = cnt + 1;
}
/*
* Initialize memory allocation mechanism, parse "memory" nodes and
* obtain that way the top of memory and RMO to setup out local allocator
*/
static void __init prom_init_mem(void)
{
phandle node;
char *path, type[64];
unsigned int plen;
cell_t *p, *endp;
__be32 val;
u32 rac, rsc;
/*
* We iterate the memory nodes to find
* 1) top of RMO (first node)
* 2) top of memory
*/
val = cpu_to_be32(2);
prom_getprop(prom.root, "#address-cells", &val, sizeof(val));
rac = be32_to_cpu(val);
val = cpu_to_be32(1);
prom_getprop(prom.root, "#size-cells", &val, sizeof(rsc));
rsc = be32_to_cpu(val);
prom_debug("root_addr_cells: %x\n", rac);
prom_debug("root_size_cells: %x\n", rsc);
prom_debug("scanning memory:\n");
path = prom_scratch;
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (type[0] == 0) {
/*
* CHRP Longtrail machines have no device_type
* on the memory node, so check the name instead...
*/
prom_getprop(node, "name", type, sizeof(type));
}
if (strcmp(type, "memory"))
continue;
plen = prom_getprop(node, "reg", regbuf, sizeof(regbuf));
if (plen > sizeof(regbuf)) {
prom_printf("memory node too large for buffer !\n");
plen = sizeof(regbuf);
}
p = regbuf;
endp = p + (plen / sizeof(cell_t));
#ifdef DEBUG_PROM
memset(path, 0, PROM_SCRATCH_SIZE);
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
prom_debug(" node %s :\n", path);
#endif /* DEBUG_PROM */
while ((endp - p) >= (rac + rsc)) {
unsigned long base, size;
base = prom_next_cell(rac, &p);
size = prom_next_cell(rsc, &p);
if (size == 0)
continue;
prom_debug(" %x %x\n", base, size);
if (base == 0 && (of_platform & PLATFORM_LPAR))
rmo_top = size;
if ((base + size) > ram_top)
ram_top = base + size;
}
}
alloc_bottom = PAGE_ALIGN((unsigned long)&_end + 0x4000);
/*
* If prom_memory_limit is set we reduce the upper limits *except* for
* alloc_top_high. This must be the real top of RAM so we can put
* TCE's up there.
*/
alloc_top_high = ram_top;
if (prom_memory_limit) {
if (prom_memory_limit <= alloc_bottom) {
prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
prom_memory_limit);
prom_memory_limit = 0;
} else if (prom_memory_limit >= ram_top) {
prom_printf("Ignoring mem=%x >= ram_top.\n",
prom_memory_limit);
prom_memory_limit = 0;
} else {
ram_top = prom_memory_limit;
rmo_top = min(rmo_top, prom_memory_limit);
}
}
/*
* Setup our top alloc point, that is top of RMO or top of
* segment 0 when running non-LPAR.
* Some RS64 machines have buggy firmware where claims up at
* 1GB fail. Cap at 768MB as a workaround.
* Since 768MB is plenty of room, and we need to cap to something
* reasonable on 32-bit, cap at 768MB on all machines.
*/
if (!rmo_top)
rmo_top = ram_top;
rmo_top = min(0x30000000ul, rmo_top);
alloc_top = rmo_top;
alloc_top_high = ram_top;
/*
* Check if we have an initrd after the kernel but still inside
* the RMO. If we do move our bottom point to after it.
*/
if (prom_initrd_start &&
prom_initrd_start < rmo_top &&
prom_initrd_end > alloc_bottom)
alloc_bottom = PAGE_ALIGN(prom_initrd_end);
prom_printf("memory layout at init:\n");
prom_printf(" memory_limit : %x (16 MB aligned)\n", prom_memory_limit);
prom_printf(" alloc_bottom : %x\n", alloc_bottom);
prom_printf(" alloc_top : %x\n", alloc_top);
prom_printf(" alloc_top_hi : %x\n", alloc_top_high);
prom_printf(" rmo_top : %x\n", rmo_top);
prom_printf(" ram_top : %x\n", ram_top);
}
static void __init prom_close_stdin(void)
{
__be32 val;
ihandle stdin;
if (prom_getprop(prom.chosen, "stdin", &val, sizeof(val)) > 0) {
stdin = be32_to_cpu(val);
call_prom("close", 1, 0, stdin);
}
}
#ifdef CONFIG_PPC_POWERNV
#ifdef CONFIG_PPC_EARLY_DEBUG_OPAL
static u64 __initdata prom_opal_base;
static u64 __initdata prom_opal_entry;
#endif
/*
* Allocate room for and instantiate OPAL
*/
static void __init prom_instantiate_opal(void)
{
phandle opal_node;
ihandle opal_inst;
u64 base, entry;
u64 size = 0, align = 0x10000;
__be64 val64;
u32 rets[2];
prom_debug("prom_instantiate_opal: start...\n");
opal_node = call_prom("finddevice", 1, 1, ADDR("/ibm,opal"));
prom_debug("opal_node: %x\n", opal_node);
if (!PHANDLE_VALID(opal_node))
return;
val64 = 0;
prom_getprop(opal_node, "opal-runtime-size", &val64, sizeof(val64));
size = be64_to_cpu(val64);
if (size == 0)
return;
val64 = 0;
prom_getprop(opal_node, "opal-runtime-alignment", &val64,sizeof(val64));
align = be64_to_cpu(val64);
base = alloc_down(size, align, 0);
if (base == 0) {
prom_printf("OPAL allocation failed !\n");
return;
}
opal_inst = call_prom("open", 1, 1, ADDR("/ibm,opal"));
if (!IHANDLE_VALID(opal_inst)) {
prom_printf("opening opal package failed (%x)\n", opal_inst);
return;
}
prom_printf("instantiating opal at 0x%x...", base);
if (call_prom_ret("call-method", 4, 3, rets,
ADDR("load-opal-runtime"),
opal_inst,
base >> 32, base & 0xffffffff) != 0
|| (rets[0] == 0 && rets[1] == 0)) {
prom_printf(" failed\n");
return;
}
entry = (((u64)rets[0]) << 32) | rets[1];
prom_printf(" done\n");
reserve_mem(base, size);
prom_debug("opal base = 0x%x\n", base);
prom_debug("opal align = 0x%x\n", align);
prom_debug("opal entry = 0x%x\n", entry);
prom_debug("opal size = 0x%x\n", (long)size);
prom_setprop(opal_node, "/ibm,opal", "opal-base-address",
&base, sizeof(base));
prom_setprop(opal_node, "/ibm,opal", "opal-entry-address",
&entry, sizeof(entry));
#ifdef CONFIG_PPC_EARLY_DEBUG_OPAL
prom_opal_base = base;
prom_opal_entry = entry;
#endif
prom_debug("prom_instantiate_opal: end...\n");
}
#endif /* CONFIG_PPC_POWERNV */
/*
* Allocate room for and instantiate RTAS
*/
static void __init prom_instantiate_rtas(void)
{
phandle rtas_node;
ihandle rtas_inst;
u32 base, entry = 0;
__be32 val;
u32 size = 0;
prom_debug("prom_instantiate_rtas: start...\n");
rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas"));
prom_debug("rtas_node: %x\n", rtas_node);
if (!PHANDLE_VALID(rtas_node))
return;
val = 0;
prom_getprop(rtas_node, "rtas-size", &val, sizeof(size));
size = be32_to_cpu(val);
if (size == 0)
return;
base = alloc_down(size, PAGE_SIZE, 0);
if (base == 0)
prom_panic("Could not allocate memory for RTAS\n");
rtas_inst = call_prom("open", 1, 1, ADDR("/rtas"));
if (!IHANDLE_VALID(rtas_inst)) {
prom_printf("opening rtas package failed (%x)\n", rtas_inst);
return;
}
prom_printf("instantiating rtas at 0x%x...", base);
if (call_prom_ret("call-method", 3, 2, &entry,
ADDR("instantiate-rtas"),
rtas_inst, base) != 0
|| entry == 0) {
prom_printf(" failed\n");
return;
}
prom_printf(" done\n");
reserve_mem(base, size);
val = cpu_to_be32(base);
prom_setprop(rtas_node, "/rtas", "linux,rtas-base",
&val, sizeof(val));
val = cpu_to_be32(entry);
prom_setprop(rtas_node, "/rtas", "linux,rtas-entry",
&val, sizeof(val));
/* Check if it supports "query-cpu-stopped-state" */
if (prom_getprop(rtas_node, "query-cpu-stopped-state",
&val, sizeof(val)) != PROM_ERROR)
rtas_has_query_cpu_stopped = true;
prom_debug("rtas base = 0x%x\n", base);
prom_debug("rtas entry = 0x%x\n", entry);
prom_debug("rtas size = 0x%x\n", (long)size);
prom_debug("prom_instantiate_rtas: end...\n");
}
#ifdef CONFIG_PPC64
/*
* Allocate room for and instantiate Stored Measurement Log (SML)
*/
static void __init prom_instantiate_sml(void)
{
phandle ibmvtpm_node;
ihandle ibmvtpm_inst;
u32 entry = 0, size = 0, succ = 0;
u64 base;
__be32 val;
prom_debug("prom_instantiate_sml: start...\n");
ibmvtpm_node = call_prom("finddevice", 1, 1, ADDR("/vdevice/vtpm"));
prom_debug("ibmvtpm_node: %x\n", ibmvtpm_node);
if (!PHANDLE_VALID(ibmvtpm_node))
return;
ibmvtpm_inst = call_prom("open", 1, 1, ADDR("/vdevice/vtpm"));
if (!IHANDLE_VALID(ibmvtpm_inst)) {
prom_printf("opening vtpm package failed (%x)\n", ibmvtpm_inst);
return;
}
if (prom_getprop(ibmvtpm_node, "ibm,sml-efi-reformat-supported",
&val, sizeof(val)) != PROM_ERROR) {
if (call_prom_ret("call-method", 2, 2, &succ,
ADDR("reformat-sml-to-efi-alignment"),
ibmvtpm_inst) != 0 || succ == 0) {
prom_printf("Reformat SML to EFI alignment failed\n");
return;
}
if (call_prom_ret("call-method", 2, 2, &size,
ADDR("sml-get-allocated-size"),
ibmvtpm_inst) != 0 || size == 0) {
prom_printf("SML get allocated size failed\n");
return;
}
} else {
if (call_prom_ret("call-method", 2, 2, &size,
ADDR("sml-get-handover-size"),
ibmvtpm_inst) != 0 || size == 0) {
prom_printf("SML get handover size failed\n");
return;
}
}
base = alloc_down(size, PAGE_SIZE, 0);
if (base == 0)
prom_panic("Could not allocate memory for sml\n");
prom_printf("instantiating sml at 0x%x...", base);
memset((void *)base, 0, size);
if (call_prom_ret("call-method", 4, 2, &entry,
ADDR("sml-handover"),
ibmvtpm_inst, size, base) != 0 || entry == 0) {
prom_printf("SML handover failed\n");
return;
}
prom_printf(" done\n");
reserve_mem(base, size);
prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-base",
&base, sizeof(base));
prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-size",
&size, sizeof(size));
prom_debug("sml base = 0x%x\n", base);
prom_debug("sml size = 0x%x\n", (long)size);
prom_debug("prom_instantiate_sml: end...\n");
}
/*
* Allocate room for and initialize TCE tables
*/
#ifdef __BIG_ENDIAN__
static void __init prom_initialize_tce_table(void)
{
phandle node;
ihandle phb_node;
char compatible[64], type[64], model[64];
char *path = prom_scratch;
u64 base, align;
u32 minalign, minsize;
u64 tce_entry, *tce_entryp;
u64 local_alloc_top, local_alloc_bottom;
u64 i;
if (prom_iommu_off)
return;
prom_debug("starting prom_initialize_tce_table\n");
/* Cache current top of allocs so we reserve a single block */
local_alloc_top = alloc_top_high;
local_alloc_bottom = local_alloc_top;
/* Search all nodes looking for PHBs. */
for (node = 0; prom_next_node(&node); ) {
compatible[0] = 0;
type[0] = 0;
model[0] = 0;
prom_getprop(node, "compatible",
compatible, sizeof(compatible));
prom_getprop(node, "device_type", type, sizeof(type));
prom_getprop(node, "model", model, sizeof(model));
if ((type[0] == 0) || (strstr(type, "pci") == NULL))
continue;
/* Keep the old logic intact to avoid regression. */
if (compatible[0] != 0) {
if ((strstr(compatible, "python") == NULL) &&
(strstr(compatible, "Speedwagon") == NULL) &&
(strstr(compatible, "Winnipeg") == NULL))
continue;
} else if (model[0] != 0) {
if ((strstr(model, "ython") == NULL) &&
(strstr(model, "peedwagon") == NULL) &&
(strstr(model, "innipeg") == NULL))
continue;
}
if (prom_getprop(node, "tce-table-minalign", &minalign,
sizeof(minalign)) == PROM_ERROR)
minalign = 0;
if (prom_getprop(node, "tce-table-minsize", &minsize,
sizeof(minsize)) == PROM_ERROR)
minsize = 4UL << 20;
/*
* Even though we read what OF wants, we just set the table
* size to 4 MB. This is enough to map 2GB of PCI DMA space.
* By doing this, we avoid the pitfalls of trying to DMA to
* MMIO space and the DMA alias hole.
*
* On POWER4, firmware sets the TCE region by assuming
* each TCE table is 8MB. Using this memory for anything
* else will impact performance, so we always allocate 8MB.
* Anton
*/
if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p))
minsize = 8UL << 20;
else
minsize = 4UL << 20;
/* Align to the greater of the align or size */
align = max(minalign, minsize);
base = alloc_down(minsize, align, 1);
if (base == 0)
prom_panic("ERROR, cannot find space for TCE table.\n");
if (base < local_alloc_bottom)
local_alloc_bottom = base;
/* It seems OF doesn't null-terminate the path :-( */
memset(path, 0, PROM_SCRATCH_SIZE);
/* Call OF to setup the TCE hardware */
if (call_prom("package-to-path", 3, 1, node,
path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
prom_printf("package-to-path failed\n");
}
/* Save away the TCE table attributes for later use. */
prom_setprop(node, path, "linux,tce-base", &base, sizeof(base));
prom_setprop(node, path, "linux,tce-size", &minsize, sizeof(minsize));
prom_debug("TCE table: %s\n", path);
prom_debug("\tnode = 0x%x\n", node);
prom_debug("\tbase = 0x%x\n", base);
prom_debug("\tsize = 0x%x\n", minsize);
/* Initialize the table to have a one-to-one mapping
* over the allocated size.
*/
tce_entryp = (u64 *)base;
for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
tce_entry = (i << PAGE_SHIFT);
tce_entry |= 0x3;
*tce_entryp = tce_entry;
}
prom_printf("opening PHB %s", path);
phb_node = call_prom("open", 1, 1, path);
if (phb_node == 0)
prom_printf("... failed\n");
else
prom_printf("... done\n");
call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
phb_node, -1, minsize,
(u32) base, (u32) (base >> 32));
call_prom("close", 1, 0, phb_node);
}
reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
/* These are only really needed if there is a memory limit in
* effect, but we don't know so export them always. */
prom_tce_alloc_start = local_alloc_bottom;
prom_tce_alloc_end = local_alloc_top;
/* Flag the first invalid entry */
prom_debug("ending prom_initialize_tce_table\n");
}
#endif /* __BIG_ENDIAN__ */
#endif /* CONFIG_PPC64 */
/*
* With CHRP SMP we need to use the OF to start the other processors.
* We can't wait until smp_boot_cpus (the OF is trashed by then)
* so we have to put the processors into a holding pattern controlled
* by the kernel (not OF) before we destroy the OF.
*
* This uses a chunk of low memory, puts some holding pattern
* code there and sends the other processors off to there until
* smp_boot_cpus tells them to do something. The holding pattern
* checks that address until its cpu # is there, when it is that
* cpu jumps to __secondary_start(). smp_boot_cpus() takes care
* of setting those values.
*
* We also use physical address 0x4 here to tell when a cpu
* is in its holding pattern code.
*
* -- Cort
*/
/*
* We want to reference the copy of __secondary_hold_* in the
* 0 - 0x100 address range
*/
#define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff)
static void __init prom_hold_cpus(void)
{
unsigned long i;
phandle node;
char type[64];
unsigned long *spinloop
= (void *) LOW_ADDR(__secondary_hold_spinloop);
unsigned long *acknowledge
= (void *) LOW_ADDR(__secondary_hold_acknowledge);
unsigned long secondary_hold = LOW_ADDR(__secondary_hold);
/*
* On pseries, if RTAS supports "query-cpu-stopped-state",
* we skip this stage, the CPUs will be started by the
* kernel using RTAS.
*/
if ((of_platform == PLATFORM_PSERIES ||
of_platform == PLATFORM_PSERIES_LPAR) &&
rtas_has_query_cpu_stopped) {
prom_printf("prom_hold_cpus: skipped\n");
return;
}
prom_debug("prom_hold_cpus: start...\n");
prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
prom_debug(" 1) acknowledge = 0x%x\n",
(unsigned long)acknowledge);
prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
/* Set the common spinloop variable, so all of the secondary cpus
* will block when they are awakened from their OF spinloop.
* This must occur for both SMP and non SMP kernels, since OF will
* be trashed when we move the kernel.
*/
*spinloop = 0;
/* look for cpus */
for (node = 0; prom_next_node(&node); ) {
unsigned int cpu_no;
__be32 reg;
type[0] = 0;
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, "cpu") != 0)
continue;
/* Skip non-configured cpus. */
if (prom_getprop(node, "status", type, sizeof(type)) > 0)
if (strcmp(type, "okay") != 0)
continue;
reg = cpu_to_be32(-1); /* make sparse happy */
prom_getprop(node, "reg", &reg, sizeof(reg));
cpu_no = be32_to_cpu(reg);
prom_debug("cpu hw idx = %lu\n", cpu_no);
/* Init the acknowledge var which will be reset by
* the secondary cpu when it awakens from its OF
* spinloop.
*/
*acknowledge = (unsigned long)-1;
if (cpu_no != prom.cpu) {
/* Primary Thread of non-boot cpu or any thread */
prom_printf("starting cpu hw idx %lu... ", cpu_no);
call_prom("start-cpu", 3, 0, node,
secondary_hold, cpu_no);
for (i = 0; (i < 100000000) &&
(*acknowledge == ((unsigned long)-1)); i++ )
mb();
if (*acknowledge == cpu_no)
prom_printf("done\n");
else
prom_printf("failed: %x\n", *acknowledge);
}
#ifdef CONFIG_SMP
else
prom_printf("boot cpu hw idx %lu\n", cpu_no);
#endif /* CONFIG_SMP */
}
prom_debug("prom_hold_cpus: end...\n");
}
static void __init prom_init_client_services(unsigned long pp)
{
/* Get a handle to the prom entry point before anything else */
prom_entry = pp;
/* get a handle for the stdout device */
prom.chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
if (!PHANDLE_VALID(prom.chosen))
prom_panic("cannot find chosen"); /* msg won't be printed :( */
/* get device tree root */
prom.root = call_prom("finddevice", 1, 1, ADDR("/"));
if (!PHANDLE_VALID(prom.root))
prom_panic("cannot find device tree root"); /* msg won't be printed :( */
prom.mmumap = 0;
}
#ifdef CONFIG_PPC32
/*
* For really old powermacs, we need to map things we claim.
* For that, we need the ihandle of the mmu.
* Also, on the longtrail, we need to work around other bugs.
*/
static void __init prom_find_mmu(void)
{
phandle oprom;
char version[64];
oprom = call_prom("finddevice", 1, 1, ADDR("/openprom"));
if (!PHANDLE_VALID(oprom))
return;
if (prom_getprop(oprom, "model", version, sizeof(version)) <= 0)
return;
version[sizeof(version) - 1] = 0;
/* XXX might need to add other versions here */
if (strcmp(version, "Open Firmware, 1.0.5") == 0)
of_workarounds = OF_WA_CLAIM;
else if (strncmp(version, "FirmWorks,3.", 12) == 0) {
of_workarounds = OF_WA_CLAIM | OF_WA_LONGTRAIL;
call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim");
} else
return;
prom.memory = call_prom("open", 1, 1, ADDR("/memory"));
prom_getprop(prom.chosen, "mmu", &prom.mmumap,
sizeof(prom.mmumap));
prom.mmumap = be32_to_cpu(prom.mmumap);
if (!IHANDLE_VALID(prom.memory) || !IHANDLE_VALID(prom.mmumap))
of_workarounds &= ~OF_WA_CLAIM; /* hmmm */
}
#else
#define prom_find_mmu()
#endif
static void __init prom_init_stdout(void)
{
char *path = of_stdout_device;
char type[16];
phandle stdout_node;
__be32 val;
if (prom_getprop(prom.chosen, "stdout", &val, sizeof(val)) <= 0)
prom_panic("cannot find stdout");
prom.stdout = be32_to_cpu(val);
/* Get the full OF pathname of the stdout device */
memset(path, 0, 256);
call_prom("instance-to-path", 3, 1, prom.stdout, path, 255);
prom_printf("OF stdout device is: %s\n", of_stdout_device);
prom_setprop(prom.chosen, "/chosen", "linux,stdout-path",
path, strlen(path) + 1);
/* instance-to-package fails on PA-Semi */
stdout_node = call_prom("instance-to-package", 1, 1, prom.stdout);
if (stdout_node != PROM_ERROR) {
val = cpu_to_be32(stdout_node);
prom_setprop(prom.chosen, "/chosen", "linux,stdout-package",
&val, sizeof(val));
/* If it's a display, note it */
memset(type, 0, sizeof(type));
prom_getprop(stdout_node, "device_type", type, sizeof(type));
if (strcmp(type, "display") == 0)
prom_setprop(stdout_node, path, "linux,boot-display", NULL, 0);
}
}
static int __init prom_find_machine_type(void)
{
char compat[256];
int len, i = 0;
#ifdef CONFIG_PPC64
phandle rtas;
int x;
#endif
/* Look for a PowerMac or a Cell */
len = prom_getprop(prom.root, "compatible",
compat, sizeof(compat)-1);
if (len > 0) {
compat[len] = 0;
while (i < len) {
char *p = &compat[i];
int sl = strlen(p);
if (sl == 0)
break;
if (strstr(p, "Power Macintosh") ||
strstr(p, "MacRISC"))
return PLATFORM_POWERMAC;
#ifdef CONFIG_PPC64
/* We must make sure we don't detect the IBM Cell
* blades as pSeries due to some firmware issues,
* so we do it here.
*/
if (strstr(p, "IBM,CBEA") ||
strstr(p, "IBM,CPBW-1.0"))
return PLATFORM_GENERIC;
#endif /* CONFIG_PPC64 */
i += sl + 1;
}
}
#ifdef CONFIG_PPC64
/* Try to detect OPAL */
if (PHANDLE_VALID(call_prom("finddevice", 1, 1, ADDR("/ibm,opal"))))
return PLATFORM_OPAL;
/* Try to figure out if it's an IBM pSeries or any other
* PAPR compliant platform. We assume it is if :
* - /device_type is "chrp" (please, do NOT use that for future
* non-IBM designs !
* - it has /rtas
*/
len = prom_getprop(prom.root, "device_type",
compat, sizeof(compat)-1);
if (len <= 0)
return PLATFORM_GENERIC;
if (strcmp(compat, "chrp"))
return PLATFORM_GENERIC;
/* Default to pSeries. We need to know if we are running LPAR */
rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
if (!PHANDLE_VALID(rtas))
return PLATFORM_GENERIC;
x = prom_getproplen(rtas, "ibm,hypertas-functions");
if (x != PROM_ERROR) {
prom_debug("Hypertas detected, assuming LPAR !\n");
return PLATFORM_PSERIES_LPAR;
}
return PLATFORM_PSERIES;
#else
return PLATFORM_GENERIC;
#endif
}
static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
{
return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
}
/*
* If we have a display that we don't know how to drive,
* we will want to try to execute OF's open method for it
* later. However, OF will probably fall over if we do that
* we've taken over the MMU.
* So we check whether we will need to open the display,
* and if so, open it now.
*/
static void __init prom_check_displays(void)
{
char type[16], *path;
phandle node;
ihandle ih;
int i;
static unsigned char default_colors[] = {
0x00, 0x00, 0x00,
0x00, 0x00, 0xaa,
0x00, 0xaa, 0x00,
0x00, 0xaa, 0xaa,
0xaa, 0x00, 0x00,
0xaa, 0x00, 0xaa,
0xaa, 0xaa, 0x00,
0xaa, 0xaa, 0xaa,
0x55, 0x55, 0x55,
0x55, 0x55, 0xff,
0x55, 0xff, 0x55,
0x55, 0xff, 0xff,
0xff, 0x55, 0x55,
0xff, 0x55, 0xff,
0xff, 0xff, 0x55,
0xff, 0xff, 0xff
};
const unsigned char *clut;
prom_debug("Looking for displays\n");
for (node = 0; prom_next_node(&node); ) {
memset(type, 0, sizeof(type));
prom_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, "display") != 0)
continue;
/* It seems OF doesn't null-terminate the path :-( */
path = prom_scratch;
memset(path, 0, PROM_SCRATCH_SIZE);
/*
* leave some room at the end of the path for appending extra
* arguments
*/
if (call_prom("package-to-path", 3, 1, node, path,
PROM_SCRATCH_SIZE-10) == PROM_ERROR)
continue;
prom_printf("found display : %s, opening... ", path);
ih = call_prom("open", 1, 1, path);
if (ih == 0) {
prom_printf("failed\n");
continue;
}
/* Success */
prom_printf("done\n");
prom_setprop(node, path, "linux,opened", NULL, 0);
/* Setup a usable color table when the appropriate
* method is available. Should update this to set-colors */
clut = default_colors;
for (i = 0; i < 16; i++, clut += 3)
if (prom_set_color(ih, i, clut[0], clut[1],
clut[2]) != 0)
break;
#ifdef CONFIG_LOGO_LINUX_CLUT224
clut = PTRRELOC(logo_linux_clut224.clut);
for (i = 0; i < logo_linux_clut224.clutsize; i++, clut += 3)
if (prom_set_color(ih, i + 32, clut[0], clut[1],
clut[2]) != 0)
break;
#endif /* CONFIG_LOGO_LINUX_CLUT224 */
#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
if (prom_getprop(node, "linux,boot-display", NULL, 0) !=
PROM_ERROR) {
u32 width, height, pitch, addr;
prom_printf("Setting btext !\n");
prom_getprop(node, "width", &width, 4);
prom_getprop(node, "height", &height, 4);
prom_getprop(node, "linebytes", &pitch, 4);
prom_getprop(node, "address", &addr, 4);
prom_printf("W=%d H=%d LB=%d addr=0x%x\n",
width, height, pitch, addr);
btext_setup_display(width, height, 8, pitch, addr);
}
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
}
}
/* Return (relocated) pointer to this much memory: moves initrd if reqd. */
static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
unsigned long needed, unsigned long align)
{
void *ret;
*mem_start = _ALIGN(*mem_start, align);
while ((*mem_start + needed) > *mem_end) {
unsigned long room, chunk;
prom_debug("Chunk exhausted, claiming more at %x...\n",
alloc_bottom);
room = alloc_top - alloc_bottom;
if (room > DEVTREE_CHUNK_SIZE)
room = DEVTREE_CHUNK_SIZE;
if (room < PAGE_SIZE)
prom_panic("No memory for flatten_device_tree "
"(no room)\n");
chunk = alloc_up(room, 0);
if (chunk == 0)
prom_panic("No memory for flatten_device_tree "
"(claim failed)\n");
*mem_end = chunk + room;
}
ret = (void *)*mem_start;
*mem_start += needed;
return ret;
}
#define dt_push_token(token, mem_start, mem_end) do { \
void *room = make_room(mem_start, mem_end, 4, 4); \
*(__be32 *)room = cpu_to_be32(token); \
} while(0)
static unsigned long __init dt_find_string(char *str)
{
char *s, *os;
s = os = (char *)dt_string_start;
s += 4;
while (s < (char *)dt_string_end) {
if (strcmp(s, str) == 0)
return s - os;
s += strlen(s) + 1;
}
return 0;
}
/*
* The Open Firmware 1275 specification states properties must be 31 bytes or
* less, however not all firmwares obey this. Make it 64 bytes to be safe.
*/
#define MAX_PROPERTY_NAME 64
static void __init scan_dt_build_strings(phandle node,
unsigned long *mem_start,
unsigned long *mem_end)
{
char *prev_name, *namep, *sstart;
unsigned long soff;
phandle child;
sstart = (char *)dt_string_start;
/* get and store all property names */
prev_name = "";
for (;;) {
/* 64 is max len of name including nul. */
namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1);
if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) {
/* No more nodes: unwind alloc */
*mem_start = (unsigned long)namep;
break;
}
/* skip "name" */
if (strcmp(namep, "name") == 0) {
*mem_start = (unsigned long)namep;
prev_name = "name";
continue;
}
/* get/create string entry */
soff = dt_find_string(namep);
if (soff != 0) {
*mem_start = (unsigned long)namep;
namep = sstart + soff;
} else {
/* Trim off some if we can */
*mem_start = (unsigned long)namep + strlen(namep) + 1;
dt_string_end = *mem_start;
}
prev_name = namep;
}
/* do all our children */
child = call_prom("child", 1, 1, node);
while (child != 0) {
scan_dt_build_strings(child, mem_start, mem_end);
child = call_prom("peer", 1, 1, child);
}
}
static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
unsigned long *mem_end)
{
phandle child;
char *namep, *prev_name, *sstart, *p, *ep, *lp, *path;
unsigned long soff;
unsigned char *valp;
static char pname[MAX_PROPERTY_NAME];
int l, room, has_phandle = 0;
dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
/* get the node's full name */
namep = (char *)*mem_start;
room = *mem_end - *mem_start;
if (room > 255)
room = 255;
l = call_prom("package-to-path", 3, 1, node, namep, room);
if (l >= 0) {
/* Didn't fit? Get more room. */
if (l >= room) {
if (l >= *mem_end - *mem_start)
namep = make_room(mem_start, mem_end, l+1, 1);
call_prom("package-to-path", 3, 1, node, namep, l);
}
namep[l] = '\0';
/* Fixup an Apple bug where they have bogus \0 chars in the
* middle of the path in some properties, and extract
* the unit name (everything after the last '/').
*/
for (lp = p = namep, ep = namep + l; p < ep; p++) {
if (*p == '/')
lp = namep;
else if (*p != 0)
*lp++ = *p;
}
*lp = 0;
*mem_start = _ALIGN((unsigned long)lp + 1, 4);
}
/* get it again for debugging */
path = prom_scratch;
memset(path, 0, PROM_SCRATCH_SIZE);
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
/* get and store all properties */
prev_name = "";
sstart = (char *)dt_string_start;
for (;;) {
if (call_prom("nextprop", 3, 1, node, prev_name,
pname) != 1)
break;
/* skip "name" */
if (strcmp(pname, "name") == 0) {
prev_name = "name";
continue;
}
/* find string offset */
soff = dt_find_string(pname);
if (soff == 0) {
prom_printf("WARNING: Can't find string index for"
" <%s>, node %s\n", pname, path);
break;
}
prev_name = sstart + soff;
/* get length */
l = call_prom("getproplen", 2, 1, node, pname);
/* sanity checks */
if (l == PROM_ERROR)
continue;
/* push property head */
dt_push_token(OF_DT_PROP, mem_start, mem_end);
dt_push_token(l, mem_start, mem_end);
dt_push_token(soff, mem_start, mem_end);
/* push property content */
valp = make_room(mem_start, mem_end, l, 4);
call_prom("getprop", 4, 1, node, pname, valp, l);
*mem_start = _ALIGN(*mem_start, 4);
if (!strcmp(pname, "phandle"))
has_phandle = 1;
}
/* Add a "linux,phandle" property if no "phandle" property already
* existed (can happen with OPAL)
*/
if (!has_phandle) {
soff = dt_find_string("linux,phandle");
if (soff == 0)
prom_printf("WARNING: Can't find string index for"
" <linux-phandle> node %s\n", path);
else {
dt_push_token(OF_DT_PROP, mem_start, mem_end);
dt_push_token(4, mem_start, mem_end);
dt_push_token(soff, mem_start, mem_end);
valp = make_room(mem_start, mem_end, 4, 4);
*(__be32 *)valp = cpu_to_be32(node);
}
}
/* do all our children */
child = call_prom("child", 1, 1, node);
while (child != 0) {
scan_dt_build_struct(child, mem_start, mem_end);
child = call_prom("peer", 1, 1, child);
}
dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
}
static void __init flatten_device_tree(void)
{
phandle root;
unsigned long mem_start, mem_end, room;
struct boot_param_header *hdr;
char *namep;
u64 *rsvmap;
/*
* Check how much room we have between alloc top & bottom (+/- a
* few pages), crop to 1MB, as this is our "chunk" size
*/
room = alloc_top - alloc_bottom - 0x4000;
if (room > DEVTREE_CHUNK_SIZE)
room = DEVTREE_CHUNK_SIZE;
prom_debug("starting device tree allocs at %x\n", alloc_bottom);
/* Now try to claim that */
mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
if (mem_start == 0)
prom_panic("Can't allocate initial device-tree chunk\n");
mem_end = mem_start + room;
/* Get root of tree */
root = call_prom("peer", 1, 1, (phandle)0);
if (root == (phandle)0)
prom_panic ("couldn't get device tree root\n");
/* Build header and make room for mem rsv map */
mem_start = _ALIGN(mem_start, 4);
hdr = make_room(&mem_start, &mem_end,
sizeof(struct boot_param_header), 4);
dt_header_start = (unsigned long)hdr;
rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
/* Start of strings */
mem_start = PAGE_ALIGN(mem_start);
dt_string_start = mem_start;
mem_start += 4; /* hole */
/* Add "linux,phandle" in there, we'll need it */
namep = make_room(&mem_start, &mem_end, 16, 1);
strcpy(namep, "linux,phandle");
mem_start = (unsigned long)namep + strlen(namep) + 1;
/* Build string array */
prom_printf("Building dt strings...\n");
scan_dt_build_strings(root, &mem_start, &mem_end);
dt_string_end = mem_start;
/* Build structure */
mem_start = PAGE_ALIGN(mem_start);
dt_struct_start = mem_start;
prom_printf("Building dt structure...\n");
scan_dt_build_struct(root, &mem_start, &mem_end);
dt_push_token(OF_DT_END, &mem_start, &mem_end);
dt_struct_end = PAGE_ALIGN(mem_start);
/* Finish header */
hdr->boot_cpuid_phys = cpu_to_be32(prom.cpu);
hdr->magic = cpu_to_be32(OF_DT_HEADER);
hdr->totalsize = cpu_to_be32(dt_struct_end - dt_header_start);
hdr->off_dt_struct = cpu_to_be32(dt_struct_start - dt_header_start);
hdr->off_dt_strings = cpu_to_be32(dt_string_start - dt_header_start);
hdr->dt_strings_size = cpu_to_be32(dt_string_end - dt_string_start);
hdr->off_mem_rsvmap = cpu_to_be32(((unsigned long)rsvmap) - dt_header_start);
hdr->version = cpu_to_be32(OF_DT_VERSION);
/* Version 16 is not backward compatible */
hdr->last_comp_version = cpu_to_be32(0x10);
/* Copy the reserve map in */
memcpy(rsvmap, mem_reserve_map, sizeof(mem_reserve_map));
#ifdef DEBUG_PROM
{
int i;
prom_printf("reserved memory map:\n");
for (i = 0; i < mem_reserve_cnt; i++)
prom_printf(" %x - %x\n",
be64_to_cpu(mem_reserve_map[i].base),
be64_to_cpu(mem_reserve_map[i].size));
}
#endif
/* Bump mem_reserve_cnt to cause further reservations to fail
* since it's too late.
*/
mem_reserve_cnt = MEM_RESERVE_MAP_SIZE;
prom_printf("Device tree strings 0x%x -> 0x%x\n",
dt_string_start, dt_string_end);
prom_printf("Device tree struct 0x%x -> 0x%x\n",
dt_struct_start, dt_struct_end);
}
#ifdef CONFIG_PPC_MAPLE
/* PIBS Version 1.05.0000 04/26/2005 has an incorrect /ht/isa/ranges property.
* The values are bad, and it doesn't even have the right number of cells. */
static void __init fixup_device_tree_maple(void)
{
phandle isa;
u32 rloc = 0x01002000; /* IO space; PCI device = 4 */
u32 isa_ranges[6];
char *name;
name = "/ht@0/isa@4";
isa = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(isa)) {
name = "/ht@0/isa@6";
isa = call_prom("finddevice", 1, 1, ADDR(name));
rloc = 0x01003000; /* IO space; PCI device = 6 */
}
if (!PHANDLE_VALID(isa))
return;
if (prom_getproplen(isa, "ranges") != 12)
return;
if (prom_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges))
== PROM_ERROR)
return;
if (isa_ranges[0] != 0x1 ||
isa_ranges[1] != 0xf4000000 ||
isa_ranges[2] != 0x00010000)
return;
prom_printf("Fixing up bogus ISA range on Maple/Apache...\n");
isa_ranges[0] = 0x1;
isa_ranges[1] = 0x0;
isa_ranges[2] = rloc;
isa_ranges[3] = 0x0;
isa_ranges[4] = 0x0;
isa_ranges[5] = 0x00010000;
prom_setprop(isa, name, "ranges",
isa_ranges, sizeof(isa_ranges));
}
#define CPC925_MC_START 0xf8000000
#define CPC925_MC_LENGTH 0x1000000
/* The values for memory-controller don't have right number of cells */
static void __init fixup_device_tree_maple_memory_controller(void)
{
phandle mc;
u32 mc_reg[4];
char *name = "/hostbridge@f8000000";
u32 ac, sc;
mc = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(mc))
return;
if (prom_getproplen(mc, "reg") != 8)
return;
prom_getprop(prom.root, "#address-cells", &ac, sizeof(ac));
prom_getprop(prom.root, "#size-cells", &sc, sizeof(sc));
if ((ac != 2) || (sc != 2))
return;
if (prom_getprop(mc, "reg", mc_reg, sizeof(mc_reg)) == PROM_ERROR)
return;
if (mc_reg[0] != CPC925_MC_START || mc_reg[1] != CPC925_MC_LENGTH)
return;
prom_printf("Fixing up bogus hostbridge on Maple...\n");
mc_reg[0] = 0x0;
mc_reg[1] = CPC925_MC_START;
mc_reg[2] = 0x0;
mc_reg[3] = CPC925_MC_LENGTH;
prom_setprop(mc, name, "reg", mc_reg, sizeof(mc_reg));
}
#else
#define fixup_device_tree_maple()
#define fixup_device_tree_maple_memory_controller()
#endif
#ifdef CONFIG_PPC_CHRP
/*
* Pegasos and BriQ lacks the "ranges" property in the isa node
* Pegasos needs decimal IRQ 14/15, not hexadecimal
* Pegasos has the IDE configured in legacy mode, but advertised as native
*/
static void __init fixup_device_tree_chrp(void)
{
phandle ph;
u32 prop[6];
u32 rloc = 0x01006000; /* IO space; PCI device = 12 */
char *name;
int rc;
name = "/pci@80000000/isa@c";
ph = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(ph)) {
name = "/pci@ff500000/isa@6";
ph = call_prom("finddevice", 1, 1, ADDR(name));
rloc = 0x01003000; /* IO space; PCI device = 6 */
}
if (PHANDLE_VALID(ph)) {
rc = prom_getproplen(ph, "ranges");
if (rc == 0 || rc == PROM_ERROR) {
prom_printf("Fixing up missing ISA range on Pegasos...\n");
prop[0] = 0x1;
prop[1] = 0x0;
prop[2] = rloc;
prop[3] = 0x0;
prop[4] = 0x0;
prop[5] = 0x00010000;
prom_setprop(ph, name, "ranges", prop, sizeof(prop));
}
}
name = "/pci@80000000/ide@C,1";
ph = call_prom("finddevice", 1, 1, ADDR(name));
if (PHANDLE_VALID(ph)) {
prom_printf("Fixing up IDE interrupt on Pegasos...\n");
prop[0] = 14;
prop[1] = 0x0;
prom_setprop(ph, name, "interrupts", prop, 2*sizeof(u32));
prom_printf("Fixing up IDE class-code on Pegasos...\n");
rc = prom_getprop(ph, "class-code", prop, sizeof(u32));
if (rc == sizeof(u32)) {
prop[0] &= ~0x5;
prom_setprop(ph, name, "class-code", prop, sizeof(u32));
}
}
}
#else
#define fixup_device_tree_chrp()
#endif
#if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC)
static void __init fixup_device_tree_pmac(void)
{
phandle u3, i2c, mpic;
u32 u3_rev;
u32 interrupts[2];
u32 parent;
/* Some G5s have a missing interrupt definition, fix it up here */
u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
if (!PHANDLE_VALID(u3))
return;
i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
if (!PHANDLE_VALID(i2c))
return;
mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
if (!PHANDLE_VALID(mpic))
return;
/* check if proper rev of u3 */
if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev))
== PROM_ERROR)
return;
if (u3_rev < 0x35 || u3_rev > 0x39)
return;
/* does it need fixup ? */
if (prom_getproplen(i2c, "interrupts") > 0)
return;
prom_printf("fixing up bogus interrupts for u3 i2c...\n");
/* interrupt on this revision of u3 is number 0 and level */
interrupts[0] = 0;
interrupts[1] = 1;
prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupts",
&interrupts, sizeof(interrupts));
parent = (u32)mpic;
prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent",
&parent, sizeof(parent));
}
#else
#define fixup_device_tree_pmac()
#endif
#ifdef CONFIG_PPC_EFIKA
/*
* The MPC5200 FEC driver requires an phy-handle property to tell it how
* to talk to the phy. If the phy-handle property is missing, then this
* function is called to add the appropriate nodes and link it to the
* ethernet node.
*/
static void __init fixup_device_tree_efika_add_phy(void)
{
u32 node;
char prop[64];
int rv;
/* Check if /builtin/ethernet exists - bail if it doesn't */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/ethernet"));
if (!PHANDLE_VALID(node))
return;
/* Check if the phy-handle property exists - bail if it does */
rv = prom_getprop(node, "phy-handle", prop, sizeof(prop));
if (!rv)
return;
/*
* At this point the ethernet device doesn't have a phy described.
* Now we need to add the missing phy node and linkage
*/
/* Check for an MDIO bus node - if missing then create one */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio"));
if (!PHANDLE_VALID(node)) {
prom_printf("Adding Ethernet MDIO node\n");
call_prom("interpret", 1, 1,
" s\" /builtin\" find-device"
" new-device"
" 1 encode-int s\" #address-cells\" property"
" 0 encode-int s\" #size-cells\" property"
" s\" mdio\" device-name"
" s\" fsl,mpc5200b-mdio\" encode-string"
" s\" compatible\" property"
" 0xf0003000 0x400 reg"
" 0x2 encode-int"
" 0x5 encode-int encode+"
" 0x3 encode-int encode+"
" s\" interrupts\" property"
" finish-device");
};
/* Check for a PHY device node - if missing then create one and
* give it's phandle to the ethernet node */
node = call_prom("finddevice", 1, 1,
ADDR("/builtin/mdio/ethernet-phy"));
if (!PHANDLE_VALID(node)) {
prom_printf("Adding Ethernet PHY node\n");
call_prom("interpret", 1, 1,
" s\" /builtin/mdio\" find-device"
" new-device"
" s\" ethernet-phy\" device-name"
" 0x10 encode-int s\" reg\" property"
" my-self"
" ihandle>phandle"
" finish-device"
" s\" /builtin/ethernet\" find-device"
" encode-int"
" s\" phy-handle\" property"
" device-end");
}
}
static void __init fixup_device_tree_efika(void)
{
int sound_irq[3] = { 2, 2, 0 };
int bcomm_irq[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0,
3,4,0, 3,5,0, 3,6,0, 3,7,0,
3,8,0, 3,9,0, 3,10,0, 3,11,0,
3,12,0, 3,13,0, 3,14,0, 3,15,0 };
u32 node;
char prop[64];
int rv, len;
/* Check if we're really running on a EFIKA */
node = call_prom("finddevice", 1, 1, ADDR("/"));
if (!PHANDLE_VALID(node))
return;
rv = prom_getprop(node, "model", prop, sizeof(prop));
if (rv == PROM_ERROR)
return;
if (strcmp(prop, "EFIKA5K2"))
return;
prom_printf("Applying EFIKA device tree fixups\n");
/* Claiming to be 'chrp' is death */
node = call_prom("finddevice", 1, 1, ADDR("/"));
rv = prom_getprop(node, "device_type", prop, sizeof(prop));
if (rv != PROM_ERROR && (strcmp(prop, "chrp") == 0))
prom_setprop(node, "/", "device_type", "efika", sizeof("efika"));
/* CODEGEN,description is exposed in /proc/cpuinfo so
fix that too */
rv = prom_getprop(node, "CODEGEN,description", prop, sizeof(prop));
if (rv != PROM_ERROR && (strstr(prop, "CHRP")))
prom_setprop(node, "/", "CODEGEN,description",
"Efika 5200B PowerPC System",
sizeof("Efika 5200B PowerPC System"));
/* Fixup bestcomm interrupts property */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/bestcomm"));
if (PHANDLE_VALID(node)) {
len = prom_getproplen(node, "interrupts");
if (len == 12) {
prom_printf("Fixing bestcomm interrupts property\n");
prom_setprop(node, "/builtin/bestcom", "interrupts",
bcomm_irq, sizeof(bcomm_irq));
}
}
/* Fixup sound interrupts property */
node = call_prom("finddevice", 1, 1, ADDR("/builtin/sound"));
if (PHANDLE_VALID(node)) {
rv = prom_getprop(node, "interrupts", prop, sizeof(prop));
if (rv == PROM_ERROR) {
prom_printf("Adding sound interrupts property\n");
prom_setprop(node, "/builtin/sound", "interrupts",
sound_irq, sizeof(sound_irq));
}
}
/* Make sure ethernet phy-handle property exists */
fixup_device_tree_efika_add_phy();
}
#else
#define fixup_device_tree_efika()
#endif
#ifdef CONFIG_PPC_PASEMI_NEMO
/*
* CFE supplied on Nemo is broken in several ways, biggest
* problem is that it reassigns ISA interrupts to unused mpic ints.
* Add an interrupt-controller property for the io-bridge to use
* and correct the ints so we can attach them to an irq_domain
*/
static void __init fixup_device_tree_pasemi(void)
{
u32 interrupts[2], parent, rval, val = 0;
char *name, *pci_name;
phandle iob, node;
/* Find the root pci node */
name = "/pxp@0,e0000000";
iob = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(iob))
return;
/* check if interrupt-controller node set yet */
if (prom_getproplen(iob, "interrupt-controller") !=PROM_ERROR)
return;
prom_printf("adding interrupt-controller property for SB600...\n");
prom_setprop(iob, name, "interrupt-controller", &val, 0);
pci_name = "/pxp@0,e0000000/pci@11";
node = call_prom("finddevice", 1, 1, ADDR(pci_name));
parent = ADDR(iob);
for( ; prom_next_node(&node); ) {
/* scan each node for one with an interrupt */
if (!PHANDLE_VALID(node))
continue;
rval = prom_getproplen(node, "interrupts");
if (rval == 0 || rval == PROM_ERROR)
continue;
prom_getprop(node, "interrupts", &interrupts, sizeof(interrupts));
if ((interrupts[0] < 212) || (interrupts[0] > 222))
continue;
/* found a node, update both interrupts and interrupt-parent */
if ((interrupts[0] >= 212) && (interrupts[0] <= 215))
interrupts[0] -= 203;
if ((interrupts[0] >= 216) && (interrupts[0] <= 220))
interrupts[0] -= 213;
if (interrupts[0] == 221)
interrupts[0] = 14;
if (interrupts[0] == 222)
interrupts[0] = 8;
prom_setprop(node, pci_name, "interrupts", interrupts,
sizeof(interrupts));
prom_setprop(node, pci_name, "interrupt-parent", &parent,
sizeof(parent));
}
/*
* The io-bridge has device_type set to 'io-bridge' change it to 'isa'
* so that generic isa-bridge code can add the SB600 and its on-board
* peripherals.
*/
name = "/pxp@0,e0000000/io-bridge@0";
iob = call_prom("finddevice", 1, 1, ADDR(name));
if (!PHANDLE_VALID(iob))
return;
/* device_type is already set, just change it. */
prom_printf("Changing device_type of SB600 node...\n");
prom_setprop(iob, name, "device_type", "isa", sizeof("isa"));
}
#else /* !CONFIG_PPC_PASEMI_NEMO */
static inline void fixup_device_tree_pasemi(void) { }
#endif
static void __init fixup_device_tree(void)
{
fixup_device_tree_maple();
fixup_device_tree_maple_memory_controller();
fixup_device_tree_chrp();
fixup_device_tree_pmac();
fixup_device_tree_efika();
fixup_device_tree_pasemi();
}
static void __init prom_find_boot_cpu(void)
{
__be32 rval;
ihandle prom_cpu;
phandle cpu_pkg;
rval = 0;
if (prom_getprop(prom.chosen, "cpu", &rval, sizeof(rval)) <= 0)
return;
prom_cpu = be32_to_cpu(rval);
cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
if (!PHANDLE_VALID(cpu_pkg))
return;
prom_getprop(cpu_pkg, "reg", &rval, sizeof(rval));
prom.cpu = be32_to_cpu(rval);
prom_debug("Booting CPU hw index = %lu\n", prom.cpu);
}
static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (r3 && r4 && r4 != 0xdeadbeef) {
__be64 val;
prom_initrd_start = is_kernel_addr(r3) ? __pa(r3) : r3;
prom_initrd_end = prom_initrd_start + r4;
val = cpu_to_be64(prom_initrd_start);
prom_setprop(prom.chosen, "/chosen", "linux,initrd-start",
&val, sizeof(val));
val = cpu_to_be64(prom_initrd_end);
prom_setprop(prom.chosen, "/chosen", "linux,initrd-end",
&val, sizeof(val));
reserve_mem(prom_initrd_start,
prom_initrd_end - prom_initrd_start);
prom_debug("initrd_start=0x%x\n", prom_initrd_start);
prom_debug("initrd_end=0x%x\n", prom_initrd_end);
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
#ifdef CONFIG_PPC64
#ifdef CONFIG_RELOCATABLE
static void reloc_toc(void)
{
}
static void unreloc_toc(void)
{
}
#else
static void __reloc_toc(unsigned long offset, unsigned long nr_entries)
{
unsigned long i;
unsigned long *toc_entry;
/* Get the start of the TOC by using r2 directly. */
asm volatile("addi %0,2,-0x8000" : "=b" (toc_entry));
for (i = 0; i < nr_entries; i++) {
*toc_entry = *toc_entry + offset;
toc_entry++;
}
}
static void reloc_toc(void)
{
unsigned long offset = reloc_offset();
unsigned long nr_entries =
(__prom_init_toc_end - __prom_init_toc_start) / sizeof(long);
__reloc_toc(offset, nr_entries);
mb();
}
static void unreloc_toc(void)
{
unsigned long offset = reloc_offset();
unsigned long nr_entries =
(__prom_init_toc_end - __prom_init_toc_start) / sizeof(long);
mb();
__reloc_toc(-offset, nr_entries);
}
#endif
#endif
/*
* We enter here early on, when the Open Firmware prom is still
* handling exceptions and the MMU hash table for us.
*/
unsigned long __init prom_init(unsigned long r3, unsigned long r4,
unsigned long pp,
unsigned long r6, unsigned long r7,
unsigned long kbase)
{
unsigned long hdr;
#ifdef CONFIG_PPC32
unsigned long offset = reloc_offset();
reloc_got2(offset);
#else
reloc_toc();
#endif
/*
* First zero the BSS
*/
memset(&__bss_start, 0, __bss_stop - __bss_start);
/*
* Init interface to Open Firmware, get some node references,
* like /chosen
*/
prom_init_client_services(pp);
/*
* See if this OF is old enough that we need to do explicit maps
* and other workarounds
*/
prom_find_mmu();
/*
* Init prom stdout device
*/
prom_init_stdout();
prom_printf("Preparing to boot %s", linux_banner);
/*
* Get default machine type. At this point, we do not differentiate
* between pSeries SMP and pSeries LPAR
*/
of_platform = prom_find_machine_type();
prom_printf("Detected machine type: %x\n", of_platform);
#ifndef CONFIG_NONSTATIC_KERNEL
/* Bail if this is a kdump kernel. */
if (PHYSICAL_START > 0)
prom_panic("Error: You can't boot a kdump kernel from OF!\n");
#endif
/*
* Check for an initrd
*/
prom_check_initrd(r3, r4);
/*
* Do early parsing of command line
*/
early_cmdline_parse();
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* On pSeries, inform the firmware about our capabilities
*/
if (of_platform == PLATFORM_PSERIES ||
of_platform == PLATFORM_PSERIES_LPAR)
prom_send_capabilities();
#endif
/*
* Copy the CPU hold code
*/
if (of_platform != PLATFORM_POWERMAC)
copy_and_flush(0, kbase, 0x100, 0);
/*
* Initialize memory management within prom_init
*/
prom_init_mem();
/*
* Determine which cpu is actually running right _now_
*/
prom_find_boot_cpu();
/*
* Initialize display devices
*/
prom_check_displays();
#if defined(CONFIG_PPC64) && defined(__BIG_ENDIAN__)
/*
* Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
* that uses the allocator, we need to make sure we get the top of memory
* available for us here...
*/
if (of_platform == PLATFORM_PSERIES)
prom_initialize_tce_table();
#endif
/*
* On non-powermacs, try to instantiate RTAS. PowerMacs don't
* have a usable RTAS implementation.
*/
if (of_platform != PLATFORM_POWERMAC &&
of_platform != PLATFORM_OPAL)
prom_instantiate_rtas();
#ifdef CONFIG_PPC_POWERNV
if (of_platform == PLATFORM_OPAL)
prom_instantiate_opal();
#endif /* CONFIG_PPC_POWERNV */
#ifdef CONFIG_PPC64
/* instantiate sml */
prom_instantiate_sml();
#endif
/*
* On non-powermacs, put all CPUs in spin-loops.
*
* PowerMacs use a different mechanism to spin CPUs
*
* (This must be done after instanciating RTAS)
*/
if (of_platform != PLATFORM_POWERMAC &&
of_platform != PLATFORM_OPAL)
prom_hold_cpus();
/*
* Fill in some infos for use by the kernel later on
*/
if (prom_memory_limit) {
__be64 val = cpu_to_be64(prom_memory_limit);
prom_setprop(prom.chosen, "/chosen", "linux,memory-limit",
&val, sizeof(val));
}
#ifdef CONFIG_PPC64
if (prom_iommu_off)
prom_setprop(prom.chosen, "/chosen", "linux,iommu-off",
NULL, 0);
if (prom_iommu_force_on)
prom_setprop(prom.chosen, "/chosen", "linux,iommu-force-on",
NULL, 0);
if (prom_tce_alloc_start) {
prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-start",
&prom_tce_alloc_start,
sizeof(prom_tce_alloc_start));
prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-end",
&prom_tce_alloc_end,
sizeof(prom_tce_alloc_end));
}
#endif
/*
* Fixup any known bugs in the device-tree
*/
fixup_device_tree();
/*
* Now finally create the flattened device-tree
*/
prom_printf("copying OF device tree...\n");
flatten_device_tree();
/*
* in case stdin is USB and still active on IBM machines...
* Unfortunately quiesce crashes on some powermacs if we have
* closed stdin already (in particular the powerbook 101). It
* appears that the OPAL version of OFW doesn't like it either.
*/
if (of_platform != PLATFORM_POWERMAC &&
of_platform != PLATFORM_OPAL)
prom_close_stdin();
/*
* Call OF "quiesce" method to shut down pending DMA's from
* devices etc...
*/
prom_printf("Quiescing Open Firmware ...\n");
call_prom("quiesce", 0, 0);
/*
* And finally, call the kernel passing it the flattened device
* tree and NULL as r5, thus triggering the new entry point which
* is common to us and kexec
*/
hdr = dt_header_start;
/* Don't print anything after quiesce under OPAL, it crashes OFW */
if (of_platform != PLATFORM_OPAL) {
prom_printf("Booting Linux via __start() @ 0x%lx ...\n", kbase);
prom_debug("->dt_header_start=0x%x\n", hdr);
}
#ifdef CONFIG_PPC32
reloc_got2(-offset);
#else
unreloc_toc();
#endif
#ifdef CONFIG_PPC_EARLY_DEBUG_OPAL
/* OPAL early debug gets the OPAL base & entry in r8 and r9 */
__start(hdr, kbase, 0, 0, 0,
prom_opal_base, prom_opal_entry);
#else
__start(hdr, kbase, 0, 0, 0, 0, 0);
#endif
return 0;
}