Go to file
Neeraj Upadhyay 683954e55c rcu: Check and report missed fqs timer wakeup on RCU stall
For a new grace period request, the RCU GP kthread transitions through
following states:

a. [RCU_GP_WAIT_GPS] -> [RCU_GP_DONE_GPS]

The RCU_GP_WAIT_GPS state is where the GP kthread waits for a request
for a new GP.  Once it receives a request (for example, when a new RCU
callback is queued), the GP kthread transitions to RCU_GP_DONE_GPS.

b. [RCU_GP_DONE_GPS] -> [RCU_GP_ONOFF]

Grace period initialization starts in rcu_gp_init(), which records the
start of new GP in rcu_state.gp_seq and transitions to RCU_GP_ONOFF.

c. [RCU_GP_ONOFF] -> [RCU_GP_INIT]

The purpose of the RCU_GP_ONOFF state is to apply the online/offline
information that was buffered for any CPUs that recently came online or
went offline.  This state is maintained in per-leaf rcu_node bitmasks,
with the buffered state in ->qsmaskinitnext and the state for the upcoming
GP in ->qsmaskinit.  At the end of this RCU_GP_ONOFF state, each bit in
->qsmaskinit will correspond to a CPU that must pass through a quiescent
state before the upcoming grace period is allowed to complete.

However, a leaf rcu_node structure with an all-zeroes ->qsmaskinit
cannot necessarily be ignored.  In preemptible RCU, there might well be
tasks still in RCU read-side critical sections that were first preempted
while running on one of the CPUs managed by this structure.  Such tasks
will be queued on this structure's ->blkd_tasks list.  Only after this
list fully drains can this leaf rcu_node structure be ignored, and even
then only if none of its CPUs have come back online in the meantime.
Once that happens, the ->qsmaskinit masks further up the tree will be
updated to exclude this leaf rcu_node structure.

Once the ->qsmaskinitnext and ->qsmaskinit fields have been updated
as needed, the GP kthread transitions to RCU_GP_INIT.

d. [RCU_GP_INIT] -> [RCU_GP_WAIT_FQS]

The purpose of the RCU_GP_INIT state is to copy each ->qsmaskinit to
the ->qsmask field within each rcu_node structure.  This copying is done
breadth-first from the root to the leaves.  Why not just copy directly
from ->qsmaskinitnext to ->qsmask?  Because the ->qsmaskinitnext masks
can change in the meantime as additional CPUs come online or go offline.
Such changes would result in inconsistencies in the ->qsmask fields up and
down the tree, which could in turn result in too-short grace periods or
grace-period hangs.  These issues are avoided by snapshotting the leaf
rcu_node structures' ->qsmaskinitnext fields into their ->qsmaskinit
counterparts, generating a consistent set of ->qsmaskinit fields
throughout the tree, and only then copying these consistent ->qsmaskinit
fields to their ->qsmask counterparts.

Once this initialization step is complete, the GP kthread transitions
to RCU_GP_WAIT_FQS, where it waits to do a force-quiescent-state scan
on the one hand or for the end of the grace period on the other.

e. [RCU_GP_WAIT_FQS] -> [RCU_GP_DOING_FQS]

The RCU_GP_WAIT_FQS state waits for one of three things:  (1) An
explicit request to do a force-quiescent-state scan, (2) The end of
the grace period, or (3) A short interval of time, after which it
will do a force-quiescent-state (FQS) scan.  The explicit request can
come from rcutorture or from any CPU that has too many RCU callbacks
queued (see the qhimark kernel parameter and the RCU_GP_FLAG_OVLD
flag).  The aforementioned "short period of time" is specified by the
jiffies_till_first_fqs boot parameter for a given grace period's first
FQS scan and by the jiffies_till_next_fqs for later FQS scans.

Either way, once the wait is over, the GP kthread transitions to
RCU_GP_DOING_FQS.

f. [RCU_GP_DOING_FQS] -> [RCU_GP_CLEANUP]

The RCU_GP_DOING_FQS state performs an FQS scan.  Each such scan carries
out two functions for any CPU whose bit is still set in its leaf rcu_node
structure's ->qsmask field, that is, for any CPU that has not yet reported
a quiescent state for the current grace period:

  i.  Report quiescent states on behalf of CPUs that have been observed
      to be idle (from an RCU perspective) since the beginning of the
      grace period.

  ii. If the current grace period is too old, take various actions to
      encourage holdout CPUs to pass through quiescent states, including
      enlisting the aid of any calls to cond_resched() and might_sleep(),
      and even including IPIing the holdout CPUs.

These checks are skipped for any leaf rcu_node structure with a all-zero
->qsmask field, however such structures are subject to RCU priority
boosting if there are tasks on a given structure blocking the current
grace period.  The end of the grace period is detected when the root
rcu_node structure's ->qsmask is zero and when there are no longer any
preempted tasks blocking the current grace period.  (No, this last check
is not redundant.  To see this, consider an rcu_node tree having exactly
one structure that serves as both root and leaf.)

Once the end of the grace period is detected, the GP kthread transitions
to RCU_GP_CLEANUP.

g. [RCU_GP_CLEANUP] -> [RCU_GP_CLEANED]

The RCU_GP_CLEANUP state marks the end of grace period by updating the
rcu_state structure's ->gp_seq field and also all rcu_node structures'
->gp_seq field.  As before, the rcu_node tree is traversed in breadth
first order.  Once this update is complete, the GP kthread transitions
to the RCU_GP_CLEANED state.

i. [RCU_GP_CLEANED] -> [RCU_GP_INIT]

Once in the RCU_GP_CLEANED state, the GP kthread immediately transitions
into the RCU_GP_INIT state.

j. The role of timers.

If there is at least one idle CPU, and if timers are not firing, the
transition from RCU_GP_DOING_FQS to RCU_GP_CLEANUP will never happen.
Timers can fail to fire for a number of reasons, including issues in
timer configuration, issues in the timer framework, and failure to handle
softirqs (for example, when there is a storm of interrupts).  Whatever the
reason, if the timers fail to fire, the GP kthread will never be awakened,
resulting in RCU CPU stall warnings and eventually in OOM.

However, an RCU CPU stall warning has a large number of potential causes,
as documented in Documentation/RCU/stallwarn.rst.  This commit therefore
adds analysis to the RCU CPU stall-warning code to emit an additional
message if the cause of the stall is likely to be timer failure.

Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-06 16:54:11 -08:00
arch RISC-V Fixes for 5.11-rc1 2020-12-24 14:05:05 -08:00
block block: update some copyrights 2020-12-22 08:43:06 -07:00
certs .gitignore: add SPDX License Identifier 2020-03-25 11:50:48 +01:00
crypto crypto: aegis128 - avoid spurious references crypto_aegis128_update_simd 2020-12-04 18:16:53 +11:00
Documentation rcu: Check and report missed fqs timer wakeup on RCU stall 2021-01-06 16:54:11 -08:00
drivers Big fix for IDT NTB and Intel NTB LTR management support 2020-12-27 09:22:55 -08:00
fs proc mountinfo: make splice available again 2020-12-27 12:00:36 -08:00
include Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs 2020-12-25 10:54:29 -08:00
init kasan, arm64: only use kasan_depth for software modes 2020-12-22 12:55:07 -08:00
ipc Merge branch 'akpm' (patches from Andrew) 2020-12-15 12:53:37 -08:00
kernel rcu: Check and report missed fqs timer wakeup on RCU stall 2021-01-06 16:54:11 -08:00
lib kasan: introduce CONFIG_KASAN_HW_TAGS 2020-12-22 12:55:07 -08:00
LICENSES LICENSES: Add the CC-BY-4.0 license 2020-12-08 10:33:27 -07:00
mm virtio,vdpa: features, cleanups, fixes 2020-12-24 12:06:46 -08:00
net 9p for 5.11-rc1 2020-12-21 10:28:02 -08:00
samples ARM: SoC drivers for v5.11 2020-12-16 16:38:41 -08:00
scripts Merge branch 'for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/jlawall/linux 2020-12-25 11:05:32 -08:00
security Provide a fix for the incorrect handling of privilege 2020-12-24 14:08:43 -08:00
sound sound fixes for 5.11-rc1 2020-12-23 15:11:08 -08:00
tools Fix a segfault that occurs when built with Clang. 2020-12-27 09:08:23 -08:00
usr Merge branch 'work.fdpic' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs 2020-08-07 13:29:39 -07:00
virt ARM: 2020-12-20 10:44:05 -08:00
.clang-format RDMA 5.10 pull request 2020-10-17 11:18:18 -07:00
.cocciconfig scripts: add Linux .cocciconfig for coccinelle 2016-07-22 12:13:39 +02:00
.get_maintainer.ignore Opt out of scripts/get_maintainer.pl 2019-05-16 10:53:40 -07:00
.gitattributes .gitattributes: use 'dts' diff driver for dts files 2019-12-04 19:44:11 -08:00
.gitignore .gitignore: docs: ignore sphinx_*/ directories 2020-09-10 10:44:31 -06:00
.mailmap RDMA 5.11 pull request 2020-12-16 13:42:26 -08:00
COPYING COPYING: state that all contributions really are covered by this file 2020-02-10 13:32:20 -08:00
CREDITS Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net 2020-12-11 22:29:38 -08:00
Kbuild kbuild: rename hostprogs-y/always to hostprogs/always-y 2020-02-04 01:53:07 +09:00
Kconfig kbuild: ensure full rebuild when the compiler is updated 2020-05-12 13:28:33 +09:00
MAINTAINERS Misc fixes/updates: 2020-12-27 09:06:10 -08:00
Makefile Linux 5.11-rc1 2020-12-27 15:30:22 -08:00
README Drop all 00-INDEX files from Documentation/ 2018-09-09 15:08:58 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.