mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 00:34:20 +08:00
e7ec02938d
We sometimes forgot to check whether the exclusive store succeeded. Ensure that we always check. Also ensure that we always use the out of line versions, since the inline versions are not SMP safe. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
422 lines
12 KiB
C
422 lines
12 KiB
C
/*
|
|
* Copyright 1995, Russell King.
|
|
* Various bits and pieces copyrights include:
|
|
* Linus Torvalds (test_bit).
|
|
* Big endian support: Copyright 2001, Nicolas Pitre
|
|
* reworked by rmk.
|
|
*
|
|
* bit 0 is the LSB of an "unsigned long" quantity.
|
|
*
|
|
* Please note that the code in this file should never be included
|
|
* from user space. Many of these are not implemented in assembler
|
|
* since they would be too costly. Also, they require privileged
|
|
* instructions (which are not available from user mode) to ensure
|
|
* that they are atomic.
|
|
*/
|
|
|
|
#ifndef __ASM_ARM_BITOPS_H
|
|
#define __ASM_ARM_BITOPS_H
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <asm/system.h>
|
|
|
|
#define smp_mb__before_clear_bit() mb()
|
|
#define smp_mb__after_clear_bit() mb()
|
|
|
|
/*
|
|
* These functions are the basis of our bit ops.
|
|
*
|
|
* First, the atomic bitops. These use native endian.
|
|
*/
|
|
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask = 1UL << (bit & 31);
|
|
|
|
p += bit >> 5;
|
|
|
|
local_irq_save(flags);
|
|
*p |= mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask = 1UL << (bit & 31);
|
|
|
|
p += bit >> 5;
|
|
|
|
local_irq_save(flags);
|
|
*p &= ~mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask = 1UL << (bit & 31);
|
|
|
|
p += bit >> 5;
|
|
|
|
local_irq_save(flags);
|
|
*p ^= mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline int
|
|
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int res;
|
|
unsigned long mask = 1UL << (bit & 31);
|
|
|
|
p += bit >> 5;
|
|
|
|
local_irq_save(flags);
|
|
res = *p;
|
|
*p = res | mask;
|
|
local_irq_restore(flags);
|
|
|
|
return res & mask;
|
|
}
|
|
|
|
static inline int
|
|
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int res;
|
|
unsigned long mask = 1UL << (bit & 31);
|
|
|
|
p += bit >> 5;
|
|
|
|
local_irq_save(flags);
|
|
res = *p;
|
|
*p = res & ~mask;
|
|
local_irq_restore(flags);
|
|
|
|
return res & mask;
|
|
}
|
|
|
|
static inline int
|
|
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int res;
|
|
unsigned long mask = 1UL << (bit & 31);
|
|
|
|
p += bit >> 5;
|
|
|
|
local_irq_save(flags);
|
|
res = *p;
|
|
*p = res ^ mask;
|
|
local_irq_restore(flags);
|
|
|
|
return res & mask;
|
|
}
|
|
|
|
/*
|
|
* Now the non-atomic variants. We let the compiler handle all
|
|
* optimisations for these. These are all _native_ endian.
|
|
*/
|
|
static inline void __set_bit(int nr, volatile unsigned long *p)
|
|
{
|
|
p[nr >> 5] |= (1UL << (nr & 31));
|
|
}
|
|
|
|
static inline void __clear_bit(int nr, volatile unsigned long *p)
|
|
{
|
|
p[nr >> 5] &= ~(1UL << (nr & 31));
|
|
}
|
|
|
|
static inline void __change_bit(int nr, volatile unsigned long *p)
|
|
{
|
|
p[nr >> 5] ^= (1UL << (nr & 31));
|
|
}
|
|
|
|
static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
|
|
{
|
|
unsigned long oldval, mask = 1UL << (nr & 31);
|
|
|
|
p += nr >> 5;
|
|
|
|
oldval = *p;
|
|
*p = oldval | mask;
|
|
return oldval & mask;
|
|
}
|
|
|
|
static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
|
|
{
|
|
unsigned long oldval, mask = 1UL << (nr & 31);
|
|
|
|
p += nr >> 5;
|
|
|
|
oldval = *p;
|
|
*p = oldval & ~mask;
|
|
return oldval & mask;
|
|
}
|
|
|
|
static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
|
|
{
|
|
unsigned long oldval, mask = 1UL << (nr & 31);
|
|
|
|
p += nr >> 5;
|
|
|
|
oldval = *p;
|
|
*p = oldval ^ mask;
|
|
return oldval & mask;
|
|
}
|
|
|
|
/*
|
|
* This routine doesn't need to be atomic.
|
|
*/
|
|
static inline int __test_bit(int nr, const volatile unsigned long * p)
|
|
{
|
|
return (p[nr >> 5] >> (nr & 31)) & 1UL;
|
|
}
|
|
|
|
/*
|
|
* A note about Endian-ness.
|
|
* -------------------------
|
|
*
|
|
* When the ARM is put into big endian mode via CR15, the processor
|
|
* merely swaps the order of bytes within words, thus:
|
|
*
|
|
* ------------ physical data bus bits -----------
|
|
* D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
|
|
* little byte 3 byte 2 byte 1 byte 0
|
|
* big byte 0 byte 1 byte 2 byte 3
|
|
*
|
|
* This means that reading a 32-bit word at address 0 returns the same
|
|
* value irrespective of the endian mode bit.
|
|
*
|
|
* Peripheral devices should be connected with the data bus reversed in
|
|
* "Big Endian" mode. ARM Application Note 61 is applicable, and is
|
|
* available from http://www.arm.com/.
|
|
*
|
|
* The following assumes that the data bus connectivity for big endian
|
|
* mode has been followed.
|
|
*
|
|
* Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
|
|
*/
|
|
|
|
/*
|
|
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
|
|
*/
|
|
extern void _set_bit_le(int nr, volatile unsigned long * p);
|
|
extern void _clear_bit_le(int nr, volatile unsigned long * p);
|
|
extern void _change_bit_le(int nr, volatile unsigned long * p);
|
|
extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
|
|
extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
|
|
extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
|
|
extern int _find_first_zero_bit_le(const void * p, unsigned size);
|
|
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
|
|
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
|
|
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
|
|
|
|
/*
|
|
* Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
|
|
*/
|
|
extern void _set_bit_be(int nr, volatile unsigned long * p);
|
|
extern void _clear_bit_be(int nr, volatile unsigned long * p);
|
|
extern void _change_bit_be(int nr, volatile unsigned long * p);
|
|
extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
|
|
extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
|
|
extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
|
|
extern int _find_first_zero_bit_be(const void * p, unsigned size);
|
|
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
|
|
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
|
|
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
|
|
|
|
#ifndef CONFIG_SMP
|
|
/*
|
|
* The __* form of bitops are non-atomic and may be reordered.
|
|
*/
|
|
#define ATOMIC_BITOP_LE(name,nr,p) \
|
|
(__builtin_constant_p(nr) ? \
|
|
____atomic_##name(nr, p) : \
|
|
_##name##_le(nr,p))
|
|
|
|
#define ATOMIC_BITOP_BE(name,nr,p) \
|
|
(__builtin_constant_p(nr) ? \
|
|
____atomic_##name(nr, p) : \
|
|
_##name##_be(nr,p))
|
|
#else
|
|
#define ATOMIC_BITOP_LE(name,nr,p) _##name##_le(nr,p)
|
|
#define ATOMIC_BITOP_BE(name,nr,p) _##name##_be(nr,p)
|
|
#endif
|
|
|
|
#define NONATOMIC_BITOP(name,nr,p) \
|
|
(____nonatomic_##name(nr, p))
|
|
|
|
#ifndef __ARMEB__
|
|
/*
|
|
* These are the little endian, atomic definitions.
|
|
*/
|
|
#define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p)
|
|
#define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p)
|
|
#define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p)
|
|
#define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
|
|
#define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
|
|
#define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
|
|
#define test_bit(nr,p) __test_bit(nr,p)
|
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
|
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
|
|
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
|
|
#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
|
|
|
|
#define WORD_BITOFF_TO_LE(x) ((x))
|
|
|
|
#else
|
|
|
|
/*
|
|
* These are the big endian, atomic definitions.
|
|
*/
|
|
#define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p)
|
|
#define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p)
|
|
#define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p)
|
|
#define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
|
|
#define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
|
|
#define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
|
|
#define test_bit(nr,p) __test_bit(nr,p)
|
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
|
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
|
|
#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
|
|
#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
|
|
|
|
#define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18)
|
|
|
|
#endif
|
|
|
|
#if __LINUX_ARM_ARCH__ < 5
|
|
|
|
/*
|
|
* ffz = Find First Zero in word. Undefined if no zero exists,
|
|
* so code should check against ~0UL first..
|
|
*/
|
|
static inline unsigned long ffz(unsigned long word)
|
|
{
|
|
int k;
|
|
|
|
word = ~word;
|
|
k = 31;
|
|
if (word & 0x0000ffff) { k -= 16; word <<= 16; }
|
|
if (word & 0x00ff0000) { k -= 8; word <<= 8; }
|
|
if (word & 0x0f000000) { k -= 4; word <<= 4; }
|
|
if (word & 0x30000000) { k -= 2; word <<= 2; }
|
|
if (word & 0x40000000) { k -= 1; }
|
|
return k;
|
|
}
|
|
|
|
/*
|
|
* ffz = Find First Zero in word. Undefined if no zero exists,
|
|
* so code should check against ~0UL first..
|
|
*/
|
|
static inline unsigned long __ffs(unsigned long word)
|
|
{
|
|
int k;
|
|
|
|
k = 31;
|
|
if (word & 0x0000ffff) { k -= 16; word <<= 16; }
|
|
if (word & 0x00ff0000) { k -= 8; word <<= 8; }
|
|
if (word & 0x0f000000) { k -= 4; word <<= 4; }
|
|
if (word & 0x30000000) { k -= 2; word <<= 2; }
|
|
if (word & 0x40000000) { k -= 1; }
|
|
return k;
|
|
}
|
|
|
|
/*
|
|
* fls: find last bit set.
|
|
*/
|
|
|
|
#define fls(x) generic_fls(x)
|
|
|
|
/*
|
|
* ffs: find first bit set. This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
|
|
#define ffs(x) generic_ffs(x)
|
|
|
|
#else
|
|
|
|
/*
|
|
* On ARMv5 and above those functions can be implemented around
|
|
* the clz instruction for much better code efficiency.
|
|
*/
|
|
|
|
static __inline__ int generic_fls(int x);
|
|
#define fls(x) \
|
|
( __builtin_constant_p(x) ? generic_fls(x) : \
|
|
({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
|
|
#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
|
|
#define __ffs(x) (ffs(x) - 1)
|
|
#define ffz(x) __ffs( ~(x) )
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Find first bit set in a 168-bit bitmap, where the first
|
|
* 128 bits are unlikely to be set.
|
|
*/
|
|
static inline int sched_find_first_bit(const unsigned long *b)
|
|
{
|
|
unsigned long v;
|
|
unsigned int off;
|
|
|
|
for (off = 0; v = b[off], off < 4; off++) {
|
|
if (unlikely(v))
|
|
break;
|
|
}
|
|
return __ffs(v) + off * 32;
|
|
}
|
|
|
|
/*
|
|
* hweightN: returns the hamming weight (i.e. the number
|
|
* of bits set) of a N-bit word
|
|
*/
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
/*
|
|
* Ext2 is defined to use little-endian byte ordering.
|
|
* These do not need to be atomic.
|
|
*/
|
|
#define ext2_set_bit(nr,p) \
|
|
__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define ext2_set_bit_atomic(lock,nr,p) \
|
|
test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define ext2_clear_bit(nr,p) \
|
|
__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define ext2_clear_bit_atomic(lock,nr,p) \
|
|
test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define ext2_test_bit(nr,p) \
|
|
__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define ext2_find_first_zero_bit(p,sz) \
|
|
_find_first_zero_bit_le(p,sz)
|
|
#define ext2_find_next_zero_bit(p,sz,off) \
|
|
_find_next_zero_bit_le(p,sz,off)
|
|
|
|
/*
|
|
* Minix is defined to use little-endian byte ordering.
|
|
* These do not need to be atomic.
|
|
*/
|
|
#define minix_set_bit(nr,p) \
|
|
__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define minix_test_bit(nr,p) \
|
|
__test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define minix_test_and_set_bit(nr,p) \
|
|
__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define minix_test_and_clear_bit(nr,p) \
|
|
__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
#define minix_find_first_zero_bit(p,sz) \
|
|
_find_first_zero_bit_le(p,sz)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _ARM_BITOPS_H */
|