mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 17:54:13 +08:00
a67012412e
And that I didn't have the bad code in my config file when I cross compiled it, although there are a few other errors in sh that makes it not build for me, I missed that I added one more. I replaced WARN_ON(current->curr_ret_stack) with WARN_ON(ftrace_graph_get_ret_stack(current, 1) where it should be: WARN_ON(ftrace_graph_get_ret_stack(current, 1)) -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXC7PuRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qv7rAQDMtgYCknUW6P5TOgytQ9x7+TfMld1O mqD689wl9Rb5GwD/ec9BsDoSu7jeVizb7Si1kUAPYndV4E/3NFbwSZbaqAU= =W7wU -----END PGP SIGNATURE----- Merge tag 'trace-v4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull ftrace sh build fix from Steven Rostedt: "It appears that the zero-day bot did find a bug in my sh build. And that I didn't have the bad code in my config file when I cross compiled it, although there are a few other errors in sh that makes it not build for me, I missed that I added one more" * tag 'trace-v4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: sh: ftrace: Fix missing parenthesis in WARN_ON()
1207 lines
29 KiB
C
1207 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
|
|
*
|
|
* This is an implementation of a DWARF unwinder. Its main purpose is
|
|
* for generating stacktrace information. Based on the DWARF 3
|
|
* specification from http://www.dwarfstd.org.
|
|
*
|
|
* TODO:
|
|
* - DWARF64 doesn't work.
|
|
* - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
|
|
*/
|
|
|
|
/* #define DEBUG */
|
|
#include <linux/kernel.h>
|
|
#include <linux/io.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/dwarf.h>
|
|
#include <asm/unwinder.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/unaligned.h>
|
|
#include <asm/stacktrace.h>
|
|
|
|
/* Reserve enough memory for two stack frames */
|
|
#define DWARF_FRAME_MIN_REQ 2
|
|
/* ... with 4 registers per frame. */
|
|
#define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
|
|
|
|
static struct kmem_cache *dwarf_frame_cachep;
|
|
static mempool_t *dwarf_frame_pool;
|
|
|
|
static struct kmem_cache *dwarf_reg_cachep;
|
|
static mempool_t *dwarf_reg_pool;
|
|
|
|
static struct rb_root cie_root;
|
|
static DEFINE_SPINLOCK(dwarf_cie_lock);
|
|
|
|
static struct rb_root fde_root;
|
|
static DEFINE_SPINLOCK(dwarf_fde_lock);
|
|
|
|
static struct dwarf_cie *cached_cie;
|
|
|
|
static unsigned int dwarf_unwinder_ready;
|
|
|
|
/**
|
|
* dwarf_frame_alloc_reg - allocate memory for a DWARF register
|
|
* @frame: the DWARF frame whose list of registers we insert on
|
|
* @reg_num: the register number
|
|
*
|
|
* Allocate space for, and initialise, a dwarf reg from
|
|
* dwarf_reg_pool and insert it onto the (unsorted) linked-list of
|
|
* dwarf registers for @frame.
|
|
*
|
|
* Return the initialised DWARF reg.
|
|
*/
|
|
static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
|
|
unsigned int reg_num)
|
|
{
|
|
struct dwarf_reg *reg;
|
|
|
|
reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
|
|
if (!reg) {
|
|
printk(KERN_WARNING "Unable to allocate a DWARF register\n");
|
|
/*
|
|
* Let's just bomb hard here, we have no way to
|
|
* gracefully recover.
|
|
*/
|
|
UNWINDER_BUG();
|
|
}
|
|
|
|
reg->number = reg_num;
|
|
reg->addr = 0;
|
|
reg->flags = 0;
|
|
|
|
list_add(®->link, &frame->reg_list);
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void dwarf_frame_free_regs(struct dwarf_frame *frame)
|
|
{
|
|
struct dwarf_reg *reg, *n;
|
|
|
|
list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
|
|
list_del(®->link);
|
|
mempool_free(reg, dwarf_reg_pool);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dwarf_frame_reg - return a DWARF register
|
|
* @frame: the DWARF frame to search in for @reg_num
|
|
* @reg_num: the register number to search for
|
|
*
|
|
* Lookup and return the dwarf reg @reg_num for this frame. Return
|
|
* NULL if @reg_num is an register invalid number.
|
|
*/
|
|
static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
|
|
unsigned int reg_num)
|
|
{
|
|
struct dwarf_reg *reg;
|
|
|
|
list_for_each_entry(reg, &frame->reg_list, link) {
|
|
if (reg->number == reg_num)
|
|
return reg;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* dwarf_read_addr - read dwarf data
|
|
* @src: source address of data
|
|
* @dst: destination address to store the data to
|
|
*
|
|
* Read 'n' bytes from @src, where 'n' is the size of an address on
|
|
* the native machine. We return the number of bytes read, which
|
|
* should always be 'n'. We also have to be careful when reading
|
|
* from @src and writing to @dst, because they can be arbitrarily
|
|
* aligned. Return 'n' - the number of bytes read.
|
|
*/
|
|
static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
|
|
{
|
|
u32 val = get_unaligned(src);
|
|
put_unaligned(val, dst);
|
|
return sizeof(unsigned long *);
|
|
}
|
|
|
|
/**
|
|
* dwarf_read_uleb128 - read unsigned LEB128 data
|
|
* @addr: the address where the ULEB128 data is stored
|
|
* @ret: address to store the result
|
|
*
|
|
* Decode an unsigned LEB128 encoded datum. The algorithm is taken
|
|
* from Appendix C of the DWARF 3 spec. For information on the
|
|
* encodings refer to section "7.6 - Variable Length Data". Return
|
|
* the number of bytes read.
|
|
*/
|
|
static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
|
|
{
|
|
unsigned int result;
|
|
unsigned char byte;
|
|
int shift, count;
|
|
|
|
result = 0;
|
|
shift = 0;
|
|
count = 0;
|
|
|
|
while (1) {
|
|
byte = __raw_readb(addr);
|
|
addr++;
|
|
count++;
|
|
|
|
result |= (byte & 0x7f) << shift;
|
|
shift += 7;
|
|
|
|
if (!(byte & 0x80))
|
|
break;
|
|
}
|
|
|
|
*ret = result;
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* dwarf_read_leb128 - read signed LEB128 data
|
|
* @addr: the address of the LEB128 encoded data
|
|
* @ret: address to store the result
|
|
*
|
|
* Decode signed LEB128 data. The algorithm is taken from Appendix
|
|
* C of the DWARF 3 spec. Return the number of bytes read.
|
|
*/
|
|
static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
|
|
{
|
|
unsigned char byte;
|
|
int result, shift;
|
|
int num_bits;
|
|
int count;
|
|
|
|
result = 0;
|
|
shift = 0;
|
|
count = 0;
|
|
|
|
while (1) {
|
|
byte = __raw_readb(addr);
|
|
addr++;
|
|
result |= (byte & 0x7f) << shift;
|
|
shift += 7;
|
|
count++;
|
|
|
|
if (!(byte & 0x80))
|
|
break;
|
|
}
|
|
|
|
/* The number of bits in a signed integer. */
|
|
num_bits = 8 * sizeof(result);
|
|
|
|
if ((shift < num_bits) && (byte & 0x40))
|
|
result |= (-1 << shift);
|
|
|
|
*ret = result;
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* dwarf_read_encoded_value - return the decoded value at @addr
|
|
* @addr: the address of the encoded value
|
|
* @val: where to write the decoded value
|
|
* @encoding: the encoding with which we can decode @addr
|
|
*
|
|
* GCC emits encoded address in the .eh_frame FDE entries. Decode
|
|
* the value at @addr using @encoding. The decoded value is written
|
|
* to @val and the number of bytes read is returned.
|
|
*/
|
|
static int dwarf_read_encoded_value(char *addr, unsigned long *val,
|
|
char encoding)
|
|
{
|
|
unsigned long decoded_addr = 0;
|
|
int count = 0;
|
|
|
|
switch (encoding & 0x70) {
|
|
case DW_EH_PE_absptr:
|
|
break;
|
|
case DW_EH_PE_pcrel:
|
|
decoded_addr = (unsigned long)addr;
|
|
break;
|
|
default:
|
|
pr_debug("encoding=0x%x\n", (encoding & 0x70));
|
|
UNWINDER_BUG();
|
|
}
|
|
|
|
if ((encoding & 0x07) == 0x00)
|
|
encoding |= DW_EH_PE_udata4;
|
|
|
|
switch (encoding & 0x0f) {
|
|
case DW_EH_PE_sdata4:
|
|
case DW_EH_PE_udata4:
|
|
count += 4;
|
|
decoded_addr += get_unaligned((u32 *)addr);
|
|
__raw_writel(decoded_addr, val);
|
|
break;
|
|
default:
|
|
pr_debug("encoding=0x%x\n", encoding);
|
|
UNWINDER_BUG();
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* dwarf_entry_len - return the length of an FDE or CIE
|
|
* @addr: the address of the entry
|
|
* @len: the length of the entry
|
|
*
|
|
* Read the initial_length field of the entry and store the size of
|
|
* the entry in @len. We return the number of bytes read. Return a
|
|
* count of 0 on error.
|
|
*/
|
|
static inline int dwarf_entry_len(char *addr, unsigned long *len)
|
|
{
|
|
u32 initial_len;
|
|
int count;
|
|
|
|
initial_len = get_unaligned((u32 *)addr);
|
|
count = 4;
|
|
|
|
/*
|
|
* An initial length field value in the range DW_LEN_EXT_LO -
|
|
* DW_LEN_EXT_HI indicates an extension, and should not be
|
|
* interpreted as a length. The only extension that we currently
|
|
* understand is the use of DWARF64 addresses.
|
|
*/
|
|
if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
|
|
/*
|
|
* The 64-bit length field immediately follows the
|
|
* compulsory 32-bit length field.
|
|
*/
|
|
if (initial_len == DW_EXT_DWARF64) {
|
|
*len = get_unaligned((u64 *)addr + 4);
|
|
count = 12;
|
|
} else {
|
|
printk(KERN_WARNING "Unknown DWARF extension\n");
|
|
count = 0;
|
|
}
|
|
} else
|
|
*len = initial_len;
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* dwarf_lookup_cie - locate the cie
|
|
* @cie_ptr: pointer to help with lookup
|
|
*/
|
|
static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
|
|
{
|
|
struct rb_node **rb_node = &cie_root.rb_node;
|
|
struct dwarf_cie *cie = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dwarf_cie_lock, flags);
|
|
|
|
/*
|
|
* We've cached the last CIE we looked up because chances are
|
|
* that the FDE wants this CIE.
|
|
*/
|
|
if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
|
|
cie = cached_cie;
|
|
goto out;
|
|
}
|
|
|
|
while (*rb_node) {
|
|
struct dwarf_cie *cie_tmp;
|
|
|
|
cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
|
|
BUG_ON(!cie_tmp);
|
|
|
|
if (cie_ptr == cie_tmp->cie_pointer) {
|
|
cie = cie_tmp;
|
|
cached_cie = cie_tmp;
|
|
goto out;
|
|
} else {
|
|
if (cie_ptr < cie_tmp->cie_pointer)
|
|
rb_node = &(*rb_node)->rb_left;
|
|
else
|
|
rb_node = &(*rb_node)->rb_right;
|
|
}
|
|
}
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
|
|
return cie;
|
|
}
|
|
|
|
/**
|
|
* dwarf_lookup_fde - locate the FDE that covers pc
|
|
* @pc: the program counter
|
|
*/
|
|
struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
|
|
{
|
|
struct rb_node **rb_node = &fde_root.rb_node;
|
|
struct dwarf_fde *fde = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dwarf_fde_lock, flags);
|
|
|
|
while (*rb_node) {
|
|
struct dwarf_fde *fde_tmp;
|
|
unsigned long tmp_start, tmp_end;
|
|
|
|
fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
|
|
BUG_ON(!fde_tmp);
|
|
|
|
tmp_start = fde_tmp->initial_location;
|
|
tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
|
|
|
|
if (pc < tmp_start) {
|
|
rb_node = &(*rb_node)->rb_left;
|
|
} else {
|
|
if (pc < tmp_end) {
|
|
fde = fde_tmp;
|
|
goto out;
|
|
} else
|
|
rb_node = &(*rb_node)->rb_right;
|
|
}
|
|
}
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
|
|
|
|
return fde;
|
|
}
|
|
|
|
/**
|
|
* dwarf_cfa_execute_insns - execute instructions to calculate a CFA
|
|
* @insn_start: address of the first instruction
|
|
* @insn_end: address of the last instruction
|
|
* @cie: the CIE for this function
|
|
* @fde: the FDE for this function
|
|
* @frame: the instructions calculate the CFA for this frame
|
|
* @pc: the program counter of the address we're interested in
|
|
*
|
|
* Execute the Call Frame instruction sequence starting at
|
|
* @insn_start and ending at @insn_end. The instructions describe
|
|
* how to calculate the Canonical Frame Address of a stackframe.
|
|
* Store the results in @frame.
|
|
*/
|
|
static int dwarf_cfa_execute_insns(unsigned char *insn_start,
|
|
unsigned char *insn_end,
|
|
struct dwarf_cie *cie,
|
|
struct dwarf_fde *fde,
|
|
struct dwarf_frame *frame,
|
|
unsigned long pc)
|
|
{
|
|
unsigned char insn;
|
|
unsigned char *current_insn;
|
|
unsigned int count, delta, reg, expr_len, offset;
|
|
struct dwarf_reg *regp;
|
|
|
|
current_insn = insn_start;
|
|
|
|
while (current_insn < insn_end && frame->pc <= pc) {
|
|
insn = __raw_readb(current_insn++);
|
|
|
|
/*
|
|
* Firstly, handle the opcodes that embed their operands
|
|
* in the instructions.
|
|
*/
|
|
switch (DW_CFA_opcode(insn)) {
|
|
case DW_CFA_advance_loc:
|
|
delta = DW_CFA_operand(insn);
|
|
delta *= cie->code_alignment_factor;
|
|
frame->pc += delta;
|
|
continue;
|
|
/* NOTREACHED */
|
|
case DW_CFA_offset:
|
|
reg = DW_CFA_operand(insn);
|
|
count = dwarf_read_uleb128(current_insn, &offset);
|
|
current_insn += count;
|
|
offset *= cie->data_alignment_factor;
|
|
regp = dwarf_frame_alloc_reg(frame, reg);
|
|
regp->addr = offset;
|
|
regp->flags |= DWARF_REG_OFFSET;
|
|
continue;
|
|
/* NOTREACHED */
|
|
case DW_CFA_restore:
|
|
reg = DW_CFA_operand(insn);
|
|
continue;
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Secondly, handle the opcodes that don't embed their
|
|
* operands in the instruction.
|
|
*/
|
|
switch (insn) {
|
|
case DW_CFA_nop:
|
|
continue;
|
|
case DW_CFA_advance_loc1:
|
|
delta = *current_insn++;
|
|
frame->pc += delta * cie->code_alignment_factor;
|
|
break;
|
|
case DW_CFA_advance_loc2:
|
|
delta = get_unaligned((u16 *)current_insn);
|
|
current_insn += 2;
|
|
frame->pc += delta * cie->code_alignment_factor;
|
|
break;
|
|
case DW_CFA_advance_loc4:
|
|
delta = get_unaligned((u32 *)current_insn);
|
|
current_insn += 4;
|
|
frame->pc += delta * cie->code_alignment_factor;
|
|
break;
|
|
case DW_CFA_offset_extended:
|
|
count = dwarf_read_uleb128(current_insn, ®);
|
|
current_insn += count;
|
|
count = dwarf_read_uleb128(current_insn, &offset);
|
|
current_insn += count;
|
|
offset *= cie->data_alignment_factor;
|
|
break;
|
|
case DW_CFA_restore_extended:
|
|
count = dwarf_read_uleb128(current_insn, ®);
|
|
current_insn += count;
|
|
break;
|
|
case DW_CFA_undefined:
|
|
count = dwarf_read_uleb128(current_insn, ®);
|
|
current_insn += count;
|
|
regp = dwarf_frame_alloc_reg(frame, reg);
|
|
regp->flags |= DWARF_UNDEFINED;
|
|
break;
|
|
case DW_CFA_def_cfa:
|
|
count = dwarf_read_uleb128(current_insn,
|
|
&frame->cfa_register);
|
|
current_insn += count;
|
|
count = dwarf_read_uleb128(current_insn,
|
|
&frame->cfa_offset);
|
|
current_insn += count;
|
|
|
|
frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
|
|
break;
|
|
case DW_CFA_def_cfa_register:
|
|
count = dwarf_read_uleb128(current_insn,
|
|
&frame->cfa_register);
|
|
current_insn += count;
|
|
frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
|
|
break;
|
|
case DW_CFA_def_cfa_offset:
|
|
count = dwarf_read_uleb128(current_insn, &offset);
|
|
current_insn += count;
|
|
frame->cfa_offset = offset;
|
|
break;
|
|
case DW_CFA_def_cfa_expression:
|
|
count = dwarf_read_uleb128(current_insn, &expr_len);
|
|
current_insn += count;
|
|
|
|
frame->cfa_expr = current_insn;
|
|
frame->cfa_expr_len = expr_len;
|
|
current_insn += expr_len;
|
|
|
|
frame->flags |= DWARF_FRAME_CFA_REG_EXP;
|
|
break;
|
|
case DW_CFA_offset_extended_sf:
|
|
count = dwarf_read_uleb128(current_insn, ®);
|
|
current_insn += count;
|
|
count = dwarf_read_leb128(current_insn, &offset);
|
|
current_insn += count;
|
|
offset *= cie->data_alignment_factor;
|
|
regp = dwarf_frame_alloc_reg(frame, reg);
|
|
regp->flags |= DWARF_REG_OFFSET;
|
|
regp->addr = offset;
|
|
break;
|
|
case DW_CFA_val_offset:
|
|
count = dwarf_read_uleb128(current_insn, ®);
|
|
current_insn += count;
|
|
count = dwarf_read_leb128(current_insn, &offset);
|
|
offset *= cie->data_alignment_factor;
|
|
regp = dwarf_frame_alloc_reg(frame, reg);
|
|
regp->flags |= DWARF_VAL_OFFSET;
|
|
regp->addr = offset;
|
|
break;
|
|
case DW_CFA_GNU_args_size:
|
|
count = dwarf_read_uleb128(current_insn, &offset);
|
|
current_insn += count;
|
|
break;
|
|
case DW_CFA_GNU_negative_offset_extended:
|
|
count = dwarf_read_uleb128(current_insn, ®);
|
|
current_insn += count;
|
|
count = dwarf_read_uleb128(current_insn, &offset);
|
|
offset *= cie->data_alignment_factor;
|
|
|
|
regp = dwarf_frame_alloc_reg(frame, reg);
|
|
regp->flags |= DWARF_REG_OFFSET;
|
|
regp->addr = -offset;
|
|
break;
|
|
default:
|
|
pr_debug("unhandled DWARF instruction 0x%x\n", insn);
|
|
UNWINDER_BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dwarf_free_frame - free the memory allocated for @frame
|
|
* @frame: the frame to free
|
|
*/
|
|
void dwarf_free_frame(struct dwarf_frame *frame)
|
|
{
|
|
dwarf_frame_free_regs(frame);
|
|
mempool_free(frame, dwarf_frame_pool);
|
|
}
|
|
|
|
extern void ret_from_irq(void);
|
|
|
|
/**
|
|
* dwarf_unwind_stack - unwind the stack
|
|
*
|
|
* @pc: address of the function to unwind
|
|
* @prev: struct dwarf_frame of the previous stackframe on the callstack
|
|
*
|
|
* Return a struct dwarf_frame representing the most recent frame
|
|
* on the callstack. Each of the lower (older) stack frames are
|
|
* linked via the "prev" member.
|
|
*/
|
|
struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
|
|
struct dwarf_frame *prev)
|
|
{
|
|
struct dwarf_frame *frame;
|
|
struct dwarf_cie *cie;
|
|
struct dwarf_fde *fde;
|
|
struct dwarf_reg *reg;
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* If we've been called in to before initialization has
|
|
* completed, bail out immediately.
|
|
*/
|
|
if (!dwarf_unwinder_ready)
|
|
return NULL;
|
|
|
|
/*
|
|
* If we're starting at the top of the stack we need get the
|
|
* contents of a physical register to get the CFA in order to
|
|
* begin the virtual unwinding of the stack.
|
|
*
|
|
* NOTE: the return address is guaranteed to be setup by the
|
|
* time this function makes its first function call.
|
|
*/
|
|
if (!pc || !prev)
|
|
pc = _THIS_IP_;
|
|
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
/*
|
|
* If our stack has been patched by the function graph tracer
|
|
* then we might see the address of return_to_handler() where we
|
|
* expected to find the real return address.
|
|
*/
|
|
if (pc == (unsigned long)&return_to_handler) {
|
|
struct ftrace_ret_stack *ret_stack;
|
|
|
|
ret_stack = ftrace_graph_get_ret_stack(current, 0);
|
|
if (ret_stack)
|
|
pc = ret_stack->ret;
|
|
/*
|
|
* We currently have no way of tracking how many
|
|
* return_to_handler()'s we've seen. If there is more
|
|
* than one patched return address on our stack,
|
|
* complain loudly.
|
|
*/
|
|
WARN_ON(ftrace_graph_get_ret_stack(current, 1));
|
|
}
|
|
#endif
|
|
|
|
frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
|
|
if (!frame) {
|
|
printk(KERN_ERR "Unable to allocate a dwarf frame\n");
|
|
UNWINDER_BUG();
|
|
}
|
|
|
|
INIT_LIST_HEAD(&frame->reg_list);
|
|
frame->flags = 0;
|
|
frame->prev = prev;
|
|
frame->return_addr = 0;
|
|
|
|
fde = dwarf_lookup_fde(pc);
|
|
if (!fde) {
|
|
/*
|
|
* This is our normal exit path. There are two reasons
|
|
* why we might exit here,
|
|
*
|
|
* a) pc has no asscociated DWARF frame info and so
|
|
* we don't know how to unwind this frame. This is
|
|
* usually the case when we're trying to unwind a
|
|
* frame that was called from some assembly code
|
|
* that has no DWARF info, e.g. syscalls.
|
|
*
|
|
* b) the DEBUG info for pc is bogus. There's
|
|
* really no way to distinguish this case from the
|
|
* case above, which sucks because we could print a
|
|
* warning here.
|
|
*/
|
|
goto bail;
|
|
}
|
|
|
|
cie = dwarf_lookup_cie(fde->cie_pointer);
|
|
|
|
frame->pc = fde->initial_location;
|
|
|
|
/* CIE initial instructions */
|
|
dwarf_cfa_execute_insns(cie->initial_instructions,
|
|
cie->instructions_end, cie, fde,
|
|
frame, pc);
|
|
|
|
/* FDE instructions */
|
|
dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
|
|
fde, frame, pc);
|
|
|
|
/* Calculate the CFA */
|
|
switch (frame->flags) {
|
|
case DWARF_FRAME_CFA_REG_OFFSET:
|
|
if (prev) {
|
|
reg = dwarf_frame_reg(prev, frame->cfa_register);
|
|
UNWINDER_BUG_ON(!reg);
|
|
UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
|
|
|
|
addr = prev->cfa + reg->addr;
|
|
frame->cfa = __raw_readl(addr);
|
|
|
|
} else {
|
|
/*
|
|
* Again, we're starting from the top of the
|
|
* stack. We need to physically read
|
|
* the contents of a register in order to get
|
|
* the Canonical Frame Address for this
|
|
* function.
|
|
*/
|
|
frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
|
|
}
|
|
|
|
frame->cfa += frame->cfa_offset;
|
|
break;
|
|
default:
|
|
UNWINDER_BUG();
|
|
}
|
|
|
|
reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
|
|
|
|
/*
|
|
* If we haven't seen the return address register or the return
|
|
* address column is undefined then we must assume that this is
|
|
* the end of the callstack.
|
|
*/
|
|
if (!reg || reg->flags == DWARF_UNDEFINED)
|
|
goto bail;
|
|
|
|
UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
|
|
|
|
addr = frame->cfa + reg->addr;
|
|
frame->return_addr = __raw_readl(addr);
|
|
|
|
/*
|
|
* Ah, the joys of unwinding through interrupts.
|
|
*
|
|
* Interrupts are tricky - the DWARF info needs to be _really_
|
|
* accurate and unfortunately I'm seeing a lot of bogus DWARF
|
|
* info. For example, I've seen interrupts occur in epilogues
|
|
* just after the frame pointer (r14) had been restored. The
|
|
* problem was that the DWARF info claimed that the CFA could be
|
|
* reached by using the value of the frame pointer before it was
|
|
* restored.
|
|
*
|
|
* So until the compiler can be trusted to produce reliable
|
|
* DWARF info when it really matters, let's stop unwinding once
|
|
* we've calculated the function that was interrupted.
|
|
*/
|
|
if (prev && prev->pc == (unsigned long)ret_from_irq)
|
|
frame->return_addr = 0;
|
|
|
|
return frame;
|
|
|
|
bail:
|
|
dwarf_free_frame(frame);
|
|
return NULL;
|
|
}
|
|
|
|
static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
|
|
unsigned char *end, struct module *mod)
|
|
{
|
|
struct rb_node **rb_node = &cie_root.rb_node;
|
|
struct rb_node *parent = *rb_node;
|
|
struct dwarf_cie *cie;
|
|
unsigned long flags;
|
|
int count;
|
|
|
|
cie = kzalloc(sizeof(*cie), GFP_KERNEL);
|
|
if (!cie)
|
|
return -ENOMEM;
|
|
|
|
cie->length = len;
|
|
|
|
/*
|
|
* Record the offset into the .eh_frame section
|
|
* for this CIE. It allows this CIE to be
|
|
* quickly and easily looked up from the
|
|
* corresponding FDE.
|
|
*/
|
|
cie->cie_pointer = (unsigned long)entry;
|
|
|
|
cie->version = *(char *)p++;
|
|
UNWINDER_BUG_ON(cie->version != 1);
|
|
|
|
cie->augmentation = p;
|
|
p += strlen(cie->augmentation) + 1;
|
|
|
|
count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
|
|
p += count;
|
|
|
|
count = dwarf_read_leb128(p, &cie->data_alignment_factor);
|
|
p += count;
|
|
|
|
/*
|
|
* Which column in the rule table contains the
|
|
* return address?
|
|
*/
|
|
if (cie->version == 1) {
|
|
cie->return_address_reg = __raw_readb(p);
|
|
p++;
|
|
} else {
|
|
count = dwarf_read_uleb128(p, &cie->return_address_reg);
|
|
p += count;
|
|
}
|
|
|
|
if (cie->augmentation[0] == 'z') {
|
|
unsigned int length, count;
|
|
cie->flags |= DWARF_CIE_Z_AUGMENTATION;
|
|
|
|
count = dwarf_read_uleb128(p, &length);
|
|
p += count;
|
|
|
|
UNWINDER_BUG_ON((unsigned char *)p > end);
|
|
|
|
cie->initial_instructions = p + length;
|
|
cie->augmentation++;
|
|
}
|
|
|
|
while (*cie->augmentation) {
|
|
/*
|
|
* "L" indicates a byte showing how the
|
|
* LSDA pointer is encoded. Skip it.
|
|
*/
|
|
if (*cie->augmentation == 'L') {
|
|
p++;
|
|
cie->augmentation++;
|
|
} else if (*cie->augmentation == 'R') {
|
|
/*
|
|
* "R" indicates a byte showing
|
|
* how FDE addresses are
|
|
* encoded.
|
|
*/
|
|
cie->encoding = *(char *)p++;
|
|
cie->augmentation++;
|
|
} else if (*cie->augmentation == 'P') {
|
|
/*
|
|
* "R" indicates a personality
|
|
* routine in the CIE
|
|
* augmentation.
|
|
*/
|
|
UNWINDER_BUG();
|
|
} else if (*cie->augmentation == 'S') {
|
|
UNWINDER_BUG();
|
|
} else {
|
|
/*
|
|
* Unknown augmentation. Assume
|
|
* 'z' augmentation.
|
|
*/
|
|
p = cie->initial_instructions;
|
|
UNWINDER_BUG_ON(!p);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cie->initial_instructions = p;
|
|
cie->instructions_end = end;
|
|
|
|
/* Add to list */
|
|
spin_lock_irqsave(&dwarf_cie_lock, flags);
|
|
|
|
while (*rb_node) {
|
|
struct dwarf_cie *cie_tmp;
|
|
|
|
cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
|
|
|
|
parent = *rb_node;
|
|
|
|
if (cie->cie_pointer < cie_tmp->cie_pointer)
|
|
rb_node = &parent->rb_left;
|
|
else if (cie->cie_pointer >= cie_tmp->cie_pointer)
|
|
rb_node = &parent->rb_right;
|
|
else
|
|
WARN_ON(1);
|
|
}
|
|
|
|
rb_link_node(&cie->node, parent, rb_node);
|
|
rb_insert_color(&cie->node, &cie_root);
|
|
|
|
#ifdef CONFIG_MODULES
|
|
if (mod != NULL)
|
|
list_add_tail(&cie->link, &mod->arch.cie_list);
|
|
#endif
|
|
|
|
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dwarf_parse_fde(void *entry, u32 entry_type,
|
|
void *start, unsigned long len,
|
|
unsigned char *end, struct module *mod)
|
|
{
|
|
struct rb_node **rb_node = &fde_root.rb_node;
|
|
struct rb_node *parent = *rb_node;
|
|
struct dwarf_fde *fde;
|
|
struct dwarf_cie *cie;
|
|
unsigned long flags;
|
|
int count;
|
|
void *p = start;
|
|
|
|
fde = kzalloc(sizeof(*fde), GFP_KERNEL);
|
|
if (!fde)
|
|
return -ENOMEM;
|
|
|
|
fde->length = len;
|
|
|
|
/*
|
|
* In a .eh_frame section the CIE pointer is the
|
|
* delta between the address within the FDE
|
|
*/
|
|
fde->cie_pointer = (unsigned long)(p - entry_type - 4);
|
|
|
|
cie = dwarf_lookup_cie(fde->cie_pointer);
|
|
fde->cie = cie;
|
|
|
|
if (cie->encoding)
|
|
count = dwarf_read_encoded_value(p, &fde->initial_location,
|
|
cie->encoding);
|
|
else
|
|
count = dwarf_read_addr(p, &fde->initial_location);
|
|
|
|
p += count;
|
|
|
|
if (cie->encoding)
|
|
count = dwarf_read_encoded_value(p, &fde->address_range,
|
|
cie->encoding & 0x0f);
|
|
else
|
|
count = dwarf_read_addr(p, &fde->address_range);
|
|
|
|
p += count;
|
|
|
|
if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
|
|
unsigned int length;
|
|
count = dwarf_read_uleb128(p, &length);
|
|
p += count + length;
|
|
}
|
|
|
|
/* Call frame instructions. */
|
|
fde->instructions = p;
|
|
fde->end = end;
|
|
|
|
/* Add to list. */
|
|
spin_lock_irqsave(&dwarf_fde_lock, flags);
|
|
|
|
while (*rb_node) {
|
|
struct dwarf_fde *fde_tmp;
|
|
unsigned long tmp_start, tmp_end;
|
|
unsigned long start, end;
|
|
|
|
fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
|
|
|
|
start = fde->initial_location;
|
|
end = fde->initial_location + fde->address_range;
|
|
|
|
tmp_start = fde_tmp->initial_location;
|
|
tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
|
|
|
|
parent = *rb_node;
|
|
|
|
if (start < tmp_start)
|
|
rb_node = &parent->rb_left;
|
|
else if (start >= tmp_end)
|
|
rb_node = &parent->rb_right;
|
|
else
|
|
WARN_ON(1);
|
|
}
|
|
|
|
rb_link_node(&fde->node, parent, rb_node);
|
|
rb_insert_color(&fde->node, &fde_root);
|
|
|
|
#ifdef CONFIG_MODULES
|
|
if (mod != NULL)
|
|
list_add_tail(&fde->link, &mod->arch.fde_list);
|
|
#endif
|
|
|
|
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dwarf_unwinder_dump(struct task_struct *task,
|
|
struct pt_regs *regs,
|
|
unsigned long *sp,
|
|
const struct stacktrace_ops *ops,
|
|
void *data)
|
|
{
|
|
struct dwarf_frame *frame, *_frame;
|
|
unsigned long return_addr;
|
|
|
|
_frame = NULL;
|
|
return_addr = 0;
|
|
|
|
while (1) {
|
|
frame = dwarf_unwind_stack(return_addr, _frame);
|
|
|
|
if (_frame)
|
|
dwarf_free_frame(_frame);
|
|
|
|
_frame = frame;
|
|
|
|
if (!frame || !frame->return_addr)
|
|
break;
|
|
|
|
return_addr = frame->return_addr;
|
|
ops->address(data, return_addr, 1);
|
|
}
|
|
|
|
if (frame)
|
|
dwarf_free_frame(frame);
|
|
}
|
|
|
|
static struct unwinder dwarf_unwinder = {
|
|
.name = "dwarf-unwinder",
|
|
.dump = dwarf_unwinder_dump,
|
|
.rating = 150,
|
|
};
|
|
|
|
static void __init dwarf_unwinder_cleanup(void)
|
|
{
|
|
struct dwarf_fde *fde, *next_fde;
|
|
struct dwarf_cie *cie, *next_cie;
|
|
|
|
/*
|
|
* Deallocate all the memory allocated for the DWARF unwinder.
|
|
* Traverse all the FDE/CIE lists and remove and free all the
|
|
* memory associated with those data structures.
|
|
*/
|
|
rbtree_postorder_for_each_entry_safe(fde, next_fde, &fde_root, node)
|
|
kfree(fde);
|
|
|
|
rbtree_postorder_for_each_entry_safe(cie, next_cie, &cie_root, node)
|
|
kfree(cie);
|
|
|
|
mempool_destroy(dwarf_reg_pool);
|
|
mempool_destroy(dwarf_frame_pool);
|
|
kmem_cache_destroy(dwarf_reg_cachep);
|
|
kmem_cache_destroy(dwarf_frame_cachep);
|
|
}
|
|
|
|
/**
|
|
* dwarf_parse_section - parse DWARF section
|
|
* @eh_frame_start: start address of the .eh_frame section
|
|
* @eh_frame_end: end address of the .eh_frame section
|
|
* @mod: the kernel module containing the .eh_frame section
|
|
*
|
|
* Parse the information in a .eh_frame section.
|
|
*/
|
|
static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
|
|
struct module *mod)
|
|
{
|
|
u32 entry_type;
|
|
void *p, *entry;
|
|
int count, err = 0;
|
|
unsigned long len = 0;
|
|
unsigned int c_entries, f_entries;
|
|
unsigned char *end;
|
|
|
|
c_entries = 0;
|
|
f_entries = 0;
|
|
entry = eh_frame_start;
|
|
|
|
while ((char *)entry < eh_frame_end) {
|
|
p = entry;
|
|
|
|
count = dwarf_entry_len(p, &len);
|
|
if (count == 0) {
|
|
/*
|
|
* We read a bogus length field value. There is
|
|
* nothing we can do here apart from disabling
|
|
* the DWARF unwinder. We can't even skip this
|
|
* entry and move to the next one because 'len'
|
|
* tells us where our next entry is.
|
|
*/
|
|
err = -EINVAL;
|
|
goto out;
|
|
} else
|
|
p += count;
|
|
|
|
/* initial length does not include itself */
|
|
end = p + len;
|
|
|
|
entry_type = get_unaligned((u32 *)p);
|
|
p += 4;
|
|
|
|
if (entry_type == DW_EH_FRAME_CIE) {
|
|
err = dwarf_parse_cie(entry, p, len, end, mod);
|
|
if (err < 0)
|
|
goto out;
|
|
else
|
|
c_entries++;
|
|
} else {
|
|
err = dwarf_parse_fde(entry, entry_type, p, len,
|
|
end, mod);
|
|
if (err < 0)
|
|
goto out;
|
|
else
|
|
f_entries++;
|
|
}
|
|
|
|
entry = (char *)entry + len + 4;
|
|
}
|
|
|
|
printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
|
|
c_entries, f_entries);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MODULES
|
|
int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
|
|
struct module *me)
|
|
{
|
|
unsigned int i, err;
|
|
unsigned long start, end;
|
|
char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
|
|
|
|
start = end = 0;
|
|
|
|
for (i = 1; i < hdr->e_shnum; i++) {
|
|
/* Alloc bit cleared means "ignore it." */
|
|
if ((sechdrs[i].sh_flags & SHF_ALLOC)
|
|
&& !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
|
|
start = sechdrs[i].sh_addr;
|
|
end = start + sechdrs[i].sh_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Did we find the .eh_frame section? */
|
|
if (i != hdr->e_shnum) {
|
|
INIT_LIST_HEAD(&me->arch.cie_list);
|
|
INIT_LIST_HEAD(&me->arch.fde_list);
|
|
err = dwarf_parse_section((char *)start, (char *)end, me);
|
|
if (err) {
|
|
printk(KERN_WARNING "%s: failed to parse DWARF info\n",
|
|
me->name);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* module_dwarf_cleanup - remove FDE/CIEs associated with @mod
|
|
* @mod: the module that is being unloaded
|
|
*
|
|
* Remove any FDEs and CIEs from the global lists that came from
|
|
* @mod's .eh_frame section because @mod is being unloaded.
|
|
*/
|
|
void module_dwarf_cleanup(struct module *mod)
|
|
{
|
|
struct dwarf_fde *fde, *ftmp;
|
|
struct dwarf_cie *cie, *ctmp;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dwarf_cie_lock, flags);
|
|
|
|
list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
|
|
list_del(&cie->link);
|
|
rb_erase(&cie->node, &cie_root);
|
|
kfree(cie);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
|
|
|
|
spin_lock_irqsave(&dwarf_fde_lock, flags);
|
|
|
|
list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
|
|
list_del(&fde->link);
|
|
rb_erase(&fde->node, &fde_root);
|
|
kfree(fde);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
|
|
}
|
|
#endif /* CONFIG_MODULES */
|
|
|
|
/**
|
|
* dwarf_unwinder_init - initialise the dwarf unwinder
|
|
*
|
|
* Build the data structures describing the .dwarf_frame section to
|
|
* make it easier to lookup CIE and FDE entries. Because the
|
|
* .eh_frame section is packed as tightly as possible it is not
|
|
* easy to lookup the FDE for a given PC, so we build a list of FDE
|
|
* and CIE entries that make it easier.
|
|
*/
|
|
static int __init dwarf_unwinder_init(void)
|
|
{
|
|
int err = -ENOMEM;
|
|
|
|
dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
|
|
sizeof(struct dwarf_frame), 0,
|
|
SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
|
|
|
|
dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
|
|
sizeof(struct dwarf_reg), 0,
|
|
SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
|
|
|
|
dwarf_frame_pool = mempool_create_slab_pool(DWARF_FRAME_MIN_REQ,
|
|
dwarf_frame_cachep);
|
|
if (!dwarf_frame_pool)
|
|
goto out;
|
|
|
|
dwarf_reg_pool = mempool_create_slab_pool(DWARF_REG_MIN_REQ,
|
|
dwarf_reg_cachep);
|
|
if (!dwarf_reg_pool)
|
|
goto out;
|
|
|
|
err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = unwinder_register(&dwarf_unwinder);
|
|
if (err)
|
|
goto out;
|
|
|
|
dwarf_unwinder_ready = 1;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
|
|
dwarf_unwinder_cleanup();
|
|
return err;
|
|
}
|
|
early_initcall(dwarf_unwinder_init);
|