mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
fd89499a51
Explicitly track emulated counter events instead of using the common counter value that's shared with the hardware counter owned by perf. Bumping the common counter requires snapshotting the pre-increment value in order to detect overflow from emulation, and the snapshot approach is inherently flawed. Snapshotting the previous counter at every increment assumes that there is at most one emulated counter event per emulated instruction (or rather, between checks for KVM_REQ_PMU). That's mostly holds true today because KVM only emulates (branch) instructions retired, but the approach will fall apart if KVM ever supports event types that don't have a 1:1 relationship with instructions. And KVM already has a relevant bug, as handle_invalid_guest_state() emulates multiple instructions without checking KVM_REQ_PMU, i.e. could miss an overflow event due to clobbering pmc->prev_counter. Not checking KVM_REQ_PMU is problematic in both cases, but at least with the emulated counter approach, the resulting behavior is delayed overflow detection, as opposed to completely lost detection. Tracking the emulated count fixes another bug where the snapshot approach can signal spurious overflow due to incorporating both the emulated count and perf's count in the check, i.e. if overflow is detected by perf, then KVM's emulation will also incorrectly signal overflow. Add a comment in the related code to call out the need to process emulated events *after* pausing the perf event (big kudos to Mingwei for figuring out that particular wrinkle). Cc: Mingwei Zhang <mizhang@google.com> Cc: Roman Kagan <rkagan@amazon.de> Cc: Jim Mattson <jmattson@google.com> Cc: Dapeng Mi <dapeng1.mi@linux.intel.com> Cc: Like Xu <like.xu.linux@gmail.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Link: https://lore.kernel.org/r/20231103230541.352265-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
989 lines
27 KiB
C
989 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine -- Performance Monitoring Unit support
|
|
*
|
|
* Copyright 2015 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@redhat.com>
|
|
* Gleb Natapov <gleb@redhat.com>
|
|
* Wei Huang <wei@redhat.com>
|
|
*/
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sort.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "pmu.h"
|
|
|
|
/* This is enough to filter the vast majority of currently defined events. */
|
|
#define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
|
|
|
|
struct x86_pmu_capability __read_mostly kvm_pmu_cap;
|
|
EXPORT_SYMBOL_GPL(kvm_pmu_cap);
|
|
|
|
/* Precise Distribution of Instructions Retired (PDIR) */
|
|
static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
|
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
|
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
|
|
/* Instruction-Accurate PDIR (PDIR++) */
|
|
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
|
|
{}
|
|
};
|
|
|
|
/* Precise Distribution (PDist) */
|
|
static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
|
|
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
|
|
{}
|
|
};
|
|
|
|
/* NOTE:
|
|
* - Each perf counter is defined as "struct kvm_pmc";
|
|
* - There are two types of perf counters: general purpose (gp) and fixed.
|
|
* gp counters are stored in gp_counters[] and fixed counters are stored
|
|
* in fixed_counters[] respectively. Both of them are part of "struct
|
|
* kvm_pmu";
|
|
* - pmu.c understands the difference between gp counters and fixed counters.
|
|
* However AMD doesn't support fixed-counters;
|
|
* - There are three types of index to access perf counters (PMC):
|
|
* 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
|
|
* has MSR_K7_PERFCTRn and, for families 15H and later,
|
|
* MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
|
|
* aliased to MSR_K7_PERFCTRn.
|
|
* 2. MSR Index (named idx): This normally is used by RDPMC instruction.
|
|
* For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
|
|
* C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
|
|
* that it also supports fixed counters. idx can be used to as index to
|
|
* gp and fixed counters.
|
|
* 3. Global PMC Index (named pmc): pmc is an index specific to PMU
|
|
* code. Each pmc, stored in kvm_pmc.idx field, is unique across
|
|
* all perf counters (both gp and fixed). The mapping relationship
|
|
* between pmc and perf counters is as the following:
|
|
* * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
|
|
* [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
|
|
* * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
|
|
* and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
|
|
*/
|
|
|
|
static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
|
|
|
|
#define KVM_X86_PMU_OP(func) \
|
|
DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
|
|
*(((struct kvm_pmu_ops *)0)->func));
|
|
#define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
|
|
#include <asm/kvm-x86-pmu-ops.h>
|
|
|
|
void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
|
|
{
|
|
memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
|
|
|
|
#define __KVM_X86_PMU_OP(func) \
|
|
static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
|
|
#define KVM_X86_PMU_OP(func) \
|
|
WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
|
|
#define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
|
|
#include <asm/kvm-x86-pmu-ops.h>
|
|
#undef __KVM_X86_PMU_OP
|
|
}
|
|
|
|
static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
|
|
{
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
bool skip_pmi = false;
|
|
|
|
if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
|
|
if (!in_pmi) {
|
|
/*
|
|
* TODO: KVM is currently _choosing_ to not generate records
|
|
* for emulated instructions, avoiding BUFFER_OVF PMI when
|
|
* there are no records. Strictly speaking, it should be done
|
|
* as well in the right context to improve sampling accuracy.
|
|
*/
|
|
skip_pmi = true;
|
|
} else {
|
|
/* Indicate PEBS overflow PMI to guest. */
|
|
skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
|
|
(unsigned long *)&pmu->global_status);
|
|
}
|
|
} else {
|
|
__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
|
|
}
|
|
|
|
if (pmc->intr && !skip_pmi)
|
|
kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
|
|
}
|
|
|
|
static void kvm_perf_overflow(struct perf_event *perf_event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
|
|
|
|
/*
|
|
* Ignore asynchronous overflow events for counters that are scheduled
|
|
* to be reprogrammed, e.g. if a PMI for the previous event races with
|
|
* KVM's handling of a related guest WRMSR.
|
|
*/
|
|
if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
|
|
return;
|
|
|
|
__kvm_perf_overflow(pmc, true);
|
|
|
|
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
|
|
}
|
|
|
|
static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
|
|
{
|
|
/*
|
|
* For some model specific pebs counters with special capabilities
|
|
* (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
|
|
* level to the maximum value (currently 3, backwards compatible)
|
|
* so that the perf subsystem would assign specific hardware counter
|
|
* with that capability for vPMC.
|
|
*/
|
|
if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
|
|
(pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
|
|
return 3;
|
|
|
|
/*
|
|
* The non-zero precision level of guest event makes the ordinary
|
|
* guest event becomes a guest PEBS event and triggers the host
|
|
* PEBS PMI handler to determine whether the PEBS overflow PMI
|
|
* comes from the host counters or the guest.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
|
|
{
|
|
u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
|
|
|
|
if (!sample_period)
|
|
sample_period = pmc_bitmask(pmc) + 1;
|
|
return sample_period;
|
|
}
|
|
|
|
static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
|
|
bool exclude_user, bool exclude_kernel,
|
|
bool intr)
|
|
{
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
struct perf_event *event;
|
|
struct perf_event_attr attr = {
|
|
.type = type,
|
|
.size = sizeof(attr),
|
|
.pinned = true,
|
|
.exclude_idle = true,
|
|
.exclude_host = 1,
|
|
.exclude_user = exclude_user,
|
|
.exclude_kernel = exclude_kernel,
|
|
.config = config,
|
|
};
|
|
bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
|
|
|
|
attr.sample_period = get_sample_period(pmc, pmc->counter);
|
|
|
|
if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
|
|
guest_cpuid_is_intel(pmc->vcpu)) {
|
|
/*
|
|
* HSW_IN_TX_CHECKPOINTED is not supported with nonzero
|
|
* period. Just clear the sample period so at least
|
|
* allocating the counter doesn't fail.
|
|
*/
|
|
attr.sample_period = 0;
|
|
}
|
|
if (pebs) {
|
|
/*
|
|
* For most PEBS hardware events, the difference in the software
|
|
* precision levels of guest and host PEBS events will not affect
|
|
* the accuracy of the PEBS profiling result, because the "event IP"
|
|
* in the PEBS record is calibrated on the guest side.
|
|
*/
|
|
attr.precise_ip = pmc_get_pebs_precise_level(pmc);
|
|
}
|
|
|
|
event = perf_event_create_kernel_counter(&attr, -1, current,
|
|
kvm_perf_overflow, pmc);
|
|
if (IS_ERR(event)) {
|
|
pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
|
|
PTR_ERR(event), pmc->idx);
|
|
return PTR_ERR(event);
|
|
}
|
|
|
|
pmc->perf_event = event;
|
|
pmc_to_pmu(pmc)->event_count++;
|
|
pmc->is_paused = false;
|
|
pmc->intr = intr || pebs;
|
|
return 0;
|
|
}
|
|
|
|
static bool pmc_pause_counter(struct kvm_pmc *pmc)
|
|
{
|
|
u64 counter = pmc->counter;
|
|
u64 prev_counter;
|
|
|
|
/* update counter, reset event value to avoid redundant accumulation */
|
|
if (pmc->perf_event && !pmc->is_paused)
|
|
counter += perf_event_pause(pmc->perf_event, true);
|
|
|
|
/*
|
|
* Snapshot the previous counter *after* accumulating state from perf.
|
|
* If overflow already happened, hardware (via perf) is responsible for
|
|
* generating a PMI. KVM just needs to detect overflow on emulated
|
|
* counter events that haven't yet been processed.
|
|
*/
|
|
prev_counter = counter & pmc_bitmask(pmc);
|
|
|
|
counter += pmc->emulated_counter;
|
|
pmc->counter = counter & pmc_bitmask(pmc);
|
|
|
|
pmc->emulated_counter = 0;
|
|
pmc->is_paused = true;
|
|
|
|
return pmc->counter < prev_counter;
|
|
}
|
|
|
|
static bool pmc_resume_counter(struct kvm_pmc *pmc)
|
|
{
|
|
if (!pmc->perf_event)
|
|
return false;
|
|
|
|
/* recalibrate sample period and check if it's accepted by perf core */
|
|
if (is_sampling_event(pmc->perf_event) &&
|
|
perf_event_period(pmc->perf_event,
|
|
get_sample_period(pmc, pmc->counter)))
|
|
return false;
|
|
|
|
if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
|
|
(!!pmc->perf_event->attr.precise_ip))
|
|
return false;
|
|
|
|
/* reuse perf_event to serve as pmc_reprogram_counter() does*/
|
|
perf_event_enable(pmc->perf_event);
|
|
pmc->is_paused = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void pmc_release_perf_event(struct kvm_pmc *pmc)
|
|
{
|
|
if (pmc->perf_event) {
|
|
perf_event_release_kernel(pmc->perf_event);
|
|
pmc->perf_event = NULL;
|
|
pmc->current_config = 0;
|
|
pmc_to_pmu(pmc)->event_count--;
|
|
}
|
|
}
|
|
|
|
static void pmc_stop_counter(struct kvm_pmc *pmc)
|
|
{
|
|
if (pmc->perf_event) {
|
|
pmc->counter = pmc_read_counter(pmc);
|
|
pmc_release_perf_event(pmc);
|
|
}
|
|
}
|
|
|
|
static void pmc_update_sample_period(struct kvm_pmc *pmc)
|
|
{
|
|
if (!pmc->perf_event || pmc->is_paused ||
|
|
!is_sampling_event(pmc->perf_event))
|
|
return;
|
|
|
|
perf_event_period(pmc->perf_event,
|
|
get_sample_period(pmc, pmc->counter));
|
|
}
|
|
|
|
void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
|
|
{
|
|
/*
|
|
* Drop any unconsumed accumulated counts, the WRMSR is a write, not a
|
|
* read-modify-write. Adjust the counter value so that its value is
|
|
* relative to the current count, as reading the current count from
|
|
* perf is faster than pausing and repgrogramming the event in order to
|
|
* reset it to '0'. Note, this very sneakily offsets the accumulated
|
|
* emulated count too, by using pmc_read_counter()!
|
|
*/
|
|
pmc->emulated_counter = 0;
|
|
pmc->counter += val - pmc_read_counter(pmc);
|
|
pmc->counter &= pmc_bitmask(pmc);
|
|
pmc_update_sample_period(pmc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pmc_write_counter);
|
|
|
|
static int filter_cmp(const void *pa, const void *pb, u64 mask)
|
|
{
|
|
u64 a = *(u64 *)pa & mask;
|
|
u64 b = *(u64 *)pb & mask;
|
|
|
|
return (a > b) - (a < b);
|
|
}
|
|
|
|
|
|
static int filter_sort_cmp(const void *pa, const void *pb)
|
|
{
|
|
return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
|
|
KVM_PMU_MASKED_ENTRY_EXCLUDE));
|
|
}
|
|
|
|
/*
|
|
* For the event filter, searching is done on the 'includes' list and
|
|
* 'excludes' list separately rather than on the 'events' list (which
|
|
* has both). As a result the exclude bit can be ignored.
|
|
*/
|
|
static int filter_event_cmp(const void *pa, const void *pb)
|
|
{
|
|
return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
|
|
}
|
|
|
|
static int find_filter_index(u64 *events, u64 nevents, u64 key)
|
|
{
|
|
u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
|
|
filter_event_cmp);
|
|
|
|
if (!fe)
|
|
return -1;
|
|
|
|
return fe - events;
|
|
}
|
|
|
|
static bool is_filter_entry_match(u64 filter_event, u64 umask)
|
|
{
|
|
u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
|
|
u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
|
|
|
|
BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
|
|
(KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
|
|
ARCH_PERFMON_EVENTSEL_UMASK);
|
|
|
|
return (umask & mask) == match;
|
|
}
|
|
|
|
static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
|
|
{
|
|
u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
|
|
u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
|
|
int i, index;
|
|
|
|
index = find_filter_index(events, nevents, event_select);
|
|
if (index < 0)
|
|
return false;
|
|
|
|
/*
|
|
* Entries are sorted by the event select. Walk the list in both
|
|
* directions to process all entries with the targeted event select.
|
|
*/
|
|
for (i = index; i < nevents; i++) {
|
|
if (filter_event_cmp(&events[i], &event_select))
|
|
break;
|
|
|
|
if (is_filter_entry_match(events[i], umask))
|
|
return true;
|
|
}
|
|
|
|
for (i = index - 1; i >= 0; i--) {
|
|
if (filter_event_cmp(&events[i], &event_select))
|
|
break;
|
|
|
|
if (is_filter_entry_match(events[i], umask))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
|
|
u64 eventsel)
|
|
{
|
|
if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
|
|
!filter_contains_match(f->excludes, f->nr_excludes, eventsel))
|
|
return f->action == KVM_PMU_EVENT_ALLOW;
|
|
|
|
return f->action == KVM_PMU_EVENT_DENY;
|
|
}
|
|
|
|
static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
|
|
int idx)
|
|
{
|
|
int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
|
|
|
|
if (filter->action == KVM_PMU_EVENT_DENY &&
|
|
test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
|
|
return false;
|
|
if (filter->action == KVM_PMU_EVENT_ALLOW &&
|
|
!test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool check_pmu_event_filter(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_x86_pmu_event_filter *filter;
|
|
struct kvm *kvm = pmc->vcpu->kvm;
|
|
|
|
filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
|
|
if (!filter)
|
|
return true;
|
|
|
|
if (pmc_is_gp(pmc))
|
|
return is_gp_event_allowed(filter, pmc->eventsel);
|
|
|
|
return is_fixed_event_allowed(filter, pmc->idx);
|
|
}
|
|
|
|
static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
|
|
{
|
|
return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
|
|
static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
|
|
check_pmu_event_filter(pmc);
|
|
}
|
|
|
|
static void reprogram_counter(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_pmu *pmu = pmc_to_pmu(pmc);
|
|
u64 eventsel = pmc->eventsel;
|
|
u64 new_config = eventsel;
|
|
bool emulate_overflow;
|
|
u8 fixed_ctr_ctrl;
|
|
|
|
emulate_overflow = pmc_pause_counter(pmc);
|
|
|
|
if (!pmc_event_is_allowed(pmc))
|
|
goto reprogram_complete;
|
|
|
|
if (emulate_overflow)
|
|
__kvm_perf_overflow(pmc, false);
|
|
|
|
if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
|
|
printk_once("kvm pmu: pin control bit is ignored\n");
|
|
|
|
if (pmc_is_fixed(pmc)) {
|
|
fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
|
|
pmc->idx - INTEL_PMC_IDX_FIXED);
|
|
if (fixed_ctr_ctrl & 0x1)
|
|
eventsel |= ARCH_PERFMON_EVENTSEL_OS;
|
|
if (fixed_ctr_ctrl & 0x2)
|
|
eventsel |= ARCH_PERFMON_EVENTSEL_USR;
|
|
if (fixed_ctr_ctrl & 0x8)
|
|
eventsel |= ARCH_PERFMON_EVENTSEL_INT;
|
|
new_config = (u64)fixed_ctr_ctrl;
|
|
}
|
|
|
|
if (pmc->current_config == new_config && pmc_resume_counter(pmc))
|
|
goto reprogram_complete;
|
|
|
|
pmc_release_perf_event(pmc);
|
|
|
|
pmc->current_config = new_config;
|
|
|
|
/*
|
|
* If reprogramming fails, e.g. due to contention, leave the counter's
|
|
* regprogram bit set, i.e. opportunistically try again on the next PMU
|
|
* refresh. Don't make a new request as doing so can stall the guest
|
|
* if reprogramming repeatedly fails.
|
|
*/
|
|
if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
|
|
(eventsel & pmu->raw_event_mask),
|
|
!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
|
|
!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
|
|
eventsel & ARCH_PERFMON_EVENTSEL_INT))
|
|
return;
|
|
|
|
reprogram_complete:
|
|
clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
|
|
}
|
|
|
|
void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
int bit;
|
|
|
|
for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
|
|
struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
|
|
|
|
if (unlikely(!pmc)) {
|
|
clear_bit(bit, pmu->reprogram_pmi);
|
|
continue;
|
|
}
|
|
|
|
reprogram_counter(pmc);
|
|
}
|
|
|
|
/*
|
|
* Unused perf_events are only released if the corresponding MSRs
|
|
* weren't accessed during the last vCPU time slice. kvm_arch_sched_in
|
|
* triggers KVM_REQ_PMU if cleanup is needed.
|
|
*/
|
|
if (unlikely(pmu->need_cleanup))
|
|
kvm_pmu_cleanup(vcpu);
|
|
}
|
|
|
|
/* check if idx is a valid index to access PMU */
|
|
bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
|
|
{
|
|
return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
|
|
}
|
|
|
|
bool is_vmware_backdoor_pmc(u32 pmc_idx)
|
|
{
|
|
switch (pmc_idx) {
|
|
case VMWARE_BACKDOOR_PMC_HOST_TSC:
|
|
case VMWARE_BACKDOOR_PMC_REAL_TIME:
|
|
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
|
|
{
|
|
u64 ctr_val;
|
|
|
|
switch (idx) {
|
|
case VMWARE_BACKDOOR_PMC_HOST_TSC:
|
|
ctr_val = rdtsc();
|
|
break;
|
|
case VMWARE_BACKDOOR_PMC_REAL_TIME:
|
|
ctr_val = ktime_get_boottime_ns();
|
|
break;
|
|
case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
|
|
ctr_val = ktime_get_boottime_ns() +
|
|
vcpu->kvm->arch.kvmclock_offset;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
*data = ctr_val;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
|
|
{
|
|
bool fast_mode = idx & (1u << 31);
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc;
|
|
u64 mask = fast_mode ? ~0u : ~0ull;
|
|
|
|
if (!pmu->version)
|
|
return 1;
|
|
|
|
if (is_vmware_backdoor_pmc(idx))
|
|
return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
|
|
|
|
pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
|
|
if (!pmc)
|
|
return 1;
|
|
|
|
if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
|
|
(static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
|
|
kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
|
|
return 1;
|
|
|
|
*data = pmc_read_counter(pmc) & mask;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (lapic_in_kernel(vcpu)) {
|
|
static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
|
|
kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
|
|
}
|
|
}
|
|
|
|
bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
switch (msr) {
|
|
case MSR_CORE_PERF_GLOBAL_STATUS:
|
|
case MSR_CORE_PERF_GLOBAL_CTRL:
|
|
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
|
|
return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
|
|
default:
|
|
break;
|
|
}
|
|
return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
|
|
static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
|
|
}
|
|
|
|
static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
|
|
|
|
if (pmc)
|
|
__set_bit(pmc->idx, pmu->pmc_in_use);
|
|
}
|
|
|
|
int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
u32 msr = msr_info->index;
|
|
|
|
switch (msr) {
|
|
case MSR_CORE_PERF_GLOBAL_STATUS:
|
|
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
|
|
msr_info->data = pmu->global_status;
|
|
break;
|
|
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
|
|
case MSR_CORE_PERF_GLOBAL_CTRL:
|
|
msr_info->data = pmu->global_ctrl;
|
|
break;
|
|
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
|
|
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
|
|
msr_info->data = 0;
|
|
break;
|
|
default:
|
|
return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
u32 msr = msr_info->index;
|
|
u64 data = msr_info->data;
|
|
u64 diff;
|
|
|
|
/*
|
|
* Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
|
|
* whereas Intel generates #GP on attempts to write reserved/RO MSRs.
|
|
*/
|
|
switch (msr) {
|
|
case MSR_CORE_PERF_GLOBAL_STATUS:
|
|
if (!msr_info->host_initiated)
|
|
return 1; /* RO MSR */
|
|
fallthrough;
|
|
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
|
|
/* Per PPR, Read-only MSR. Writes are ignored. */
|
|
if (!msr_info->host_initiated)
|
|
break;
|
|
|
|
if (data & pmu->global_status_mask)
|
|
return 1;
|
|
|
|
pmu->global_status = data;
|
|
break;
|
|
case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
|
|
data &= ~pmu->global_ctrl_mask;
|
|
fallthrough;
|
|
case MSR_CORE_PERF_GLOBAL_CTRL:
|
|
if (!kvm_valid_perf_global_ctrl(pmu, data))
|
|
return 1;
|
|
|
|
if (pmu->global_ctrl != data) {
|
|
diff = pmu->global_ctrl ^ data;
|
|
pmu->global_ctrl = data;
|
|
reprogram_counters(pmu, diff);
|
|
}
|
|
break;
|
|
case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
|
|
/*
|
|
* GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
|
|
* GLOBAL_STATUS, and so the set of reserved bits is the same.
|
|
*/
|
|
if (data & pmu->global_status_mask)
|
|
return 1;
|
|
fallthrough;
|
|
case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
|
|
if (!msr_info->host_initiated)
|
|
pmu->global_status &= ~data;
|
|
break;
|
|
default:
|
|
kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
|
|
return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc;
|
|
int i;
|
|
|
|
pmu->need_cleanup = false;
|
|
|
|
bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
|
|
|
|
for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
|
|
pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
|
|
if (!pmc)
|
|
continue;
|
|
|
|
pmc_stop_counter(pmc);
|
|
pmc->counter = 0;
|
|
pmc->emulated_counter = 0;
|
|
|
|
if (pmc_is_gp(pmc))
|
|
pmc->eventsel = 0;
|
|
}
|
|
|
|
pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
|
|
|
|
static_call_cond(kvm_x86_pmu_reset)(vcpu);
|
|
}
|
|
|
|
|
|
/*
|
|
* Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
|
|
* and/or PERF_CAPABILITIES.
|
|
*/
|
|
void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
|
|
return;
|
|
|
|
/*
|
|
* Stop/release all existing counters/events before realizing the new
|
|
* vPMU model.
|
|
*/
|
|
kvm_pmu_reset(vcpu);
|
|
|
|
bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
|
|
static_call(kvm_x86_pmu_refresh)(vcpu);
|
|
}
|
|
|
|
void kvm_pmu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
|
|
memset(pmu, 0, sizeof(*pmu));
|
|
static_call(kvm_x86_pmu_init)(vcpu);
|
|
kvm_pmu_refresh(vcpu);
|
|
}
|
|
|
|
/* Release perf_events for vPMCs that have been unused for a full time slice. */
|
|
void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc = NULL;
|
|
DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
|
|
int i;
|
|
|
|
pmu->need_cleanup = false;
|
|
|
|
bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
|
|
pmu->pmc_in_use, X86_PMC_IDX_MAX);
|
|
|
|
for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
|
|
pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
|
|
|
|
if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
|
|
pmc_stop_counter(pmc);
|
|
}
|
|
|
|
static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
|
|
|
|
bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
|
|
}
|
|
|
|
void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_reset(vcpu);
|
|
}
|
|
|
|
static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
|
|
{
|
|
pmc->emulated_counter++;
|
|
kvm_pmu_request_counter_reprogram(pmc);
|
|
}
|
|
|
|
static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
|
|
unsigned int perf_hw_id)
|
|
{
|
|
return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
|
|
AMD64_RAW_EVENT_MASK_NB);
|
|
}
|
|
|
|
static inline bool cpl_is_matched(struct kvm_pmc *pmc)
|
|
{
|
|
bool select_os, select_user;
|
|
u64 config;
|
|
|
|
if (pmc_is_gp(pmc)) {
|
|
config = pmc->eventsel;
|
|
select_os = config & ARCH_PERFMON_EVENTSEL_OS;
|
|
select_user = config & ARCH_PERFMON_EVENTSEL_USR;
|
|
} else {
|
|
config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
|
|
pmc->idx - INTEL_PMC_IDX_FIXED);
|
|
select_os = config & 0x1;
|
|
select_user = config & 0x2;
|
|
}
|
|
|
|
return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
|
|
}
|
|
|
|
void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
|
|
{
|
|
struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
|
|
struct kvm_pmc *pmc;
|
|
int i;
|
|
|
|
for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
|
|
pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
|
|
|
|
if (!pmc || !pmc_event_is_allowed(pmc))
|
|
continue;
|
|
|
|
/* Ignore checks for edge detect, pin control, invert and CMASK bits */
|
|
if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
|
|
kvm_pmu_incr_counter(pmc);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
|
|
|
|
static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
|
|
{
|
|
u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
|
|
KVM_PMU_MASKED_ENTRY_UMASK_MASK |
|
|
KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
|
|
KVM_PMU_MASKED_ENTRY_EXCLUDE;
|
|
int i;
|
|
|
|
for (i = 0; i < filter->nevents; i++) {
|
|
if (filter->events[i] & ~mask)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < filter->nevents; i++) {
|
|
/*
|
|
* Skip events that are impossible to match against a guest
|
|
* event. When filtering, only the event select + unit mask
|
|
* of the guest event is used. To maintain backwards
|
|
* compatibility, impossible filters can't be rejected :-(
|
|
*/
|
|
if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
|
|
ARCH_PERFMON_EVENTSEL_UMASK))
|
|
continue;
|
|
/*
|
|
* Convert userspace events to a common in-kernel event so
|
|
* only one code path is needed to support both events. For
|
|
* the in-kernel events use masked events because they are
|
|
* flexible enough to handle both cases. To convert to masked
|
|
* events all that's needed is to add an "all ones" umask_mask,
|
|
* (unmasked filter events don't support EXCLUDE).
|
|
*/
|
|
filter->events[j++] = filter->events[i] |
|
|
(0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
|
|
}
|
|
|
|
filter->nevents = j;
|
|
}
|
|
|
|
static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
|
|
{
|
|
int i;
|
|
|
|
if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
|
|
convert_to_masked_filter(filter);
|
|
else if (!is_masked_filter_valid(filter))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Sort entries by event select and includes vs. excludes so that all
|
|
* entries for a given event select can be processed efficiently during
|
|
* filtering. The EXCLUDE flag uses a more significant bit than the
|
|
* event select, and so the sorted list is also effectively split into
|
|
* includes and excludes sub-lists.
|
|
*/
|
|
sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
|
|
filter_sort_cmp, NULL);
|
|
|
|
i = filter->nevents;
|
|
/* Find the first EXCLUDE event (only supported for masked events). */
|
|
if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
|
|
for (i = 0; i < filter->nevents; i++) {
|
|
if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
|
|
break;
|
|
}
|
|
}
|
|
|
|
filter->nr_includes = i;
|
|
filter->nr_excludes = filter->nevents - filter->nr_includes;
|
|
filter->includes = filter->events;
|
|
filter->excludes = filter->events + filter->nr_includes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
|
|
{
|
|
struct kvm_pmu_event_filter __user *user_filter = argp;
|
|
struct kvm_x86_pmu_event_filter *filter;
|
|
struct kvm_pmu_event_filter tmp;
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long i;
|
|
size_t size;
|
|
int r;
|
|
|
|
if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
|
|
return -EFAULT;
|
|
|
|
if (tmp.action != KVM_PMU_EVENT_ALLOW &&
|
|
tmp.action != KVM_PMU_EVENT_DENY)
|
|
return -EINVAL;
|
|
|
|
if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
|
|
return -EINVAL;
|
|
|
|
if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
|
|
return -E2BIG;
|
|
|
|
size = struct_size(filter, events, tmp.nevents);
|
|
filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
|
|
if (!filter)
|
|
return -ENOMEM;
|
|
|
|
filter->action = tmp.action;
|
|
filter->nevents = tmp.nevents;
|
|
filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
|
|
filter->flags = tmp.flags;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(filter->events, user_filter->events,
|
|
sizeof(filter->events[0]) * filter->nevents))
|
|
goto cleanup;
|
|
|
|
r = prepare_filter_lists(filter);
|
|
if (r)
|
|
goto cleanup;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
|
|
mutex_is_locked(&kvm->lock));
|
|
mutex_unlock(&kvm->lock);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
|
|
sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
|
|
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
|
|
|
|
r = 0;
|
|
cleanup:
|
|
kfree(filter);
|
|
return r;
|
|
}
|