linux/arch/x86/kvm/mtrr.c
Yan Zhao 9a3768191d KVM: x86/mmu: Zap SPTEs on MTRR update iff guest MTRRs are honored
When guest MTRRs are updated, zap SPTEs and do zap range calcluation if and
only if KVM's MMU is honoring guest MTRRs, which is the only time that KVM
incorporates the guest's MTRR type into the final memtype.

Suggested-by: Chao Gao <chao.gao@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065156.20375-1-yan.y.zhao@intel.com
[sean: rephrase shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09 14:35:14 -07:00

721 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* vMTRR implementation
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
* Copyright(C) 2015 Intel Corporation.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
* Marcelo Tosatti <mtosatti@redhat.com>
* Paolo Bonzini <pbonzini@redhat.com>
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kvm_host.h>
#include <asm/mtrr.h>
#include "cpuid.h"
#include "mmu.h"
#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
static bool is_mtrr_base_msr(unsigned int msr)
{
/* MTRR base MSRs use even numbers, masks use odd numbers. */
return !(msr & 0x1);
}
static struct kvm_mtrr_range *var_mtrr_msr_to_range(struct kvm_vcpu *vcpu,
unsigned int msr)
{
int index = (msr - MTRRphysBase_MSR(0)) / 2;
return &vcpu->arch.mtrr_state.var_ranges[index];
}
static bool msr_mtrr_valid(unsigned msr)
{
switch (msr) {
case MTRRphysBase_MSR(0) ... MTRRphysMask_MSR(KVM_NR_VAR_MTRR - 1):
case MSR_MTRRfix64K_00000:
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
case MSR_MTRRdefType:
return true;
}
return false;
}
static bool valid_mtrr_type(unsigned t)
{
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
}
static bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
int i;
u64 mask;
if (!msr_mtrr_valid(msr))
return false;
if (msr == MSR_MTRRdefType) {
if (data & ~0xcff)
return false;
return valid_mtrr_type(data & 0xff);
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
for (i = 0; i < 8 ; i++)
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
return false;
return true;
}
/* variable MTRRs */
WARN_ON(!(msr >= MTRRphysBase_MSR(0) &&
msr <= MTRRphysMask_MSR(KVM_NR_VAR_MTRR - 1)));
mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
if ((msr & 1) == 0) {
/* MTRR base */
if (!valid_mtrr_type(data & 0xff))
return false;
mask |= 0xf00;
} else
/* MTRR mask */
mask |= 0x7ff;
return (data & mask) == 0;
}
static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
{
return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
}
static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
{
return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
}
static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
{
return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
}
static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
{
/*
* Intel SDM 11.11.2.2: all MTRRs are disabled when
* IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
* memory type is applied to all of physical memory.
*
* However, virtual machines can be run with CPUID such that
* there are no MTRRs. In that case, the firmware will never
* enable MTRRs and it is obviously undesirable to run the
* guest entirely with UC memory and we use WB.
*/
if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
return MTRR_TYPE_UNCACHABLE;
else
return MTRR_TYPE_WRBACK;
}
/*
* Three terms are used in the following code:
* - segment, it indicates the address segments covered by fixed MTRRs.
* - unit, it corresponds to the MSR entry in the segment.
* - range, a range is covered in one memory cache type.
*/
struct fixed_mtrr_segment {
u64 start;
u64 end;
int range_shift;
/* the start position in kvm_mtrr.fixed_ranges[]. */
int range_start;
};
static struct fixed_mtrr_segment fixed_seg_table[] = {
/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
{
.start = 0x0,
.end = 0x80000,
.range_shift = 16, /* 64K */
.range_start = 0,
},
/*
* MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
* 16K fixed mtrr.
*/
{
.start = 0x80000,
.end = 0xc0000,
.range_shift = 14, /* 16K */
.range_start = 8,
},
/*
* MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
* 4K fixed mtrr.
*/
{
.start = 0xc0000,
.end = 0x100000,
.range_shift = 12, /* 12K */
.range_start = 24,
}
};
/*
* The size of unit is covered in one MSR, one MSR entry contains
* 8 ranges so that unit size is always 8 * 2^range_shift.
*/
static u64 fixed_mtrr_seg_unit_size(int seg)
{
return 8 << fixed_seg_table[seg].range_shift;
}
static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
{
switch (msr) {
case MSR_MTRRfix64K_00000:
*seg = 0;
*unit = 0;
break;
case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
*seg = 1;
*unit = array_index_nospec(
msr - MSR_MTRRfix16K_80000,
MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
break;
case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
*seg = 2;
*unit = array_index_nospec(
msr - MSR_MTRRfix4K_C0000,
MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
break;
default:
return false;
}
return true;
}
static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
{
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
u64 unit_size = fixed_mtrr_seg_unit_size(seg);
*start = mtrr_seg->start + unit * unit_size;
*end = *start + unit_size;
WARN_ON(*end > mtrr_seg->end);
}
static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
{
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
> mtrr_seg->end);
/* each unit has 8 ranges. */
return mtrr_seg->range_start + 8 * unit;
}
static int fixed_mtrr_seg_end_range_index(int seg)
{
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
int n;
n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
return mtrr_seg->range_start + n - 1;
}
static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
{
int seg, unit;
if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
return false;
fixed_mtrr_seg_unit_range(seg, unit, start, end);
return true;
}
static int fixed_msr_to_range_index(u32 msr)
{
int seg, unit;
if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
return -1;
return fixed_mtrr_seg_unit_range_index(seg, unit);
}
static int fixed_mtrr_addr_to_seg(u64 addr)
{
struct fixed_mtrr_segment *mtrr_seg;
int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
for (seg = 0; seg < seg_num; seg++) {
mtrr_seg = &fixed_seg_table[seg];
if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
return seg;
}
return -1;
}
static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
{
struct fixed_mtrr_segment *mtrr_seg;
int index;
mtrr_seg = &fixed_seg_table[seg];
index = mtrr_seg->range_start;
index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
return index;
}
static u64 fixed_mtrr_range_end_addr(int seg, int index)
{
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
int pos = index - mtrr_seg->range_start;
return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
}
static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
{
u64 mask;
*start = range->base & PAGE_MASK;
mask = range->mask & PAGE_MASK;
/* This cannot overflow because writing to the reserved bits of
* variable MTRRs causes a #GP.
*/
*end = (*start | ~mask) + 1;
}
static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
{
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
gfn_t start, end;
if (!kvm_mmu_honors_guest_mtrrs(vcpu->kvm))
return;
if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
return;
/* fixed MTRRs. */
if (fixed_msr_to_range(msr, &start, &end)) {
if (!fixed_mtrr_is_enabled(mtrr_state))
return;
} else if (msr == MSR_MTRRdefType) {
start = 0x0;
end = ~0ULL;
} else {
/* variable range MTRRs. */
var_mtrr_range(var_mtrr_msr_to_range(vcpu, msr), &start, &end);
}
kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
}
static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
{
return (range->mask & (1 << 11)) != 0;
}
static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
struct kvm_mtrr_range *tmp, *cur;
cur = var_mtrr_msr_to_range(vcpu, msr);
/* remove the entry if it's in the list. */
if (var_mtrr_range_is_valid(cur))
list_del(&cur->node);
/*
* Set all illegal GPA bits in the mask, since those bits must
* implicitly be 0. The bits are then cleared when reading them.
*/
if (is_mtrr_base_msr(msr))
cur->base = data;
else
cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
/* add it to the list if it's enabled. */
if (var_mtrr_range_is_valid(cur)) {
list_for_each_entry(tmp, &mtrr_state->head, node)
if (cur->base >= tmp->base)
break;
list_add_tail(&cur->node, &tmp->node);
}
}
int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
int index;
if (!kvm_mtrr_valid(vcpu, msr, data))
return 1;
index = fixed_msr_to_range_index(msr);
if (index >= 0)
*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
else if (msr == MSR_MTRRdefType)
vcpu->arch.mtrr_state.deftype = data;
else
set_var_mtrr_msr(vcpu, msr, data);
update_mtrr(vcpu, msr);
return 0;
}
int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
int index;
/* MSR_MTRRcap is a readonly MSR. */
if (msr == MSR_MTRRcap) {
/*
* SMRR = 0
* WC = 1
* FIX = 1
* VCNT = KVM_NR_VAR_MTRR
*/
*pdata = 0x500 | KVM_NR_VAR_MTRR;
return 0;
}
if (!msr_mtrr_valid(msr))
return 1;
index = fixed_msr_to_range_index(msr);
if (index >= 0) {
*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
} else if (msr == MSR_MTRRdefType) {
*pdata = vcpu->arch.mtrr_state.deftype;
} else {
/* Variable MTRRs */
if (is_mtrr_base_msr(msr))
*pdata = var_mtrr_msr_to_range(vcpu, msr)->base;
else
*pdata = var_mtrr_msr_to_range(vcpu, msr)->mask;
*pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
}
return 0;
}
void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
{
INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
}
struct mtrr_iter {
/* input fields. */
struct kvm_mtrr *mtrr_state;
u64 start;
u64 end;
/* output fields. */
int mem_type;
/* mtrr is completely disabled? */
bool mtrr_disabled;
/* [start, end) is not fully covered in MTRRs? */
bool partial_map;
/* private fields. */
union {
/* used for fixed MTRRs. */
struct {
int index;
int seg;
};
/* used for var MTRRs. */
struct {
struct kvm_mtrr_range *range;
/* max address has been covered in var MTRRs. */
u64 start_max;
};
};
bool fixed;
};
static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
{
int seg, index;
if (!fixed_mtrr_is_enabled(iter->mtrr_state))
return false;
seg = fixed_mtrr_addr_to_seg(iter->start);
if (seg < 0)
return false;
iter->fixed = true;
index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
iter->index = index;
iter->seg = seg;
return true;
}
static bool match_var_range(struct mtrr_iter *iter,
struct kvm_mtrr_range *range)
{
u64 start, end;
var_mtrr_range(range, &start, &end);
if (!(start >= iter->end || end <= iter->start)) {
iter->range = range;
/*
* the function is called when we do kvm_mtrr.head walking.
* Range has the minimum base address which interleaves
* [looker->start_max, looker->end).
*/
iter->partial_map |= iter->start_max < start;
/* update the max address has been covered. */
iter->start_max = max(iter->start_max, end);
return true;
}
return false;
}
static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
{
struct kvm_mtrr *mtrr_state = iter->mtrr_state;
list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
if (match_var_range(iter, iter->range))
return;
iter->range = NULL;
iter->partial_map |= iter->start_max < iter->end;
}
static void mtrr_lookup_var_start(struct mtrr_iter *iter)
{
struct kvm_mtrr *mtrr_state = iter->mtrr_state;
iter->fixed = false;
iter->start_max = iter->start;
iter->range = NULL;
iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
__mtrr_lookup_var_next(iter);
}
static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
{
/* terminate the lookup. */
if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
iter->fixed = false;
iter->range = NULL;
return;
}
iter->index++;
/* have looked up for all fixed MTRRs. */
if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
return mtrr_lookup_var_start(iter);
/* switch to next segment. */
if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
iter->seg++;
}
static void mtrr_lookup_var_next(struct mtrr_iter *iter)
{
__mtrr_lookup_var_next(iter);
}
static void mtrr_lookup_start(struct mtrr_iter *iter)
{
if (!mtrr_is_enabled(iter->mtrr_state)) {
iter->mtrr_disabled = true;
return;
}
if (!mtrr_lookup_fixed_start(iter))
mtrr_lookup_var_start(iter);
}
static void mtrr_lookup_init(struct mtrr_iter *iter,
struct kvm_mtrr *mtrr_state, u64 start, u64 end)
{
iter->mtrr_state = mtrr_state;
iter->start = start;
iter->end = end;
iter->mtrr_disabled = false;
iter->partial_map = false;
iter->fixed = false;
iter->range = NULL;
mtrr_lookup_start(iter);
}
static bool mtrr_lookup_okay(struct mtrr_iter *iter)
{
if (iter->fixed) {
iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
return true;
}
if (iter->range) {
iter->mem_type = iter->range->base & 0xff;
return true;
}
return false;
}
static void mtrr_lookup_next(struct mtrr_iter *iter)
{
if (iter->fixed)
mtrr_lookup_fixed_next(iter);
else
mtrr_lookup_var_next(iter);
}
#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
{
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
struct mtrr_iter iter;
u64 start, end;
int type = -1;
const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
| (1 << MTRR_TYPE_WRTHROUGH);
start = gfn_to_gpa(gfn);
end = start + PAGE_SIZE;
mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
int curr_type = iter.mem_type;
/*
* Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
* Precedences.
*/
if (type == -1) {
type = curr_type;
continue;
}
/*
* If two or more variable memory ranges match and the
* memory types are identical, then that memory type is
* used.
*/
if (type == curr_type)
continue;
/*
* If two or more variable memory ranges match and one of
* the memory types is UC, the UC memory type used.
*/
if (curr_type == MTRR_TYPE_UNCACHABLE)
return MTRR_TYPE_UNCACHABLE;
/*
* If two or more variable memory ranges match and the
* memory types are WT and WB, the WT memory type is used.
*/
if (((1 << type) & wt_wb_mask) &&
((1 << curr_type) & wt_wb_mask)) {
type = MTRR_TYPE_WRTHROUGH;
continue;
}
/*
* For overlaps not defined by the above rules, processor
* behavior is undefined.
*/
/* We use WB for this undefined behavior. :( */
return MTRR_TYPE_WRBACK;
}
if (iter.mtrr_disabled)
return mtrr_disabled_type(vcpu);
/* not contained in any MTRRs. */
if (type == -1)
return mtrr_default_type(mtrr_state);
/*
* We just check one page, partially covered by MTRRs is
* impossible.
*/
WARN_ON(iter.partial_map);
return type;
}
EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
int page_num)
{
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
struct mtrr_iter iter;
u64 start, end;
int type = -1;
start = gfn_to_gpa(gfn);
end = gfn_to_gpa(gfn + page_num);
mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
if (type == -1) {
type = iter.mem_type;
continue;
}
if (type != iter.mem_type)
return false;
}
if (iter.mtrr_disabled)
return true;
if (!iter.partial_map)
return true;
if (type == -1)
return true;
return type == mtrr_default_type(mtrr_state);
}