linux/fs/btrfs/dev-replace.c
Filipe Manana 66d204a16c btrfs: fix readahead hang and use-after-free after removing a device
Very sporadically I had test case btrfs/069 from fstests hanging (for
years, it is not a recent regression), with the following traces in
dmesg/syslog:

  [162301.160628] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg started
  [162301.181196] BTRFS info (device sdc): scrub: finished on devid 4 with status: 0
  [162301.287162] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg finished
  [162513.513792] INFO: task btrfs-transacti:1356167 blocked for more than 120 seconds.
  [162513.514318]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.514522] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.514747] task:btrfs-transacti state:D stack:    0 pid:1356167 ppid:     2 flags:0x00004000
  [162513.514751] Call Trace:
  [162513.514761]  __schedule+0x5ce/0xd00
  [162513.514765]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.514771]  schedule+0x46/0xf0
  [162513.514844]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.514850]  ? finish_wait+0x90/0x90
  [162513.514864]  start_transaction+0x37c/0x5f0 [btrfs]
  [162513.514879]  transaction_kthread+0xa4/0x170 [btrfs]
  [162513.514891]  ? btrfs_cleanup_transaction+0x660/0x660 [btrfs]
  [162513.514894]  kthread+0x153/0x170
  [162513.514897]  ? kthread_stop+0x2c0/0x2c0
  [162513.514902]  ret_from_fork+0x22/0x30
  [162513.514916] INFO: task fsstress:1356184 blocked for more than 120 seconds.
  [162513.515192]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.515431] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.515680] task:fsstress        state:D stack:    0 pid:1356184 ppid:1356177 flags:0x00004000
  [162513.515682] Call Trace:
  [162513.515688]  __schedule+0x5ce/0xd00
  [162513.515691]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.515697]  schedule+0x46/0xf0
  [162513.515712]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.515716]  ? finish_wait+0x90/0x90
  [162513.515729]  start_transaction+0x37c/0x5f0 [btrfs]
  [162513.515743]  btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs]
  [162513.515753]  btrfs_sync_fs+0x61/0x1c0 [btrfs]
  [162513.515758]  ? __ia32_sys_fdatasync+0x20/0x20
  [162513.515761]  iterate_supers+0x87/0xf0
  [162513.515765]  ksys_sync+0x60/0xb0
  [162513.515768]  __do_sys_sync+0xa/0x10
  [162513.515771]  do_syscall_64+0x33/0x80
  [162513.515774]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.515781] RIP: 0033:0x7f5238f50bd7
  [162513.515782] Code: Bad RIP value.
  [162513.515784] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2
  [162513.515786] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7
  [162513.515788] RDX: 00000000ffffffff RSI: 000000000daf0e74 RDI: 000000000000003a
  [162513.515789] RBP: 0000000000000032 R08: 000000000000000a R09: 00007f5239019be0
  [162513.515791] R10: fffffffffffff24f R11: 0000000000000206 R12: 000000000000003a
  [162513.515792] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340
  [162513.515804] INFO: task fsstress:1356185 blocked for more than 120 seconds.
  [162513.516064]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.516329] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.516617] task:fsstress        state:D stack:    0 pid:1356185 ppid:1356177 flags:0x00000000
  [162513.516620] Call Trace:
  [162513.516625]  __schedule+0x5ce/0xd00
  [162513.516628]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.516634]  schedule+0x46/0xf0
  [162513.516647]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.516650]  ? finish_wait+0x90/0x90
  [162513.516662]  start_transaction+0x4d7/0x5f0 [btrfs]
  [162513.516679]  btrfs_setxattr_trans+0x3c/0x100 [btrfs]
  [162513.516686]  __vfs_setxattr+0x66/0x80
  [162513.516691]  __vfs_setxattr_noperm+0x70/0x200
  [162513.516697]  vfs_setxattr+0x6b/0x120
  [162513.516703]  setxattr+0x125/0x240
  [162513.516709]  ? lock_acquire+0xb1/0x480
  [162513.516712]  ? mnt_want_write+0x20/0x50
  [162513.516721]  ? rcu_read_lock_any_held+0x8e/0xb0
  [162513.516723]  ? preempt_count_add+0x49/0xa0
  [162513.516725]  ? __sb_start_write+0x19b/0x290
  [162513.516727]  ? preempt_count_add+0x49/0xa0
  [162513.516732]  path_setxattr+0xba/0xd0
  [162513.516739]  __x64_sys_setxattr+0x27/0x30
  [162513.516741]  do_syscall_64+0x33/0x80
  [162513.516743]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.516745] RIP: 0033:0x7f5238f56d5a
  [162513.516746] Code: Bad RIP value.
  [162513.516748] RSP: 002b:00007fff67b97868 EFLAGS: 00000202 ORIG_RAX: 00000000000000bc
  [162513.516750] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f5238f56d5a
  [162513.516751] RDX: 000055b1fbb0d5a0 RSI: 00007fff67b978a0 RDI: 000055b1fbb0d470
  [162513.516753] RBP: 000055b1fbb0d5a0 R08: 0000000000000001 R09: 00007fff67b97700
  [162513.516754] R10: 0000000000000004 R11: 0000000000000202 R12: 0000000000000004
  [162513.516756] R13: 0000000000000024 R14: 0000000000000001 R15: 00007fff67b978a0
  [162513.516767] INFO: task fsstress:1356196 blocked for more than 120 seconds.
  [162513.517064]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.517365] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.517763] task:fsstress        state:D stack:    0 pid:1356196 ppid:1356177 flags:0x00004000
  [162513.517780] Call Trace:
  [162513.517786]  __schedule+0x5ce/0xd00
  [162513.517789]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.517796]  schedule+0x46/0xf0
  [162513.517810]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.517814]  ? finish_wait+0x90/0x90
  [162513.517829]  start_transaction+0x37c/0x5f0 [btrfs]
  [162513.517845]  btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs]
  [162513.517857]  btrfs_sync_fs+0x61/0x1c0 [btrfs]
  [162513.517862]  ? __ia32_sys_fdatasync+0x20/0x20
  [162513.517865]  iterate_supers+0x87/0xf0
  [162513.517869]  ksys_sync+0x60/0xb0
  [162513.517872]  __do_sys_sync+0xa/0x10
  [162513.517875]  do_syscall_64+0x33/0x80
  [162513.517878]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.517881] RIP: 0033:0x7f5238f50bd7
  [162513.517883] Code: Bad RIP value.
  [162513.517885] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2
  [162513.517887] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7
  [162513.517889] RDX: 0000000000000000 RSI: 000000007660add2 RDI: 0000000000000053
  [162513.517891] RBP: 0000000000000032 R08: 0000000000000067 R09: 00007f5239019be0
  [162513.517893] R10: fffffffffffff24f R11: 0000000000000206 R12: 0000000000000053
  [162513.517895] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340
  [162513.517908] INFO: task fsstress:1356197 blocked for more than 120 seconds.
  [162513.518298]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.518672] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.519157] task:fsstress        state:D stack:    0 pid:1356197 ppid:1356177 flags:0x00000000
  [162513.519160] Call Trace:
  [162513.519165]  __schedule+0x5ce/0xd00
  [162513.519168]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.519174]  schedule+0x46/0xf0
  [162513.519190]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.519193]  ? finish_wait+0x90/0x90
  [162513.519206]  start_transaction+0x4d7/0x5f0 [btrfs]
  [162513.519222]  btrfs_create+0x57/0x200 [btrfs]
  [162513.519230]  lookup_open+0x522/0x650
  [162513.519246]  path_openat+0x2b8/0xa50
  [162513.519270]  do_filp_open+0x91/0x100
  [162513.519275]  ? find_held_lock+0x32/0x90
  [162513.519280]  ? lock_acquired+0x33b/0x470
  [162513.519285]  ? do_raw_spin_unlock+0x4b/0xc0
  [162513.519287]  ? _raw_spin_unlock+0x29/0x40
  [162513.519295]  do_sys_openat2+0x20d/0x2d0
  [162513.519300]  do_sys_open+0x44/0x80
  [162513.519304]  do_syscall_64+0x33/0x80
  [162513.519307]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.519309] RIP: 0033:0x7f5238f4a903
  [162513.519310] Code: Bad RIP value.
  [162513.519312] RSP: 002b:00007fff67b97758 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
  [162513.519314] RAX: ffffffffffffffda RBX: 00000000ffffffff RCX: 00007f5238f4a903
  [162513.519316] RDX: 0000000000000000 RSI: 00000000000001b6 RDI: 000055b1fbb0d470
  [162513.519317] RBP: 00007fff67b978c0 R08: 0000000000000001 R09: 0000000000000002
  [162513.519319] R10: 00007fff67b974f7 R11: 0000000000000246 R12: 0000000000000013
  [162513.519320] R13: 00000000000001b6 R14: 00007fff67b97906 R15: 000055b1fad1c620
  [162513.519332] INFO: task btrfs:1356211 blocked for more than 120 seconds.
  [162513.519727]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.520115] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.520508] task:btrfs           state:D stack:    0 pid:1356211 ppid:1356178 flags:0x00004002
  [162513.520511] Call Trace:
  [162513.520516]  __schedule+0x5ce/0xd00
  [162513.520519]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.520525]  schedule+0x46/0xf0
  [162513.520544]  btrfs_scrub_pause+0x11f/0x180 [btrfs]
  [162513.520548]  ? finish_wait+0x90/0x90
  [162513.520562]  btrfs_commit_transaction+0x45a/0xc30 [btrfs]
  [162513.520574]  ? start_transaction+0xe0/0x5f0 [btrfs]
  [162513.520596]  btrfs_dev_replace_finishing+0x6d8/0x711 [btrfs]
  [162513.520619]  btrfs_dev_replace_by_ioctl.cold+0x1cc/0x1fd [btrfs]
  [162513.520639]  btrfs_ioctl+0x2a25/0x36f0 [btrfs]
  [162513.520643]  ? do_sigaction+0xf3/0x240
  [162513.520645]  ? find_held_lock+0x32/0x90
  [162513.520648]  ? do_sigaction+0xf3/0x240
  [162513.520651]  ? lock_acquired+0x33b/0x470
  [162513.520655]  ? _raw_spin_unlock_irq+0x24/0x50
  [162513.520657]  ? lockdep_hardirqs_on+0x7d/0x100
  [162513.520660]  ? _raw_spin_unlock_irq+0x35/0x50
  [162513.520662]  ? do_sigaction+0xf3/0x240
  [162513.520671]  ? __x64_sys_ioctl+0x83/0xb0
  [162513.520672]  __x64_sys_ioctl+0x83/0xb0
  [162513.520677]  do_syscall_64+0x33/0x80
  [162513.520679]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.520681] RIP: 0033:0x7fc3cd307d87
  [162513.520682] Code: Bad RIP value.
  [162513.520684] RSP: 002b:00007ffe30a56bb8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
  [162513.520686] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fc3cd307d87
  [162513.520687] RDX: 00007ffe30a57a30 RSI: 00000000ca289435 RDI: 0000000000000003
  [162513.520689] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
  [162513.520690] R10: 0000000000000008 R11: 0000000000000202 R12: 0000000000000003
  [162513.520692] R13: 0000557323a212e0 R14: 00007ffe30a5a520 R15: 0000000000000001
  [162513.520703]
		  Showing all locks held in the system:
  [162513.520712] 1 lock held by khungtaskd/54:
  [162513.520713]  #0: ffffffffb40a91a0 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x15/0x197
  [162513.520728] 1 lock held by in:imklog/596:
  [162513.520729]  #0: ffff8f3f0d781400 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0x4d/0x60
  [162513.520782] 1 lock held by btrfs-transacti/1356167:
  [162513.520784]  #0: ffff8f3d810cc848 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0x4a/0x170 [btrfs]
  [162513.520798] 1 lock held by btrfs/1356190:
  [162513.520800]  #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write_file+0x22/0x60
  [162513.520805] 1 lock held by fsstress/1356184:
  [162513.520806]  #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0
  [162513.520811] 3 locks held by fsstress/1356185:
  [162513.520812]  #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50
  [162513.520815]  #1: ffff8f3d80a650b8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: vfs_setxattr+0x50/0x120
  [162513.520820]  #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]
  [162513.520833] 1 lock held by fsstress/1356196:
  [162513.520834]  #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0
  [162513.520838] 3 locks held by fsstress/1356197:
  [162513.520839]  #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50
  [162513.520843]  #1: ffff8f3d506465e8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: path_openat+0x2a7/0xa50
  [162513.520846]  #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]
  [162513.520858] 2 locks held by btrfs/1356211:
  [162513.520859]  #0: ffff8f3d810cde30 (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+.}-{3:3}, at: btrfs_dev_replace_finishing+0x52/0x711 [btrfs]
  [162513.520877]  #1: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]

This was weird because the stack traces show that a transaction commit,
triggered by a device replace operation, is blocking trying to pause any
running scrubs but there are no stack traces of blocked tasks doing a
scrub.

After poking around with drgn, I noticed there was a scrub task that was
constantly running and blocking for shorts periods of time:

  >>> t = find_task(prog, 1356190)
  >>> prog.stack_trace(t)
  #0  __schedule+0x5ce/0xcfc
  #1  schedule+0x46/0xe4
  #2  schedule_timeout+0x1df/0x475
  #3  btrfs_reada_wait+0xda/0x132
  #4  scrub_stripe+0x2a8/0x112f
  #5  scrub_chunk+0xcd/0x134
  #6  scrub_enumerate_chunks+0x29e/0x5ee
  #7  btrfs_scrub_dev+0x2d5/0x91b
  #8  btrfs_ioctl+0x7f5/0x36e7
  #9  __x64_sys_ioctl+0x83/0xb0
  #10 do_syscall_64+0x33/0x77
  #11 entry_SYSCALL_64+0x7c/0x156

Which corresponds to:

int btrfs_reada_wait(void *handle)
{
    struct reada_control *rc = handle;
    struct btrfs_fs_info *fs_info = rc->fs_info;

    while (atomic_read(&rc->elems)) {
        if (!atomic_read(&fs_info->reada_works_cnt))
            reada_start_machine(fs_info);
        wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
                          (HZ + 9) / 10);
    }
(...)

So the counter "rc->elems" was set to 1 and never decreased to 0, causing
the scrub task to loop forever in that function. Then I used the following
script for drgn to check the readahead requests:

  $ cat dump_reada.py
  import sys
  import drgn
  from drgn import NULL, Object, cast, container_of, execscript, \
      reinterpret, sizeof
  from drgn.helpers.linux import *

  mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1"

  mnt = None
  for mnt in for_each_mount(prog, dst = mnt_path):
      pass

  if mnt is None:
      sys.stderr.write(f'Error: mount point {mnt_path} not found\n')
      sys.exit(1)

  fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info)

  def dump_re(re):
      nzones = re.nzones.value_()
      print(f're at {hex(re.value_())}')
      print(f'\t logical {re.logical.value_()}')
      print(f'\t refcnt {re.refcnt.value_()}')
      print(f'\t nzones {nzones}')
      for i in range(nzones):
          dev = re.zones[i].device
          name = dev.name.str.string_()
          print(f'\t\t dev id {dev.devid.value_()} name {name}')
      print()

  for _, e in radix_tree_for_each(fs_info.reada_tree):
      re = cast('struct reada_extent *', e)
      dump_re(re)

  $ drgn dump_reada.py
  re at 0xffff8f3da9d25ad8
          logical 38928384
          refcnt 1
          nzones 1
                 dev id 0 name b'/dev/sdd'
  $

So there was one readahead extent with a single zone corresponding to the
source device of that last device replace operation logged in dmesg/syslog.
Also the ID of that zone's device was 0 which is a special value set in
the source device of a device replace operation when the operation finishes
(constant BTRFS_DEV_REPLACE_DEVID set at btrfs_dev_replace_finishing()),
confirming again that device /dev/sdd was the source of a device replace
operation.

Normally there should be as many zones in the readahead extent as there are
devices, and I wasn't expecting the extent to be in a block group with a
'single' profile, so I went and confirmed with the following drgn script
that there weren't any single profile block groups:

  $ cat dump_block_groups.py
  import sys
  import drgn
  from drgn import NULL, Object, cast, container_of, execscript, \
      reinterpret, sizeof
  from drgn.helpers.linux import *

  mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1"

  mnt = None
  for mnt in for_each_mount(prog, dst = mnt_path):
      pass

  if mnt is None:
      sys.stderr.write(f'Error: mount point {mnt_path} not found\n')
      sys.exit(1)

  fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info)

  BTRFS_BLOCK_GROUP_DATA = (1 << 0)
  BTRFS_BLOCK_GROUP_SYSTEM = (1 << 1)
  BTRFS_BLOCK_GROUP_METADATA = (1 << 2)
  BTRFS_BLOCK_GROUP_RAID0 = (1 << 3)
  BTRFS_BLOCK_GROUP_RAID1 = (1 << 4)
  BTRFS_BLOCK_GROUP_DUP = (1 << 5)
  BTRFS_BLOCK_GROUP_RAID10 = (1 << 6)
  BTRFS_BLOCK_GROUP_RAID5 = (1 << 7)
  BTRFS_BLOCK_GROUP_RAID6 = (1 << 8)
  BTRFS_BLOCK_GROUP_RAID1C3 = (1 << 9)
  BTRFS_BLOCK_GROUP_RAID1C4 = (1 << 10)

  def bg_flags_string(bg):
      flags = bg.flags.value_()
      ret = ''
      if flags & BTRFS_BLOCK_GROUP_DATA:
          ret = 'data'
      if flags & BTRFS_BLOCK_GROUP_METADATA:
          if len(ret) > 0:
              ret += '|'
          ret += 'meta'
      if flags & BTRFS_BLOCK_GROUP_SYSTEM:
          if len(ret) > 0:
              ret += '|'
          ret += 'system'
      if flags & BTRFS_BLOCK_GROUP_RAID0:
          ret += ' raid0'
      elif flags & BTRFS_BLOCK_GROUP_RAID1:
          ret += ' raid1'
      elif flags & BTRFS_BLOCK_GROUP_DUP:
          ret += ' dup'
      elif flags & BTRFS_BLOCK_GROUP_RAID10:
          ret += ' raid10'
      elif flags & BTRFS_BLOCK_GROUP_RAID5:
          ret += ' raid5'
      elif flags & BTRFS_BLOCK_GROUP_RAID6:
          ret += ' raid6'
      elif flags & BTRFS_BLOCK_GROUP_RAID1C3:
          ret += ' raid1c3'
      elif flags & BTRFS_BLOCK_GROUP_RAID1C4:
          ret += ' raid1c4'
      else:
          ret += ' single'

      return ret

  def dump_bg(bg):
      print()
      print(f'block group at {hex(bg.value_())}')
      print(f'\t start {bg.start.value_()} length {bg.length.value_()}')
      print(f'\t flags {bg.flags.value_()} - {bg_flags_string(bg)}')

  bg_root = fs_info.block_group_cache_tree.address_of_()
  for bg in rbtree_inorder_for_each_entry('struct btrfs_block_group', bg_root, 'cache_node'):
      dump_bg(bg)

  $ drgn dump_block_groups.py

  block group at 0xffff8f3d673b0400
         start 22020096 length 16777216
         flags 258 - system raid6

  block group at 0xffff8f3d53ddb400
         start 38797312 length 536870912
         flags 260 - meta raid6

  block group at 0xffff8f3d5f4d9c00
         start 575668224 length 2147483648
         flags 257 - data raid6

  block group at 0xffff8f3d08189000
         start 2723151872 length 67108864
         flags 258 - system raid6

  block group at 0xffff8f3db70ff000
         start 2790260736 length 1073741824
         flags 260 - meta raid6

  block group at 0xffff8f3d5f4dd800
         start 3864002560 length 67108864
         flags 258 - system raid6

  block group at 0xffff8f3d67037000
         start 3931111424 length 2147483648
         flags 257 - data raid6
  $

So there were only 2 reasons left for having a readahead extent with a
single zone: reada_find_zone(), called when creating a readahead extent,
returned NULL either because we failed to find the corresponding block
group or because a memory allocation failed. With some additional and
custom tracing I figured out that on every further ocurrence of the
problem the block group had just been deleted when we were looping to
create the zones for the readahead extent (at reada_find_extent()), so we
ended up with only one zone in the readahead extent, corresponding to a
device that ends up getting replaced.

So after figuring that out it became obvious why the hang happens:

1) Task A starts a scrub on any device of the filesystem, except for
   device /dev/sdd;

2) Task B starts a device replace with /dev/sdd as the source device;

3) Task A calls btrfs_reada_add() from scrub_stripe() and it is currently
   starting to scrub a stripe from block group X. This call to
   btrfs_reada_add() is the one for the extent tree. When btrfs_reada_add()
   calls reada_add_block(), it passes the logical address of the extent
   tree's root node as its 'logical' argument - a value of 38928384;

4) Task A then enters reada_find_extent(), called from reada_add_block().
   It finds there isn't any existing readahead extent for the logical
   address 38928384, so it proceeds to the path of creating a new one.

   It calls btrfs_map_block() to find out which stripes exist for the block
   group X. On the first iteration of the for loop that iterates over the
   stripes, it finds the stripe for device /dev/sdd, so it creates one
   zone for that device and adds it to the readahead extent. Before getting
   into the second iteration of the loop, the cleanup kthread deletes block
   group X because it was empty. So in the iterations for the remaining
   stripes it does not add more zones to the readahead extent, because the
   calls to reada_find_zone() returned NULL because they couldn't find
   block group X anymore.

   As a result the new readahead extent has a single zone, corresponding to
   the device /dev/sdd;

4) Before task A returns to btrfs_reada_add() and queues the readahead job
   for the readahead work queue, task B finishes the device replace and at
   btrfs_dev_replace_finishing() swaps the device /dev/sdd with the new
   device /dev/sdg;

5) Task A returns to reada_add_block(), which increments the counter
   "->elems" of the reada_control structure allocated at btrfs_reada_add().

   Then it returns back to btrfs_reada_add() and calls
   reada_start_machine(). This queues a job in the readahead work queue to
   run the function reada_start_machine_worker(), which calls
   __reada_start_machine().

   At __reada_start_machine() we take the device list mutex and for each
   device found in the current device list, we call
   reada_start_machine_dev() to start the readahead work. However at this
   point the device /dev/sdd was already freed and is not in the device
   list anymore.

   This means the corresponding readahead for the extent at 38928384 is
   never started, and therefore the "->elems" counter of the reada_control
   structure allocated at btrfs_reada_add() never goes down to 0, causing
   the call to btrfs_reada_wait(), done by the scrub task, to wait forever.

Note that the readahead request can be made either after the device replace
started or before it started, however in pratice it is very unlikely that a
device replace is able to start after a readahead request is made and is
able to complete before the readahead request completes - maybe only on a
very small and nearly empty filesystem.

This hang however is not the only problem we can have with readahead and
device removals. When the readahead extent has other zones other than the
one corresponding to the device that is being removed (either by a device
replace or a device remove operation), we risk having a use-after-free on
the device when dropping the last reference of the readahead extent.

For example if we create a readahead extent with two zones, one for the
device /dev/sdd and one for the device /dev/sde:

1) Before the readahead worker starts, the device /dev/sdd is removed,
   and the corresponding btrfs_device structure is freed. However the
   readahead extent still has the zone pointing to the device structure;

2) When the readahead worker starts, it only finds device /dev/sde in the
   current device list of the filesystem;

3) It starts the readahead work, at reada_start_machine_dev(), using the
   device /dev/sde;

4) Then when it finishes reading the extent from device /dev/sde, it calls
   __readahead_hook() which ends up dropping the last reference on the
   readahead extent through the last call to reada_extent_put();

5) At reada_extent_put() it iterates over each zone of the readahead extent
   and attempts to delete an element from the device's 'reada_extents'
   radix tree, resulting in a use-after-free, as the device pointer of the
   zone for /dev/sdd is now stale. We can also access the device after
   dropping the last reference of a zone, through reada_zone_release(),
   also called by reada_extent_put().

And a device remove suffers the same problem, however since it shrinks the
device size down to zero before removing the device, it is very unlikely to
still have readahead requests not completed by the time we free the device,
the only possibility is if the device has a very little space allocated.

While the hang problem is exclusive to scrub, since it is currently the
only user of btrfs_reada_add() and btrfs_reada_wait(), the use-after-free
problem affects any path that triggers readhead, which includes
btree_readahead_hook() and __readahead_hook() (a readahead worker can
trigger readahed for the children of a node) for example - any path that
ends up calling reada_add_block() can trigger the use-after-free after a
device is removed.

So fix this by waiting for any readahead requests for a device to complete
before removing a device, ensuring that while waiting for existing ones no
new ones can be made.

This problem has been around for a very long time - the readahead code was
added in 2011, device remove exists since 2008 and device replace was
introduced in 2013, hard to pick a specific commit for a git Fixes tag.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-26 15:03:59 +01:00

1120 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STRATO AG 2012. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/math64.h>
#include "misc.h"
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
#include "async-thread.h"
#include "check-integrity.h"
#include "rcu-string.h"
#include "dev-replace.h"
#include "sysfs.h"
/*
* Device replace overview
*
* [Objective]
* To copy all extents (both new and on-disk) from source device to target
* device, while still keeping the filesystem read-write.
*
* [Method]
* There are two main methods involved:
*
* - Write duplication
*
* All new writes will be written to both target and source devices, so even
* if replace gets canceled, sources device still contans up-to-date data.
*
* Location: handle_ops_on_dev_replace() from __btrfs_map_block()
* Start: btrfs_dev_replace_start()
* End: btrfs_dev_replace_finishing()
* Content: Latest data/metadata
*
* - Copy existing extents
*
* This happens by re-using scrub facility, as scrub also iterates through
* existing extents from commit root.
*
* Location: scrub_write_block_to_dev_replace() from
* scrub_block_complete()
* Content: Data/meta from commit root.
*
* Due to the content difference, we need to avoid nocow write when dev-replace
* is happening. This is done by marking the block group read-only and waiting
* for NOCOW writes.
*
* After replace is done, the finishing part is done by swapping the target and
* source devices.
*
* Location: btrfs_dev_replace_update_device_in_mapping_tree() from
* btrfs_dev_replace_finishing()
*/
static int btrfs_dev_replace_finishing(struct btrfs_fs_info *fs_info,
int scrub_ret);
static int btrfs_dev_replace_kthread(void *data);
int btrfs_init_dev_replace(struct btrfs_fs_info *fs_info)
{
struct btrfs_key key;
struct btrfs_root *dev_root = fs_info->dev_root;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
struct extent_buffer *eb;
int slot;
int ret = 0;
struct btrfs_path *path = NULL;
int item_size;
struct btrfs_dev_replace_item *ptr;
u64 src_devid;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
key.objectid = 0;
key.type = BTRFS_DEV_REPLACE_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
if (ret) {
no_valid_dev_replace_entry_found:
ret = 0;
dev_replace->replace_state =
BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED;
dev_replace->cont_reading_from_srcdev_mode =
BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS;
dev_replace->time_started = 0;
dev_replace->time_stopped = 0;
atomic64_set(&dev_replace->num_write_errors, 0);
atomic64_set(&dev_replace->num_uncorrectable_read_errors, 0);
dev_replace->cursor_left = 0;
dev_replace->committed_cursor_left = 0;
dev_replace->cursor_left_last_write_of_item = 0;
dev_replace->cursor_right = 0;
dev_replace->srcdev = NULL;
dev_replace->tgtdev = NULL;
dev_replace->is_valid = 0;
dev_replace->item_needs_writeback = 0;
goto out;
}
slot = path->slots[0];
eb = path->nodes[0];
item_size = btrfs_item_size_nr(eb, slot);
ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_replace_item);
if (item_size != sizeof(struct btrfs_dev_replace_item)) {
btrfs_warn(fs_info,
"dev_replace entry found has unexpected size, ignore entry");
goto no_valid_dev_replace_entry_found;
}
src_devid = btrfs_dev_replace_src_devid(eb, ptr);
dev_replace->cont_reading_from_srcdev_mode =
btrfs_dev_replace_cont_reading_from_srcdev_mode(eb, ptr);
dev_replace->replace_state = btrfs_dev_replace_replace_state(eb, ptr);
dev_replace->time_started = btrfs_dev_replace_time_started(eb, ptr);
dev_replace->time_stopped =
btrfs_dev_replace_time_stopped(eb, ptr);
atomic64_set(&dev_replace->num_write_errors,
btrfs_dev_replace_num_write_errors(eb, ptr));
atomic64_set(&dev_replace->num_uncorrectable_read_errors,
btrfs_dev_replace_num_uncorrectable_read_errors(eb, ptr));
dev_replace->cursor_left = btrfs_dev_replace_cursor_left(eb, ptr);
dev_replace->committed_cursor_left = dev_replace->cursor_left;
dev_replace->cursor_left_last_write_of_item = dev_replace->cursor_left;
dev_replace->cursor_right = btrfs_dev_replace_cursor_right(eb, ptr);
dev_replace->is_valid = 1;
dev_replace->item_needs_writeback = 0;
switch (dev_replace->replace_state) {
case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED:
dev_replace->srcdev = NULL;
dev_replace->tgtdev = NULL;
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED:
dev_replace->srcdev = btrfs_find_device(fs_info->fs_devices,
src_devid, NULL, NULL, true);
dev_replace->tgtdev = btrfs_find_device(fs_info->fs_devices,
BTRFS_DEV_REPLACE_DEVID,
NULL, NULL, true);
/*
* allow 'btrfs dev replace_cancel' if src/tgt device is
* missing
*/
if (!dev_replace->srcdev &&
!btrfs_test_opt(fs_info, DEGRADED)) {
ret = -EIO;
btrfs_warn(fs_info,
"cannot mount because device replace operation is ongoing and");
btrfs_warn(fs_info,
"srcdev (devid %llu) is missing, need to run 'btrfs dev scan'?",
src_devid);
}
if (!dev_replace->tgtdev &&
!btrfs_test_opt(fs_info, DEGRADED)) {
ret = -EIO;
btrfs_warn(fs_info,
"cannot mount because device replace operation is ongoing and");
btrfs_warn(fs_info,
"tgtdev (devid %llu) is missing, need to run 'btrfs dev scan'?",
BTRFS_DEV_REPLACE_DEVID);
}
if (dev_replace->tgtdev) {
if (dev_replace->srcdev) {
dev_replace->tgtdev->total_bytes =
dev_replace->srcdev->total_bytes;
dev_replace->tgtdev->disk_total_bytes =
dev_replace->srcdev->disk_total_bytes;
dev_replace->tgtdev->commit_total_bytes =
dev_replace->srcdev->commit_total_bytes;
dev_replace->tgtdev->bytes_used =
dev_replace->srcdev->bytes_used;
dev_replace->tgtdev->commit_bytes_used =
dev_replace->srcdev->commit_bytes_used;
}
set_bit(BTRFS_DEV_STATE_REPLACE_TGT,
&dev_replace->tgtdev->dev_state);
WARN_ON(fs_info->fs_devices->rw_devices == 0);
dev_replace->tgtdev->io_width = fs_info->sectorsize;
dev_replace->tgtdev->io_align = fs_info->sectorsize;
dev_replace->tgtdev->sector_size = fs_info->sectorsize;
dev_replace->tgtdev->fs_info = fs_info;
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
&dev_replace->tgtdev->dev_state);
}
break;
}
out:
btrfs_free_path(path);
return ret;
}
/*
* Initialize a new device for device replace target from a given source dev
* and path.
*
* Return 0 and new device in @device_out, otherwise return < 0
*/
static int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
const char *device_path,
struct btrfs_device *srcdev,
struct btrfs_device **device_out)
{
struct btrfs_device *device;
struct block_device *bdev;
struct rcu_string *name;
u64 devid = BTRFS_DEV_REPLACE_DEVID;
int ret = 0;
*device_out = NULL;
if (srcdev->fs_devices->seeding) {
btrfs_err(fs_info, "the filesystem is a seed filesystem!");
return -EINVAL;
}
bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
fs_info->bdev_holder);
if (IS_ERR(bdev)) {
btrfs_err(fs_info, "target device %s is invalid!", device_path);
return PTR_ERR(bdev);
}
sync_blockdev(bdev);
list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
if (device->bdev == bdev) {
btrfs_err(fs_info,
"target device is in the filesystem!");
ret = -EEXIST;
goto error;
}
}
if (i_size_read(bdev->bd_inode) <
btrfs_device_get_total_bytes(srcdev)) {
btrfs_err(fs_info,
"target device is smaller than source device!");
ret = -EINVAL;
goto error;
}
device = btrfs_alloc_device(NULL, &devid, NULL);
if (IS_ERR(device)) {
ret = PTR_ERR(device);
goto error;
}
name = rcu_string_strdup(device_path, GFP_KERNEL);
if (!name) {
btrfs_free_device(device);
ret = -ENOMEM;
goto error;
}
rcu_assign_pointer(device->name, name);
set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
device->generation = 0;
device->io_width = fs_info->sectorsize;
device->io_align = fs_info->sectorsize;
device->sector_size = fs_info->sectorsize;
device->total_bytes = btrfs_device_get_total_bytes(srcdev);
device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
device->bytes_used = btrfs_device_get_bytes_used(srcdev);
device->commit_total_bytes = srcdev->commit_total_bytes;
device->commit_bytes_used = device->bytes_used;
device->fs_info = fs_info;
device->bdev = bdev;
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
device->mode = FMODE_EXCL;
device->dev_stats_valid = 1;
set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
device->fs_devices = fs_info->fs_devices;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
list_add(&device->dev_list, &fs_info->fs_devices->devices);
fs_info->fs_devices->num_devices++;
fs_info->fs_devices->open_devices++;
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
*device_out = device;
return 0;
error:
blkdev_put(bdev, FMODE_EXCL);
return ret;
}
/*
* called from commit_transaction. Writes changed device replace state to
* disk.
*/
int btrfs_run_dev_replace(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret;
struct btrfs_root *dev_root = fs_info->dev_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *eb;
struct btrfs_dev_replace_item *ptr;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
down_read(&dev_replace->rwsem);
if (!dev_replace->is_valid ||
!dev_replace->item_needs_writeback) {
up_read(&dev_replace->rwsem);
return 0;
}
up_read(&dev_replace->rwsem);
key.objectid = 0;
key.type = BTRFS_DEV_REPLACE_KEY;
key.offset = 0;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
if (ret < 0) {
btrfs_warn(fs_info,
"error %d while searching for dev_replace item!",
ret);
goto out;
}
if (ret == 0 &&
btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
/*
* need to delete old one and insert a new one.
* Since no attempt is made to recover any old state, if the
* dev_replace state is 'running', the data on the target
* drive is lost.
* It would be possible to recover the state: just make sure
* that the beginning of the item is never changed and always
* contains all the essential information. Then read this
* minimal set of information and use it as a base for the
* new state.
*/
ret = btrfs_del_item(trans, dev_root, path);
if (ret != 0) {
btrfs_warn(fs_info,
"delete too small dev_replace item failed %d!",
ret);
goto out;
}
ret = 1;
}
if (ret == 1) {
/* need to insert a new item */
btrfs_release_path(path);
ret = btrfs_insert_empty_item(trans, dev_root, path,
&key, sizeof(*ptr));
if (ret < 0) {
btrfs_warn(fs_info,
"insert dev_replace item failed %d!", ret);
goto out;
}
}
eb = path->nodes[0];
ptr = btrfs_item_ptr(eb, path->slots[0],
struct btrfs_dev_replace_item);
down_write(&dev_replace->rwsem);
if (dev_replace->srcdev)
btrfs_set_dev_replace_src_devid(eb, ptr,
dev_replace->srcdev->devid);
else
btrfs_set_dev_replace_src_devid(eb, ptr, (u64)-1);
btrfs_set_dev_replace_cont_reading_from_srcdev_mode(eb, ptr,
dev_replace->cont_reading_from_srcdev_mode);
btrfs_set_dev_replace_replace_state(eb, ptr,
dev_replace->replace_state);
btrfs_set_dev_replace_time_started(eb, ptr, dev_replace->time_started);
btrfs_set_dev_replace_time_stopped(eb, ptr, dev_replace->time_stopped);
btrfs_set_dev_replace_num_write_errors(eb, ptr,
atomic64_read(&dev_replace->num_write_errors));
btrfs_set_dev_replace_num_uncorrectable_read_errors(eb, ptr,
atomic64_read(&dev_replace->num_uncorrectable_read_errors));
dev_replace->cursor_left_last_write_of_item =
dev_replace->cursor_left;
btrfs_set_dev_replace_cursor_left(eb, ptr,
dev_replace->cursor_left_last_write_of_item);
btrfs_set_dev_replace_cursor_right(eb, ptr,
dev_replace->cursor_right);
dev_replace->item_needs_writeback = 0;
up_write(&dev_replace->rwsem);
btrfs_mark_buffer_dirty(eb);
out:
btrfs_free_path(path);
return ret;
}
static char* btrfs_dev_name(struct btrfs_device *device)
{
if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
return "<missing disk>";
else
return rcu_str_deref(device->name);
}
static int btrfs_dev_replace_start(struct btrfs_fs_info *fs_info,
const char *tgtdev_name, u64 srcdevid, const char *srcdev_name,
int read_src)
{
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_trans_handle *trans;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
int ret;
struct btrfs_device *tgt_device = NULL;
struct btrfs_device *src_device = NULL;
src_device = btrfs_find_device_by_devspec(fs_info, srcdevid,
srcdev_name);
if (IS_ERR(src_device))
return PTR_ERR(src_device);
if (btrfs_pinned_by_swapfile(fs_info, src_device)) {
btrfs_warn_in_rcu(fs_info,
"cannot replace device %s (devid %llu) due to active swapfile",
btrfs_dev_name(src_device), src_device->devid);
return -ETXTBSY;
}
/*
* Here we commit the transaction to make sure commit_total_bytes
* of all the devices are updated.
*/
trans = btrfs_attach_transaction(root);
if (!IS_ERR(trans)) {
ret = btrfs_commit_transaction(trans);
if (ret)
return ret;
} else if (PTR_ERR(trans) != -ENOENT) {
return PTR_ERR(trans);
}
ret = btrfs_init_dev_replace_tgtdev(fs_info, tgtdev_name,
src_device, &tgt_device);
if (ret)
return ret;
down_write(&dev_replace->rwsem);
switch (dev_replace->replace_state) {
case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED:
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED:
ASSERT(0);
ret = BTRFS_IOCTL_DEV_REPLACE_RESULT_ALREADY_STARTED;
up_write(&dev_replace->rwsem);
goto leave;
}
dev_replace->cont_reading_from_srcdev_mode = read_src;
dev_replace->srcdev = src_device;
dev_replace->tgtdev = tgt_device;
btrfs_info_in_rcu(fs_info,
"dev_replace from %s (devid %llu) to %s started",
btrfs_dev_name(src_device),
src_device->devid,
rcu_str_deref(tgt_device->name));
/*
* from now on, the writes to the srcdev are all duplicated to
* go to the tgtdev as well (refer to btrfs_map_block()).
*/
dev_replace->replace_state = BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED;
dev_replace->time_started = ktime_get_real_seconds();
dev_replace->cursor_left = 0;
dev_replace->committed_cursor_left = 0;
dev_replace->cursor_left_last_write_of_item = 0;
dev_replace->cursor_right = 0;
dev_replace->is_valid = 1;
dev_replace->item_needs_writeback = 1;
atomic64_set(&dev_replace->num_write_errors, 0);
atomic64_set(&dev_replace->num_uncorrectable_read_errors, 0);
up_write(&dev_replace->rwsem);
ret = btrfs_sysfs_add_device(tgt_device);
if (ret)
btrfs_err(fs_info, "kobj add dev failed %d", ret);
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
/* Commit dev_replace state and reserve 1 item for it. */
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
down_write(&dev_replace->rwsem);
dev_replace->replace_state =
BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED;
dev_replace->srcdev = NULL;
dev_replace->tgtdev = NULL;
up_write(&dev_replace->rwsem);
goto leave;
}
ret = btrfs_commit_transaction(trans);
WARN_ON(ret);
/* the disk copy procedure reuses the scrub code */
ret = btrfs_scrub_dev(fs_info, src_device->devid, 0,
btrfs_device_get_total_bytes(src_device),
&dev_replace->scrub_progress, 0, 1);
ret = btrfs_dev_replace_finishing(fs_info, ret);
if (ret == -EINPROGRESS)
ret = BTRFS_IOCTL_DEV_REPLACE_RESULT_SCRUB_INPROGRESS;
return ret;
leave:
btrfs_destroy_dev_replace_tgtdev(tgt_device);
return ret;
}
int btrfs_dev_replace_by_ioctl(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_dev_replace_args *args)
{
int ret;
switch (args->start.cont_reading_from_srcdev_mode) {
case BTRFS_IOCTL_DEV_REPLACE_CONT_READING_FROM_SRCDEV_MODE_ALWAYS:
case BTRFS_IOCTL_DEV_REPLACE_CONT_READING_FROM_SRCDEV_MODE_AVOID:
break;
default:
return -EINVAL;
}
if ((args->start.srcdevid == 0 && args->start.srcdev_name[0] == '\0') ||
args->start.tgtdev_name[0] == '\0')
return -EINVAL;
ret = btrfs_dev_replace_start(fs_info, args->start.tgtdev_name,
args->start.srcdevid,
args->start.srcdev_name,
args->start.cont_reading_from_srcdev_mode);
args->result = ret;
/* don't warn if EINPROGRESS, someone else might be running scrub */
if (ret == BTRFS_IOCTL_DEV_REPLACE_RESULT_SCRUB_INPROGRESS ||
ret == BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR)
return 0;
return ret;
}
/*
* blocked until all in-flight bios operations are finished.
*/
static void btrfs_rm_dev_replace_blocked(struct btrfs_fs_info *fs_info)
{
set_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state);
wait_event(fs_info->dev_replace.replace_wait, !percpu_counter_sum(
&fs_info->dev_replace.bio_counter));
}
/*
* we have removed target device, it is safe to allow new bios request.
*/
static void btrfs_rm_dev_replace_unblocked(struct btrfs_fs_info *fs_info)
{
clear_bit(BTRFS_FS_STATE_DEV_REPLACING, &fs_info->fs_state);
wake_up(&fs_info->dev_replace.replace_wait);
}
/*
* When finishing the device replace, before swapping the source device with the
* target device we must update the chunk allocation state in the target device,
* as it is empty because replace works by directly copying the chunks and not
* through the normal chunk allocation path.
*/
static int btrfs_set_target_alloc_state(struct btrfs_device *srcdev,
struct btrfs_device *tgtdev)
{
struct extent_state *cached_state = NULL;
u64 start = 0;
u64 found_start;
u64 found_end;
int ret = 0;
lockdep_assert_held(&srcdev->fs_info->chunk_mutex);
while (!find_first_extent_bit(&srcdev->alloc_state, start,
&found_start, &found_end,
CHUNK_ALLOCATED, &cached_state)) {
ret = set_extent_bits(&tgtdev->alloc_state, found_start,
found_end, CHUNK_ALLOCATED);
if (ret)
break;
start = found_end + 1;
}
free_extent_state(cached_state);
return ret;
}
static void btrfs_dev_replace_update_device_in_mapping_tree(
struct btrfs_fs_info *fs_info,
struct btrfs_device *srcdev,
struct btrfs_device *tgtdev)
{
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
struct extent_map *em;
struct map_lookup *map;
u64 start = 0;
int i;
write_lock(&em_tree->lock);
do {
em = lookup_extent_mapping(em_tree, start, (u64)-1);
if (!em)
break;
map = em->map_lookup;
for (i = 0; i < map->num_stripes; i++)
if (srcdev == map->stripes[i].dev)
map->stripes[i].dev = tgtdev;
start = em->start + em->len;
free_extent_map(em);
} while (start);
write_unlock(&em_tree->lock);
}
static int btrfs_dev_replace_finishing(struct btrfs_fs_info *fs_info,
int scrub_ret)
{
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
struct btrfs_device *tgt_device;
struct btrfs_device *src_device;
struct btrfs_root *root = fs_info->tree_root;
u8 uuid_tmp[BTRFS_UUID_SIZE];
struct btrfs_trans_handle *trans;
int ret = 0;
/* don't allow cancel or unmount to disturb the finishing procedure */
mutex_lock(&dev_replace->lock_finishing_cancel_unmount);
down_read(&dev_replace->rwsem);
/* was the operation canceled, or is it finished? */
if (dev_replace->replace_state !=
BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED) {
up_read(&dev_replace->rwsem);
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
return 0;
}
tgt_device = dev_replace->tgtdev;
src_device = dev_replace->srcdev;
up_read(&dev_replace->rwsem);
/*
* flush all outstanding I/O and inode extent mappings before the
* copy operation is declared as being finished
*/
ret = btrfs_start_delalloc_roots(fs_info, U64_MAX);
if (ret) {
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
return ret;
}
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
if (!scrub_ret)
btrfs_reada_remove_dev(src_device);
/*
* We have to use this loop approach because at this point src_device
* has to be available for transaction commit to complete, yet new
* chunks shouldn't be allocated on the device.
*/
while (1) {
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
btrfs_reada_undo_remove_dev(src_device);
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
return PTR_ERR(trans);
}
ret = btrfs_commit_transaction(trans);
WARN_ON(ret);
/* Prevent write_all_supers() during the finishing procedure */
mutex_lock(&fs_info->fs_devices->device_list_mutex);
/* Prevent new chunks being allocated on the source device */
mutex_lock(&fs_info->chunk_mutex);
if (!list_empty(&src_device->post_commit_list)) {
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
mutex_unlock(&fs_info->chunk_mutex);
} else {
break;
}
}
down_write(&dev_replace->rwsem);
dev_replace->replace_state =
scrub_ret ? BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED
: BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED;
dev_replace->tgtdev = NULL;
dev_replace->srcdev = NULL;
dev_replace->time_stopped = ktime_get_real_seconds();
dev_replace->item_needs_writeback = 1;
/*
* Update allocation state in the new device and replace the old device
* with the new one in the mapping tree.
*/
if (!scrub_ret) {
scrub_ret = btrfs_set_target_alloc_state(src_device, tgt_device);
if (scrub_ret)
goto error;
btrfs_dev_replace_update_device_in_mapping_tree(fs_info,
src_device,
tgt_device);
} else {
if (scrub_ret != -ECANCELED)
btrfs_err_in_rcu(fs_info,
"btrfs_scrub_dev(%s, %llu, %s) failed %d",
btrfs_dev_name(src_device),
src_device->devid,
rcu_str_deref(tgt_device->name), scrub_ret);
error:
up_write(&dev_replace->rwsem);
mutex_unlock(&fs_info->chunk_mutex);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
btrfs_reada_undo_remove_dev(src_device);
btrfs_rm_dev_replace_blocked(fs_info);
if (tgt_device)
btrfs_destroy_dev_replace_tgtdev(tgt_device);
btrfs_rm_dev_replace_unblocked(fs_info);
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
return scrub_ret;
}
btrfs_info_in_rcu(fs_info,
"dev_replace from %s (devid %llu) to %s finished",
btrfs_dev_name(src_device),
src_device->devid,
rcu_str_deref(tgt_device->name));
clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &tgt_device->dev_state);
tgt_device->devid = src_device->devid;
src_device->devid = BTRFS_DEV_REPLACE_DEVID;
memcpy(uuid_tmp, tgt_device->uuid, sizeof(uuid_tmp));
memcpy(tgt_device->uuid, src_device->uuid, sizeof(tgt_device->uuid));
memcpy(src_device->uuid, uuid_tmp, sizeof(src_device->uuid));
btrfs_device_set_total_bytes(tgt_device, src_device->total_bytes);
btrfs_device_set_disk_total_bytes(tgt_device,
src_device->disk_total_bytes);
btrfs_device_set_bytes_used(tgt_device, src_device->bytes_used);
tgt_device->commit_bytes_used = src_device->bytes_used;
btrfs_assign_next_active_device(src_device, tgt_device);
list_add(&tgt_device->dev_alloc_list, &fs_info->fs_devices->alloc_list);
fs_info->fs_devices->rw_devices++;
up_write(&dev_replace->rwsem);
btrfs_rm_dev_replace_blocked(fs_info);
btrfs_rm_dev_replace_remove_srcdev(src_device);
btrfs_rm_dev_replace_unblocked(fs_info);
/*
* Increment dev_stats_ccnt so that btrfs_run_dev_stats() will
* update on-disk dev stats value during commit transaction
*/
atomic_inc(&tgt_device->dev_stats_ccnt);
/*
* this is again a consistent state where no dev_replace procedure
* is running, the target device is part of the filesystem, the
* source device is not part of the filesystem anymore and its 1st
* superblock is scratched out so that it is no longer marked to
* belong to this filesystem.
*/
mutex_unlock(&fs_info->chunk_mutex);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
/* replace the sysfs entry */
btrfs_sysfs_remove_device(src_device);
btrfs_sysfs_update_devid(tgt_device);
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &src_device->dev_state))
btrfs_scratch_superblocks(fs_info, src_device->bdev,
src_device->name->str);
/* write back the superblocks */
trans = btrfs_start_transaction(root, 0);
if (!IS_ERR(trans))
btrfs_commit_transaction(trans);
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
btrfs_rm_dev_replace_free_srcdev(src_device);
return 0;
}
/*
* Read progress of device replace status according to the state and last
* stored position. The value format is the same as for
* btrfs_dev_replace::progress_1000
*/
static u64 btrfs_dev_replace_progress(struct btrfs_fs_info *fs_info)
{
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
u64 ret = 0;
switch (dev_replace->replace_state) {
case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED:
ret = 0;
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED:
ret = 1000;
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED:
ret = div64_u64(dev_replace->cursor_left,
div_u64(btrfs_device_get_total_bytes(
dev_replace->srcdev), 1000));
break;
}
return ret;
}
void btrfs_dev_replace_status(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_dev_replace_args *args)
{
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
down_read(&dev_replace->rwsem);
/* even if !dev_replace_is_valid, the values are good enough for
* the replace_status ioctl */
args->result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR;
args->status.replace_state = dev_replace->replace_state;
args->status.time_started = dev_replace->time_started;
args->status.time_stopped = dev_replace->time_stopped;
args->status.num_write_errors =
atomic64_read(&dev_replace->num_write_errors);
args->status.num_uncorrectable_read_errors =
atomic64_read(&dev_replace->num_uncorrectable_read_errors);
args->status.progress_1000 = btrfs_dev_replace_progress(fs_info);
up_read(&dev_replace->rwsem);
}
int btrfs_dev_replace_cancel(struct btrfs_fs_info *fs_info)
{
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
struct btrfs_device *tgt_device = NULL;
struct btrfs_device *src_device = NULL;
struct btrfs_trans_handle *trans;
struct btrfs_root *root = fs_info->tree_root;
int result;
int ret;
if (sb_rdonly(fs_info->sb))
return -EROFS;
mutex_lock(&dev_replace->lock_finishing_cancel_unmount);
down_write(&dev_replace->rwsem);
switch (dev_replace->replace_state) {
case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED:
result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NOT_STARTED;
up_write(&dev_replace->rwsem);
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED:
tgt_device = dev_replace->tgtdev;
src_device = dev_replace->srcdev;
up_write(&dev_replace->rwsem);
ret = btrfs_scrub_cancel(fs_info);
if (ret < 0) {
result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NOT_STARTED;
} else {
result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR;
/*
* btrfs_dev_replace_finishing() will handle the
* cleanup part
*/
btrfs_info_in_rcu(fs_info,
"dev_replace from %s (devid %llu) to %s canceled",
btrfs_dev_name(src_device), src_device->devid,
btrfs_dev_name(tgt_device));
}
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED:
/*
* Scrub doing the replace isn't running so we need to do the
* cleanup step of btrfs_dev_replace_finishing() here
*/
result = BTRFS_IOCTL_DEV_REPLACE_RESULT_NO_ERROR;
tgt_device = dev_replace->tgtdev;
src_device = dev_replace->srcdev;
dev_replace->tgtdev = NULL;
dev_replace->srcdev = NULL;
dev_replace->replace_state =
BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED;
dev_replace->time_stopped = ktime_get_real_seconds();
dev_replace->item_needs_writeback = 1;
up_write(&dev_replace->rwsem);
/* Scrub for replace must not be running in suspended state */
ret = btrfs_scrub_cancel(fs_info);
ASSERT(ret != -ENOTCONN);
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
return PTR_ERR(trans);
}
ret = btrfs_commit_transaction(trans);
WARN_ON(ret);
btrfs_info_in_rcu(fs_info,
"suspended dev_replace from %s (devid %llu) to %s canceled",
btrfs_dev_name(src_device), src_device->devid,
btrfs_dev_name(tgt_device));
if (tgt_device)
btrfs_destroy_dev_replace_tgtdev(tgt_device);
break;
default:
up_write(&dev_replace->rwsem);
result = -EINVAL;
}
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
return result;
}
void btrfs_dev_replace_suspend_for_unmount(struct btrfs_fs_info *fs_info)
{
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
mutex_lock(&dev_replace->lock_finishing_cancel_unmount);
down_write(&dev_replace->rwsem);
switch (dev_replace->replace_state) {
case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED:
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED:
dev_replace->replace_state =
BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED;
dev_replace->time_stopped = ktime_get_real_seconds();
dev_replace->item_needs_writeback = 1;
btrfs_info(fs_info, "suspending dev_replace for unmount");
break;
}
up_write(&dev_replace->rwsem);
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
}
/* resume dev_replace procedure that was interrupted by unmount */
int btrfs_resume_dev_replace_async(struct btrfs_fs_info *fs_info)
{
struct task_struct *task;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
down_write(&dev_replace->rwsem);
switch (dev_replace->replace_state) {
case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED:
up_write(&dev_replace->rwsem);
return 0;
case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED:
break;
case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED:
dev_replace->replace_state =
BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED;
break;
}
if (!dev_replace->tgtdev || !dev_replace->tgtdev->bdev) {
btrfs_info(fs_info,
"cannot continue dev_replace, tgtdev is missing");
btrfs_info(fs_info,
"you may cancel the operation after 'mount -o degraded'");
dev_replace->replace_state =
BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED;
up_write(&dev_replace->rwsem);
return 0;
}
up_write(&dev_replace->rwsem);
/*
* This could collide with a paused balance, but the exclusive op logic
* should never allow both to start and pause. We don't want to allow
* dev-replace to start anyway.
*/
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
down_write(&dev_replace->rwsem);
dev_replace->replace_state =
BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED;
up_write(&dev_replace->rwsem);
btrfs_info(fs_info,
"cannot resume dev-replace, other exclusive operation running");
return 0;
}
task = kthread_run(btrfs_dev_replace_kthread, fs_info, "btrfs-devrepl");
return PTR_ERR_OR_ZERO(task);
}
static int btrfs_dev_replace_kthread(void *data)
{
struct btrfs_fs_info *fs_info = data;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
u64 progress;
int ret;
progress = btrfs_dev_replace_progress(fs_info);
progress = div_u64(progress, 10);
btrfs_info_in_rcu(fs_info,
"continuing dev_replace from %s (devid %llu) to target %s @%u%%",
btrfs_dev_name(dev_replace->srcdev),
dev_replace->srcdev->devid,
btrfs_dev_name(dev_replace->tgtdev),
(unsigned int)progress);
ret = btrfs_scrub_dev(fs_info, dev_replace->srcdev->devid,
dev_replace->committed_cursor_left,
btrfs_device_get_total_bytes(dev_replace->srcdev),
&dev_replace->scrub_progress, 0, 1);
ret = btrfs_dev_replace_finishing(fs_info, ret);
WARN_ON(ret && ret != -ECANCELED);
btrfs_exclop_finish(fs_info);
return 0;
}
int __pure btrfs_dev_replace_is_ongoing(struct btrfs_dev_replace *dev_replace)
{
if (!dev_replace->is_valid)
return 0;
switch (dev_replace->replace_state) {
case BTRFS_IOCTL_DEV_REPLACE_STATE_NEVER_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_FINISHED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_CANCELED:
return 0;
case BTRFS_IOCTL_DEV_REPLACE_STATE_STARTED:
case BTRFS_IOCTL_DEV_REPLACE_STATE_SUSPENDED:
/*
* return true even if tgtdev is missing (this is
* something that can happen if the dev_replace
* procedure is suspended by an umount and then
* the tgtdev is missing (or "btrfs dev scan") was
* not called and the filesystem is remounted
* in degraded state. This does not stop the
* dev_replace procedure. It needs to be canceled
* manually if the cancellation is wanted.
*/
break;
}
return 1;
}
void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info)
{
percpu_counter_inc(&fs_info->dev_replace.bio_counter);
}
void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount)
{
percpu_counter_sub(&fs_info->dev_replace.bio_counter, amount);
cond_wake_up_nomb(&fs_info->dev_replace.replace_wait);
}
void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info)
{
while (1) {
percpu_counter_inc(&fs_info->dev_replace.bio_counter);
if (likely(!test_bit(BTRFS_FS_STATE_DEV_REPLACING,
&fs_info->fs_state)))
break;
btrfs_bio_counter_dec(fs_info);
wait_event(fs_info->dev_replace.replace_wait,
!test_bit(BTRFS_FS_STATE_DEV_REPLACING,
&fs_info->fs_state));
}
}