mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 01:24:12 +08:00
50b3ef14c2
- Prevent xHCI driver from claiming AMD VanGogh USB3 DRD device so dwc3 can claim it instead (Vicki Pfau) - Make pci_assign_unassigned_resources() non-init because sparc uses it after init-time (Randy Dunlap) - Remove logic_outb(), _outw(), outl() duplicate declarations (John Sanpe) - Remove unnecessary UTF-8 in Kconfig help text that confuses menuconfig (Liu Song) - Fix double free in __pci_epc_create() (Dan Carpenter) - Simplify pcie_capability_clear_and_set_word() cases that could be pcie_capability_clear_word() (Ilpo Järvinen) * pci/misc: PCI: Simplify pcie_capability_clear_and_set_word() to ..._clear_word() PCI: endpoint: Fix double free in __pci_epc_create() PCI: Replace unnecessary UTF-8 in Kconfig logic_pio: Remove logic_outb(), _outw(), outl() duplicate declarations PCI: Make pci_assign_unassigned_resources() non-init PCI: Prevent xHCI driver from claiming AMD VanGogh USB3 DRD device
1402 lines
42 KiB
C
1402 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Enable PCIe link L0s/L1 state and Clock Power Management
|
|
*
|
|
* Copyright (C) 2007 Intel
|
|
* Copyright (C) Zhang Yanmin (yanmin.zhang@intel.com)
|
|
* Copyright (C) Shaohua Li (shaohua.li@intel.com)
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/limits.h>
|
|
#include <linux/math.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_regs.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/time.h>
|
|
|
|
#include "../pci.h"
|
|
|
|
#ifdef MODULE_PARAM_PREFIX
|
|
#undef MODULE_PARAM_PREFIX
|
|
#endif
|
|
#define MODULE_PARAM_PREFIX "pcie_aspm."
|
|
|
|
/* Note: those are not register definitions */
|
|
#define ASPM_STATE_L0S_UP (1) /* Upstream direction L0s state */
|
|
#define ASPM_STATE_L0S_DW (2) /* Downstream direction L0s state */
|
|
#define ASPM_STATE_L1 (4) /* L1 state */
|
|
#define ASPM_STATE_L1_1 (8) /* ASPM L1.1 state */
|
|
#define ASPM_STATE_L1_2 (0x10) /* ASPM L1.2 state */
|
|
#define ASPM_STATE_L1_1_PCIPM (0x20) /* PCI PM L1.1 state */
|
|
#define ASPM_STATE_L1_2_PCIPM (0x40) /* PCI PM L1.2 state */
|
|
#define ASPM_STATE_L1_SS_PCIPM (ASPM_STATE_L1_1_PCIPM | ASPM_STATE_L1_2_PCIPM)
|
|
#define ASPM_STATE_L1_2_MASK (ASPM_STATE_L1_2 | ASPM_STATE_L1_2_PCIPM)
|
|
#define ASPM_STATE_L1SS (ASPM_STATE_L1_1 | ASPM_STATE_L1_1_PCIPM |\
|
|
ASPM_STATE_L1_2_MASK)
|
|
#define ASPM_STATE_L0S (ASPM_STATE_L0S_UP | ASPM_STATE_L0S_DW)
|
|
#define ASPM_STATE_ALL (ASPM_STATE_L0S | ASPM_STATE_L1 | \
|
|
ASPM_STATE_L1SS)
|
|
|
|
struct pcie_link_state {
|
|
struct pci_dev *pdev; /* Upstream component of the Link */
|
|
struct pci_dev *downstream; /* Downstream component, function 0 */
|
|
struct pcie_link_state *root; /* pointer to the root port link */
|
|
struct pcie_link_state *parent; /* pointer to the parent Link state */
|
|
struct list_head sibling; /* node in link_list */
|
|
|
|
/* ASPM state */
|
|
u32 aspm_support:7; /* Supported ASPM state */
|
|
u32 aspm_enabled:7; /* Enabled ASPM state */
|
|
u32 aspm_capable:7; /* Capable ASPM state with latency */
|
|
u32 aspm_default:7; /* Default ASPM state by BIOS */
|
|
u32 aspm_disable:7; /* Disabled ASPM state */
|
|
|
|
/* Clock PM state */
|
|
u32 clkpm_capable:1; /* Clock PM capable? */
|
|
u32 clkpm_enabled:1; /* Current Clock PM state */
|
|
u32 clkpm_default:1; /* Default Clock PM state by BIOS */
|
|
u32 clkpm_disable:1; /* Clock PM disabled */
|
|
};
|
|
|
|
static int aspm_disabled, aspm_force;
|
|
static bool aspm_support_enabled = true;
|
|
static DEFINE_MUTEX(aspm_lock);
|
|
static LIST_HEAD(link_list);
|
|
|
|
#define POLICY_DEFAULT 0 /* BIOS default setting */
|
|
#define POLICY_PERFORMANCE 1 /* high performance */
|
|
#define POLICY_POWERSAVE 2 /* high power saving */
|
|
#define POLICY_POWER_SUPERSAVE 3 /* possibly even more power saving */
|
|
|
|
#ifdef CONFIG_PCIEASPM_PERFORMANCE
|
|
static int aspm_policy = POLICY_PERFORMANCE;
|
|
#elif defined CONFIG_PCIEASPM_POWERSAVE
|
|
static int aspm_policy = POLICY_POWERSAVE;
|
|
#elif defined CONFIG_PCIEASPM_POWER_SUPERSAVE
|
|
static int aspm_policy = POLICY_POWER_SUPERSAVE;
|
|
#else
|
|
static int aspm_policy;
|
|
#endif
|
|
|
|
static const char *policy_str[] = {
|
|
[POLICY_DEFAULT] = "default",
|
|
[POLICY_PERFORMANCE] = "performance",
|
|
[POLICY_POWERSAVE] = "powersave",
|
|
[POLICY_POWER_SUPERSAVE] = "powersupersave"
|
|
};
|
|
|
|
/*
|
|
* The L1 PM substate capability is only implemented in function 0 in a
|
|
* multi function device.
|
|
*/
|
|
static struct pci_dev *pci_function_0(struct pci_bus *linkbus)
|
|
{
|
|
struct pci_dev *child;
|
|
|
|
list_for_each_entry(child, &linkbus->devices, bus_list)
|
|
if (PCI_FUNC(child->devfn) == 0)
|
|
return child;
|
|
return NULL;
|
|
}
|
|
|
|
static int policy_to_aspm_state(struct pcie_link_state *link)
|
|
{
|
|
switch (aspm_policy) {
|
|
case POLICY_PERFORMANCE:
|
|
/* Disable ASPM and Clock PM */
|
|
return 0;
|
|
case POLICY_POWERSAVE:
|
|
/* Enable ASPM L0s/L1 */
|
|
return (ASPM_STATE_L0S | ASPM_STATE_L1);
|
|
case POLICY_POWER_SUPERSAVE:
|
|
/* Enable Everything */
|
|
return ASPM_STATE_ALL;
|
|
case POLICY_DEFAULT:
|
|
return link->aspm_default;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int policy_to_clkpm_state(struct pcie_link_state *link)
|
|
{
|
|
switch (aspm_policy) {
|
|
case POLICY_PERFORMANCE:
|
|
/* Disable ASPM and Clock PM */
|
|
return 0;
|
|
case POLICY_POWERSAVE:
|
|
case POLICY_POWER_SUPERSAVE:
|
|
/* Enable Clock PM */
|
|
return 1;
|
|
case POLICY_DEFAULT:
|
|
return link->clkpm_default;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pcie_set_clkpm_nocheck(struct pcie_link_state *link, int enable)
|
|
{
|
|
struct pci_dev *child;
|
|
struct pci_bus *linkbus = link->pdev->subordinate;
|
|
u32 val = enable ? PCI_EXP_LNKCTL_CLKREQ_EN : 0;
|
|
|
|
list_for_each_entry(child, &linkbus->devices, bus_list)
|
|
pcie_capability_clear_and_set_word(child, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_CLKREQ_EN,
|
|
val);
|
|
link->clkpm_enabled = !!enable;
|
|
}
|
|
|
|
static void pcie_set_clkpm(struct pcie_link_state *link, int enable)
|
|
{
|
|
/*
|
|
* Don't enable Clock PM if the link is not Clock PM capable
|
|
* or Clock PM is disabled
|
|
*/
|
|
if (!link->clkpm_capable || link->clkpm_disable)
|
|
enable = 0;
|
|
/* Need nothing if the specified equals to current state */
|
|
if (link->clkpm_enabled == enable)
|
|
return;
|
|
pcie_set_clkpm_nocheck(link, enable);
|
|
}
|
|
|
|
static void pcie_clkpm_cap_init(struct pcie_link_state *link, int blacklist)
|
|
{
|
|
int capable = 1, enabled = 1;
|
|
u32 reg32;
|
|
u16 reg16;
|
|
struct pci_dev *child;
|
|
struct pci_bus *linkbus = link->pdev->subordinate;
|
|
|
|
/* All functions should have the same cap and state, take the worst */
|
|
list_for_each_entry(child, &linkbus->devices, bus_list) {
|
|
pcie_capability_read_dword(child, PCI_EXP_LNKCAP, ®32);
|
|
if (!(reg32 & PCI_EXP_LNKCAP_CLKPM)) {
|
|
capable = 0;
|
|
enabled = 0;
|
|
break;
|
|
}
|
|
pcie_capability_read_word(child, PCI_EXP_LNKCTL, ®16);
|
|
if (!(reg16 & PCI_EXP_LNKCTL_CLKREQ_EN))
|
|
enabled = 0;
|
|
}
|
|
link->clkpm_enabled = enabled;
|
|
link->clkpm_default = enabled;
|
|
link->clkpm_capable = capable;
|
|
link->clkpm_disable = blacklist ? 1 : 0;
|
|
}
|
|
|
|
/*
|
|
* pcie_aspm_configure_common_clock: check if the 2 ends of a link
|
|
* could use common clock. If they are, configure them to use the
|
|
* common clock. That will reduce the ASPM state exit latency.
|
|
*/
|
|
static void pcie_aspm_configure_common_clock(struct pcie_link_state *link)
|
|
{
|
|
int same_clock = 1;
|
|
u16 reg16, ccc, parent_old_ccc, child_old_ccc[8];
|
|
struct pci_dev *child, *parent = link->pdev;
|
|
struct pci_bus *linkbus = parent->subordinate;
|
|
/*
|
|
* All functions of a slot should have the same Slot Clock
|
|
* Configuration, so just check one function
|
|
*/
|
|
child = list_entry(linkbus->devices.next, struct pci_dev, bus_list);
|
|
BUG_ON(!pci_is_pcie(child));
|
|
|
|
/* Check downstream component if bit Slot Clock Configuration is 1 */
|
|
pcie_capability_read_word(child, PCI_EXP_LNKSTA, ®16);
|
|
if (!(reg16 & PCI_EXP_LNKSTA_SLC))
|
|
same_clock = 0;
|
|
|
|
/* Check upstream component if bit Slot Clock Configuration is 1 */
|
|
pcie_capability_read_word(parent, PCI_EXP_LNKSTA, ®16);
|
|
if (!(reg16 & PCI_EXP_LNKSTA_SLC))
|
|
same_clock = 0;
|
|
|
|
/* Port might be already in common clock mode */
|
|
pcie_capability_read_word(parent, PCI_EXP_LNKCTL, ®16);
|
|
parent_old_ccc = reg16 & PCI_EXP_LNKCTL_CCC;
|
|
if (same_clock && (reg16 & PCI_EXP_LNKCTL_CCC)) {
|
|
bool consistent = true;
|
|
|
|
list_for_each_entry(child, &linkbus->devices, bus_list) {
|
|
pcie_capability_read_word(child, PCI_EXP_LNKCTL,
|
|
®16);
|
|
if (!(reg16 & PCI_EXP_LNKCTL_CCC)) {
|
|
consistent = false;
|
|
break;
|
|
}
|
|
}
|
|
if (consistent)
|
|
return;
|
|
pci_info(parent, "ASPM: current common clock configuration is inconsistent, reconfiguring\n");
|
|
}
|
|
|
|
ccc = same_clock ? PCI_EXP_LNKCTL_CCC : 0;
|
|
/* Configure downstream component, all functions */
|
|
list_for_each_entry(child, &linkbus->devices, bus_list) {
|
|
pcie_capability_read_word(child, PCI_EXP_LNKCTL, ®16);
|
|
child_old_ccc[PCI_FUNC(child->devfn)] = reg16 & PCI_EXP_LNKCTL_CCC;
|
|
pcie_capability_clear_and_set_word(child, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_CCC, ccc);
|
|
}
|
|
|
|
/* Configure upstream component */
|
|
pcie_capability_clear_and_set_word(parent, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_CCC, ccc);
|
|
|
|
if (pcie_retrain_link(link->pdev, true)) {
|
|
|
|
/* Training failed. Restore common clock configurations */
|
|
pci_err(parent, "ASPM: Could not configure common clock\n");
|
|
list_for_each_entry(child, &linkbus->devices, bus_list)
|
|
pcie_capability_clear_and_set_word(child, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_CCC,
|
|
child_old_ccc[PCI_FUNC(child->devfn)]);
|
|
pcie_capability_clear_and_set_word(parent, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_CCC, parent_old_ccc);
|
|
}
|
|
}
|
|
|
|
/* Convert L0s latency encoding to ns */
|
|
static u32 calc_l0s_latency(u32 lnkcap)
|
|
{
|
|
u32 encoding = FIELD_GET(PCI_EXP_LNKCAP_L0SEL, lnkcap);
|
|
|
|
if (encoding == 0x7)
|
|
return 5 * NSEC_PER_USEC; /* > 4us */
|
|
return (64 << encoding);
|
|
}
|
|
|
|
/* Convert L0s acceptable latency encoding to ns */
|
|
static u32 calc_l0s_acceptable(u32 encoding)
|
|
{
|
|
if (encoding == 0x7)
|
|
return U32_MAX;
|
|
return (64 << encoding);
|
|
}
|
|
|
|
/* Convert L1 latency encoding to ns */
|
|
static u32 calc_l1_latency(u32 lnkcap)
|
|
{
|
|
u32 encoding = FIELD_GET(PCI_EXP_LNKCAP_L1EL, lnkcap);
|
|
|
|
if (encoding == 0x7)
|
|
return 65 * NSEC_PER_USEC; /* > 64us */
|
|
return NSEC_PER_USEC << encoding;
|
|
}
|
|
|
|
/* Convert L1 acceptable latency encoding to ns */
|
|
static u32 calc_l1_acceptable(u32 encoding)
|
|
{
|
|
if (encoding == 0x7)
|
|
return U32_MAX;
|
|
return NSEC_PER_USEC << encoding;
|
|
}
|
|
|
|
/* Convert L1SS T_pwr encoding to usec */
|
|
static u32 calc_l12_pwron(struct pci_dev *pdev, u32 scale, u32 val)
|
|
{
|
|
switch (scale) {
|
|
case 0:
|
|
return val * 2;
|
|
case 1:
|
|
return val * 10;
|
|
case 2:
|
|
return val * 100;
|
|
}
|
|
pci_err(pdev, "%s: Invalid T_PwrOn scale: %u\n", __func__, scale);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Encode an LTR_L1.2_THRESHOLD value for the L1 PM Substates Control 1
|
|
* register. Ports enter L1.2 when the most recent LTR value is greater
|
|
* than or equal to LTR_L1.2_THRESHOLD, so we round up to make sure we
|
|
* don't enter L1.2 too aggressively.
|
|
*
|
|
* See PCIe r6.0, sec 5.5.1, 6.18, 7.8.3.3.
|
|
*/
|
|
static void encode_l12_threshold(u32 threshold_us, u32 *scale, u32 *value)
|
|
{
|
|
u64 threshold_ns = (u64)threshold_us * NSEC_PER_USEC;
|
|
|
|
/*
|
|
* LTR_L1.2_THRESHOLD_Value ("value") is a 10-bit field with max
|
|
* value of 0x3ff.
|
|
*/
|
|
if (threshold_ns <= 1 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
|
|
*scale = 0; /* Value times 1ns */
|
|
*value = threshold_ns;
|
|
} else if (threshold_ns <= 32 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
|
|
*scale = 1; /* Value times 32ns */
|
|
*value = roundup(threshold_ns, 32) / 32;
|
|
} else if (threshold_ns <= 1024 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
|
|
*scale = 2; /* Value times 1024ns */
|
|
*value = roundup(threshold_ns, 1024) / 1024;
|
|
} else if (threshold_ns <= 32768 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
|
|
*scale = 3; /* Value times 32768ns */
|
|
*value = roundup(threshold_ns, 32768) / 32768;
|
|
} else if (threshold_ns <= 1048576 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
|
|
*scale = 4; /* Value times 1048576ns */
|
|
*value = roundup(threshold_ns, 1048576) / 1048576;
|
|
} else if (threshold_ns <= (u64)33554432 * FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE)) {
|
|
*scale = 5; /* Value times 33554432ns */
|
|
*value = roundup(threshold_ns, 33554432) / 33554432;
|
|
} else {
|
|
*scale = 5;
|
|
*value = FIELD_MAX(PCI_L1SS_CTL1_LTR_L12_TH_VALUE);
|
|
}
|
|
}
|
|
|
|
static void pcie_aspm_check_latency(struct pci_dev *endpoint)
|
|
{
|
|
u32 latency, encoding, lnkcap_up, lnkcap_dw;
|
|
u32 l1_switch_latency = 0, latency_up_l0s;
|
|
u32 latency_up_l1, latency_dw_l0s, latency_dw_l1;
|
|
u32 acceptable_l0s, acceptable_l1;
|
|
struct pcie_link_state *link;
|
|
|
|
/* Device not in D0 doesn't need latency check */
|
|
if ((endpoint->current_state != PCI_D0) &&
|
|
(endpoint->current_state != PCI_UNKNOWN))
|
|
return;
|
|
|
|
link = endpoint->bus->self->link_state;
|
|
|
|
/* Calculate endpoint L0s acceptable latency */
|
|
encoding = FIELD_GET(PCI_EXP_DEVCAP_L0S, endpoint->devcap);
|
|
acceptable_l0s = calc_l0s_acceptable(encoding);
|
|
|
|
/* Calculate endpoint L1 acceptable latency */
|
|
encoding = FIELD_GET(PCI_EXP_DEVCAP_L1, endpoint->devcap);
|
|
acceptable_l1 = calc_l1_acceptable(encoding);
|
|
|
|
while (link) {
|
|
struct pci_dev *dev = pci_function_0(link->pdev->subordinate);
|
|
|
|
/* Read direction exit latencies */
|
|
pcie_capability_read_dword(link->pdev, PCI_EXP_LNKCAP,
|
|
&lnkcap_up);
|
|
pcie_capability_read_dword(dev, PCI_EXP_LNKCAP,
|
|
&lnkcap_dw);
|
|
latency_up_l0s = calc_l0s_latency(lnkcap_up);
|
|
latency_up_l1 = calc_l1_latency(lnkcap_up);
|
|
latency_dw_l0s = calc_l0s_latency(lnkcap_dw);
|
|
latency_dw_l1 = calc_l1_latency(lnkcap_dw);
|
|
|
|
/* Check upstream direction L0s latency */
|
|
if ((link->aspm_capable & ASPM_STATE_L0S_UP) &&
|
|
(latency_up_l0s > acceptable_l0s))
|
|
link->aspm_capable &= ~ASPM_STATE_L0S_UP;
|
|
|
|
/* Check downstream direction L0s latency */
|
|
if ((link->aspm_capable & ASPM_STATE_L0S_DW) &&
|
|
(latency_dw_l0s > acceptable_l0s))
|
|
link->aspm_capable &= ~ASPM_STATE_L0S_DW;
|
|
/*
|
|
* Check L1 latency.
|
|
* Every switch on the path to root complex need 1
|
|
* more microsecond for L1. Spec doesn't mention L0s.
|
|
*
|
|
* The exit latencies for L1 substates are not advertised
|
|
* by a device. Since the spec also doesn't mention a way
|
|
* to determine max latencies introduced by enabling L1
|
|
* substates on the components, it is not clear how to do
|
|
* a L1 substate exit latency check. We assume that the
|
|
* L1 exit latencies advertised by a device include L1
|
|
* substate latencies (and hence do not do any check).
|
|
*/
|
|
latency = max_t(u32, latency_up_l1, latency_dw_l1);
|
|
if ((link->aspm_capable & ASPM_STATE_L1) &&
|
|
(latency + l1_switch_latency > acceptable_l1))
|
|
link->aspm_capable &= ~ASPM_STATE_L1;
|
|
l1_switch_latency += NSEC_PER_USEC;
|
|
|
|
link = link->parent;
|
|
}
|
|
}
|
|
|
|
static void pci_clear_and_set_dword(struct pci_dev *pdev, int pos,
|
|
u32 clear, u32 set)
|
|
{
|
|
u32 val;
|
|
|
|
pci_read_config_dword(pdev, pos, &val);
|
|
val &= ~clear;
|
|
val |= set;
|
|
pci_write_config_dword(pdev, pos, val);
|
|
}
|
|
|
|
/* Calculate L1.2 PM substate timing parameters */
|
|
static void aspm_calc_l12_info(struct pcie_link_state *link,
|
|
u32 parent_l1ss_cap, u32 child_l1ss_cap)
|
|
{
|
|
struct pci_dev *child = link->downstream, *parent = link->pdev;
|
|
u32 val1, val2, scale1, scale2;
|
|
u32 t_common_mode, t_power_on, l1_2_threshold, scale, value;
|
|
u32 ctl1 = 0, ctl2 = 0;
|
|
u32 pctl1, pctl2, cctl1, cctl2;
|
|
u32 pl1_2_enables, cl1_2_enables;
|
|
|
|
/* Choose the greater of the two Port Common_Mode_Restore_Times */
|
|
val1 = FIELD_GET(PCI_L1SS_CAP_CM_RESTORE_TIME, parent_l1ss_cap);
|
|
val2 = FIELD_GET(PCI_L1SS_CAP_CM_RESTORE_TIME, child_l1ss_cap);
|
|
t_common_mode = max(val1, val2);
|
|
|
|
/* Choose the greater of the two Port T_POWER_ON times */
|
|
val1 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_VALUE, parent_l1ss_cap);
|
|
scale1 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_SCALE, parent_l1ss_cap);
|
|
val2 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_VALUE, child_l1ss_cap);
|
|
scale2 = FIELD_GET(PCI_L1SS_CAP_P_PWR_ON_SCALE, child_l1ss_cap);
|
|
|
|
if (calc_l12_pwron(parent, scale1, val1) >
|
|
calc_l12_pwron(child, scale2, val2)) {
|
|
ctl2 |= FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_SCALE, scale1) |
|
|
FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_VALUE, val1);
|
|
t_power_on = calc_l12_pwron(parent, scale1, val1);
|
|
} else {
|
|
ctl2 |= FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_SCALE, scale2) |
|
|
FIELD_PREP(PCI_L1SS_CTL2_T_PWR_ON_VALUE, val2);
|
|
t_power_on = calc_l12_pwron(child, scale2, val2);
|
|
}
|
|
|
|
/*
|
|
* Set LTR_L1.2_THRESHOLD to the time required to transition the
|
|
* Link from L0 to L1.2 and back to L0 so we enter L1.2 only if
|
|
* downstream devices report (via LTR) that they can tolerate at
|
|
* least that much latency.
|
|
*
|
|
* Based on PCIe r3.1, sec 5.5.3.3.1, Figures 5-16 and 5-17, and
|
|
* Table 5-11. T(POWER_OFF) is at most 2us and T(L1.2) is at
|
|
* least 4us.
|
|
*/
|
|
l1_2_threshold = 2 + 4 + t_common_mode + t_power_on;
|
|
encode_l12_threshold(l1_2_threshold, &scale, &value);
|
|
ctl1 |= FIELD_PREP(PCI_L1SS_CTL1_CM_RESTORE_TIME, t_common_mode) |
|
|
FIELD_PREP(PCI_L1SS_CTL1_LTR_L12_TH_VALUE, value) |
|
|
FIELD_PREP(PCI_L1SS_CTL1_LTR_L12_TH_SCALE, scale);
|
|
|
|
/* Some broken devices only support dword access to L1 SS */
|
|
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1, &pctl1);
|
|
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CTL2, &pctl2);
|
|
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CTL1, &cctl1);
|
|
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CTL2, &cctl2);
|
|
|
|
if (ctl1 == pctl1 && ctl1 == cctl1 &&
|
|
ctl2 == pctl2 && ctl2 == cctl2)
|
|
return;
|
|
|
|
/* Disable L1.2 while updating. See PCIe r5.0, sec 5.5.4, 7.8.3.3 */
|
|
pl1_2_enables = pctl1 & PCI_L1SS_CTL1_L1_2_MASK;
|
|
cl1_2_enables = cctl1 & PCI_L1SS_CTL1_L1_2_MASK;
|
|
|
|
if (pl1_2_enables || cl1_2_enables) {
|
|
pci_clear_and_set_dword(child, child->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_L1_2_MASK, 0);
|
|
pci_clear_and_set_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_L1_2_MASK, 0);
|
|
}
|
|
|
|
/* Program T_POWER_ON times in both ports */
|
|
pci_write_config_dword(parent, parent->l1ss + PCI_L1SS_CTL2, ctl2);
|
|
pci_write_config_dword(child, child->l1ss + PCI_L1SS_CTL2, ctl2);
|
|
|
|
/* Program Common_Mode_Restore_Time in upstream device */
|
|
pci_clear_and_set_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_CM_RESTORE_TIME, ctl1);
|
|
|
|
/* Program LTR_L1.2_THRESHOLD time in both ports */
|
|
pci_clear_and_set_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_LTR_L12_TH_VALUE |
|
|
PCI_L1SS_CTL1_LTR_L12_TH_SCALE, ctl1);
|
|
pci_clear_and_set_dword(child, child->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_LTR_L12_TH_VALUE |
|
|
PCI_L1SS_CTL1_LTR_L12_TH_SCALE, ctl1);
|
|
|
|
if (pl1_2_enables || cl1_2_enables) {
|
|
pci_clear_and_set_dword(parent, parent->l1ss + PCI_L1SS_CTL1, 0,
|
|
pl1_2_enables);
|
|
pci_clear_and_set_dword(child, child->l1ss + PCI_L1SS_CTL1, 0,
|
|
cl1_2_enables);
|
|
}
|
|
}
|
|
|
|
static void aspm_l1ss_init(struct pcie_link_state *link)
|
|
{
|
|
struct pci_dev *child = link->downstream, *parent = link->pdev;
|
|
u32 parent_l1ss_cap, child_l1ss_cap;
|
|
u32 parent_l1ss_ctl1 = 0, child_l1ss_ctl1 = 0;
|
|
|
|
if (!parent->l1ss || !child->l1ss)
|
|
return;
|
|
|
|
/* Setup L1 substate */
|
|
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CAP,
|
|
&parent_l1ss_cap);
|
|
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CAP,
|
|
&child_l1ss_cap);
|
|
|
|
if (!(parent_l1ss_cap & PCI_L1SS_CAP_L1_PM_SS))
|
|
parent_l1ss_cap = 0;
|
|
if (!(child_l1ss_cap & PCI_L1SS_CAP_L1_PM_SS))
|
|
child_l1ss_cap = 0;
|
|
|
|
/*
|
|
* If we don't have LTR for the entire path from the Root Complex
|
|
* to this device, we can't use ASPM L1.2 because it relies on the
|
|
* LTR_L1.2_THRESHOLD. See PCIe r4.0, secs 5.5.4, 6.18.
|
|
*/
|
|
if (!child->ltr_path)
|
|
child_l1ss_cap &= ~PCI_L1SS_CAP_ASPM_L1_2;
|
|
|
|
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_ASPM_L1_1)
|
|
link->aspm_support |= ASPM_STATE_L1_1;
|
|
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_ASPM_L1_2)
|
|
link->aspm_support |= ASPM_STATE_L1_2;
|
|
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_PCIPM_L1_1)
|
|
link->aspm_support |= ASPM_STATE_L1_1_PCIPM;
|
|
if (parent_l1ss_cap & child_l1ss_cap & PCI_L1SS_CAP_PCIPM_L1_2)
|
|
link->aspm_support |= ASPM_STATE_L1_2_PCIPM;
|
|
|
|
if (parent_l1ss_cap)
|
|
pci_read_config_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
|
|
&parent_l1ss_ctl1);
|
|
if (child_l1ss_cap)
|
|
pci_read_config_dword(child, child->l1ss + PCI_L1SS_CTL1,
|
|
&child_l1ss_ctl1);
|
|
|
|
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_ASPM_L1_1)
|
|
link->aspm_enabled |= ASPM_STATE_L1_1;
|
|
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_ASPM_L1_2)
|
|
link->aspm_enabled |= ASPM_STATE_L1_2;
|
|
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_PCIPM_L1_1)
|
|
link->aspm_enabled |= ASPM_STATE_L1_1_PCIPM;
|
|
if (parent_l1ss_ctl1 & child_l1ss_ctl1 & PCI_L1SS_CTL1_PCIPM_L1_2)
|
|
link->aspm_enabled |= ASPM_STATE_L1_2_PCIPM;
|
|
|
|
if (link->aspm_support & ASPM_STATE_L1_2_MASK)
|
|
aspm_calc_l12_info(link, parent_l1ss_cap, child_l1ss_cap);
|
|
}
|
|
|
|
static void pcie_aspm_cap_init(struct pcie_link_state *link, int blacklist)
|
|
{
|
|
struct pci_dev *child = link->downstream, *parent = link->pdev;
|
|
u32 parent_lnkcap, child_lnkcap;
|
|
u16 parent_lnkctl, child_lnkctl;
|
|
struct pci_bus *linkbus = parent->subordinate;
|
|
|
|
if (blacklist) {
|
|
/* Set enabled/disable so that we will disable ASPM later */
|
|
link->aspm_enabled = ASPM_STATE_ALL;
|
|
link->aspm_disable = ASPM_STATE_ALL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If ASPM not supported, don't mess with the clocks and link,
|
|
* bail out now.
|
|
*/
|
|
pcie_capability_read_dword(parent, PCI_EXP_LNKCAP, &parent_lnkcap);
|
|
pcie_capability_read_dword(child, PCI_EXP_LNKCAP, &child_lnkcap);
|
|
if (!(parent_lnkcap & child_lnkcap & PCI_EXP_LNKCAP_ASPMS))
|
|
return;
|
|
|
|
/* Configure common clock before checking latencies */
|
|
pcie_aspm_configure_common_clock(link);
|
|
|
|
/*
|
|
* Re-read upstream/downstream components' register state after
|
|
* clock configuration. L0s & L1 exit latencies in the otherwise
|
|
* read-only Link Capabilities may change depending on common clock
|
|
* configuration (PCIe r5.0, sec 7.5.3.6).
|
|
*/
|
|
pcie_capability_read_dword(parent, PCI_EXP_LNKCAP, &parent_lnkcap);
|
|
pcie_capability_read_dword(child, PCI_EXP_LNKCAP, &child_lnkcap);
|
|
pcie_capability_read_word(parent, PCI_EXP_LNKCTL, &parent_lnkctl);
|
|
pcie_capability_read_word(child, PCI_EXP_LNKCTL, &child_lnkctl);
|
|
|
|
/*
|
|
* Setup L0s state
|
|
*
|
|
* Note that we must not enable L0s in either direction on a
|
|
* given link unless components on both sides of the link each
|
|
* support L0s.
|
|
*/
|
|
if (parent_lnkcap & child_lnkcap & PCI_EXP_LNKCAP_ASPM_L0S)
|
|
link->aspm_support |= ASPM_STATE_L0S;
|
|
|
|
if (child_lnkctl & PCI_EXP_LNKCTL_ASPM_L0S)
|
|
link->aspm_enabled |= ASPM_STATE_L0S_UP;
|
|
if (parent_lnkctl & PCI_EXP_LNKCTL_ASPM_L0S)
|
|
link->aspm_enabled |= ASPM_STATE_L0S_DW;
|
|
|
|
/* Setup L1 state */
|
|
if (parent_lnkcap & child_lnkcap & PCI_EXP_LNKCAP_ASPM_L1)
|
|
link->aspm_support |= ASPM_STATE_L1;
|
|
|
|
if (parent_lnkctl & child_lnkctl & PCI_EXP_LNKCTL_ASPM_L1)
|
|
link->aspm_enabled |= ASPM_STATE_L1;
|
|
|
|
aspm_l1ss_init(link);
|
|
|
|
/* Save default state */
|
|
link->aspm_default = link->aspm_enabled;
|
|
|
|
/* Setup initial capable state. Will be updated later */
|
|
link->aspm_capable = link->aspm_support;
|
|
|
|
/* Get and check endpoint acceptable latencies */
|
|
list_for_each_entry(child, &linkbus->devices, bus_list) {
|
|
if (pci_pcie_type(child) != PCI_EXP_TYPE_ENDPOINT &&
|
|
pci_pcie_type(child) != PCI_EXP_TYPE_LEG_END)
|
|
continue;
|
|
|
|
pcie_aspm_check_latency(child);
|
|
}
|
|
}
|
|
|
|
/* Configure the ASPM L1 substates */
|
|
static void pcie_config_aspm_l1ss(struct pcie_link_state *link, u32 state)
|
|
{
|
|
u32 val, enable_req;
|
|
struct pci_dev *child = link->downstream, *parent = link->pdev;
|
|
|
|
enable_req = (link->aspm_enabled ^ state) & state;
|
|
|
|
/*
|
|
* Here are the rules specified in the PCIe spec for enabling L1SS:
|
|
* - When enabling L1.x, enable bit at parent first, then at child
|
|
* - When disabling L1.x, disable bit at child first, then at parent
|
|
* - When enabling ASPM L1.x, need to disable L1
|
|
* (at child followed by parent).
|
|
* - The ASPM/PCIPM L1.2 must be disabled while programming timing
|
|
* parameters
|
|
*
|
|
* To keep it simple, disable all L1SS bits first, and later enable
|
|
* what is needed.
|
|
*/
|
|
|
|
/* Disable all L1 substates */
|
|
pci_clear_and_set_dword(child, child->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_L1SS_MASK, 0);
|
|
pci_clear_and_set_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_L1SS_MASK, 0);
|
|
/*
|
|
* If needed, disable L1, and it gets enabled later
|
|
* in pcie_config_aspm_link().
|
|
*/
|
|
if (enable_req & (ASPM_STATE_L1_1 | ASPM_STATE_L1_2)) {
|
|
pcie_capability_clear_word(child, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_ASPM_L1);
|
|
pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_ASPM_L1);
|
|
}
|
|
|
|
val = 0;
|
|
if (state & ASPM_STATE_L1_1)
|
|
val |= PCI_L1SS_CTL1_ASPM_L1_1;
|
|
if (state & ASPM_STATE_L1_2)
|
|
val |= PCI_L1SS_CTL1_ASPM_L1_2;
|
|
if (state & ASPM_STATE_L1_1_PCIPM)
|
|
val |= PCI_L1SS_CTL1_PCIPM_L1_1;
|
|
if (state & ASPM_STATE_L1_2_PCIPM)
|
|
val |= PCI_L1SS_CTL1_PCIPM_L1_2;
|
|
|
|
/* Enable what we need to enable */
|
|
pci_clear_and_set_dword(parent, parent->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_L1SS_MASK, val);
|
|
pci_clear_and_set_dword(child, child->l1ss + PCI_L1SS_CTL1,
|
|
PCI_L1SS_CTL1_L1SS_MASK, val);
|
|
}
|
|
|
|
static void pcie_config_aspm_dev(struct pci_dev *pdev, u32 val)
|
|
{
|
|
pcie_capability_clear_and_set_word(pdev, PCI_EXP_LNKCTL,
|
|
PCI_EXP_LNKCTL_ASPMC, val);
|
|
}
|
|
|
|
static void pcie_config_aspm_link(struct pcie_link_state *link, u32 state)
|
|
{
|
|
u32 upstream = 0, dwstream = 0;
|
|
struct pci_dev *child = link->downstream, *parent = link->pdev;
|
|
struct pci_bus *linkbus = parent->subordinate;
|
|
|
|
/* Enable only the states that were not explicitly disabled */
|
|
state &= (link->aspm_capable & ~link->aspm_disable);
|
|
|
|
/* Can't enable any substates if L1 is not enabled */
|
|
if (!(state & ASPM_STATE_L1))
|
|
state &= ~ASPM_STATE_L1SS;
|
|
|
|
/* Spec says both ports must be in D0 before enabling PCI PM substates*/
|
|
if (parent->current_state != PCI_D0 || child->current_state != PCI_D0) {
|
|
state &= ~ASPM_STATE_L1_SS_PCIPM;
|
|
state |= (link->aspm_enabled & ASPM_STATE_L1_SS_PCIPM);
|
|
}
|
|
|
|
/* Nothing to do if the link is already in the requested state */
|
|
if (link->aspm_enabled == state)
|
|
return;
|
|
/* Convert ASPM state to upstream/downstream ASPM register state */
|
|
if (state & ASPM_STATE_L0S_UP)
|
|
dwstream |= PCI_EXP_LNKCTL_ASPM_L0S;
|
|
if (state & ASPM_STATE_L0S_DW)
|
|
upstream |= PCI_EXP_LNKCTL_ASPM_L0S;
|
|
if (state & ASPM_STATE_L1) {
|
|
upstream |= PCI_EXP_LNKCTL_ASPM_L1;
|
|
dwstream |= PCI_EXP_LNKCTL_ASPM_L1;
|
|
}
|
|
|
|
if (link->aspm_capable & ASPM_STATE_L1SS)
|
|
pcie_config_aspm_l1ss(link, state);
|
|
|
|
/*
|
|
* Spec 2.0 suggests all functions should be configured the
|
|
* same setting for ASPM. Enabling ASPM L1 should be done in
|
|
* upstream component first and then downstream, and vice
|
|
* versa for disabling ASPM L1. Spec doesn't mention L0S.
|
|
*/
|
|
if (state & ASPM_STATE_L1)
|
|
pcie_config_aspm_dev(parent, upstream);
|
|
list_for_each_entry(child, &linkbus->devices, bus_list)
|
|
pcie_config_aspm_dev(child, dwstream);
|
|
if (!(state & ASPM_STATE_L1))
|
|
pcie_config_aspm_dev(parent, upstream);
|
|
|
|
link->aspm_enabled = state;
|
|
}
|
|
|
|
static void pcie_config_aspm_path(struct pcie_link_state *link)
|
|
{
|
|
while (link) {
|
|
pcie_config_aspm_link(link, policy_to_aspm_state(link));
|
|
link = link->parent;
|
|
}
|
|
}
|
|
|
|
static void free_link_state(struct pcie_link_state *link)
|
|
{
|
|
link->pdev->link_state = NULL;
|
|
kfree(link);
|
|
}
|
|
|
|
static int pcie_aspm_sanity_check(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dev *child;
|
|
u32 reg32;
|
|
|
|
/*
|
|
* Some functions in a slot might not all be PCIe functions,
|
|
* very strange. Disable ASPM for the whole slot
|
|
*/
|
|
list_for_each_entry(child, &pdev->subordinate->devices, bus_list) {
|
|
if (!pci_is_pcie(child))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If ASPM is disabled then we're not going to change
|
|
* the BIOS state. It's safe to continue even if it's a
|
|
* pre-1.1 device
|
|
*/
|
|
|
|
if (aspm_disabled)
|
|
continue;
|
|
|
|
/*
|
|
* Disable ASPM for pre-1.1 PCIe device, we follow MS to use
|
|
* RBER bit to determine if a function is 1.1 version device
|
|
*/
|
|
pcie_capability_read_dword(child, PCI_EXP_DEVCAP, ®32);
|
|
if (!(reg32 & PCI_EXP_DEVCAP_RBER) && !aspm_force) {
|
|
pci_info(child, "disabling ASPM on pre-1.1 PCIe device. You can enable it with 'pcie_aspm=force'\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct pcie_link_state *alloc_pcie_link_state(struct pci_dev *pdev)
|
|
{
|
|
struct pcie_link_state *link;
|
|
|
|
link = kzalloc(sizeof(*link), GFP_KERNEL);
|
|
if (!link)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&link->sibling);
|
|
link->pdev = pdev;
|
|
link->downstream = pci_function_0(pdev->subordinate);
|
|
|
|
/*
|
|
* Root Ports and PCI/PCI-X to PCIe Bridges are roots of PCIe
|
|
* hierarchies. Note that some PCIe host implementations omit
|
|
* the root ports entirely, in which case a downstream port on
|
|
* a switch may become the root of the link state chain for all
|
|
* its subordinate endpoints.
|
|
*/
|
|
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
|
|
pci_pcie_type(pdev) == PCI_EXP_TYPE_PCIE_BRIDGE ||
|
|
!pdev->bus->parent->self) {
|
|
link->root = link;
|
|
} else {
|
|
struct pcie_link_state *parent;
|
|
|
|
parent = pdev->bus->parent->self->link_state;
|
|
if (!parent) {
|
|
kfree(link);
|
|
return NULL;
|
|
}
|
|
|
|
link->parent = parent;
|
|
link->root = link->parent->root;
|
|
}
|
|
|
|
list_add(&link->sibling, &link_list);
|
|
pdev->link_state = link;
|
|
return link;
|
|
}
|
|
|
|
static void pcie_aspm_update_sysfs_visibility(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dev *child;
|
|
|
|
list_for_each_entry(child, &pdev->subordinate->devices, bus_list)
|
|
sysfs_update_group(&child->dev.kobj, &aspm_ctrl_attr_group);
|
|
}
|
|
|
|
/*
|
|
* pcie_aspm_init_link_state: Initiate PCI express link state.
|
|
* It is called after the pcie and its children devices are scanned.
|
|
* @pdev: the root port or switch downstream port
|
|
*/
|
|
void pcie_aspm_init_link_state(struct pci_dev *pdev)
|
|
{
|
|
struct pcie_link_state *link;
|
|
int blacklist = !!pcie_aspm_sanity_check(pdev);
|
|
|
|
if (!aspm_support_enabled)
|
|
return;
|
|
|
|
if (pdev->link_state)
|
|
return;
|
|
|
|
/*
|
|
* We allocate pcie_link_state for the component on the upstream
|
|
* end of a Link, so there's nothing to do unless this device is
|
|
* downstream port.
|
|
*/
|
|
if (!pcie_downstream_port(pdev))
|
|
return;
|
|
|
|
/* VIA has a strange chipset, root port is under a bridge */
|
|
if (pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT &&
|
|
pdev->bus->self)
|
|
return;
|
|
|
|
down_read(&pci_bus_sem);
|
|
if (list_empty(&pdev->subordinate->devices))
|
|
goto out;
|
|
|
|
mutex_lock(&aspm_lock);
|
|
link = alloc_pcie_link_state(pdev);
|
|
if (!link)
|
|
goto unlock;
|
|
/*
|
|
* Setup initial ASPM state. Note that we need to configure
|
|
* upstream links also because capable state of them can be
|
|
* update through pcie_aspm_cap_init().
|
|
*/
|
|
pcie_aspm_cap_init(link, blacklist);
|
|
|
|
/* Setup initial Clock PM state */
|
|
pcie_clkpm_cap_init(link, blacklist);
|
|
|
|
/*
|
|
* At this stage drivers haven't had an opportunity to change the
|
|
* link policy setting. Enabling ASPM on broken hardware can cripple
|
|
* it even before the driver has had a chance to disable ASPM, so
|
|
* default to a safe level right now. If we're enabling ASPM beyond
|
|
* the BIOS's expectation, we'll do so once pci_enable_device() is
|
|
* called.
|
|
*/
|
|
if (aspm_policy != POLICY_POWERSAVE &&
|
|
aspm_policy != POLICY_POWER_SUPERSAVE) {
|
|
pcie_config_aspm_path(link);
|
|
pcie_set_clkpm(link, policy_to_clkpm_state(link));
|
|
}
|
|
|
|
pcie_aspm_update_sysfs_visibility(pdev);
|
|
|
|
unlock:
|
|
mutex_unlock(&aspm_lock);
|
|
out:
|
|
up_read(&pci_bus_sem);
|
|
}
|
|
|
|
/* Recheck latencies and update aspm_capable for links under the root */
|
|
static void pcie_update_aspm_capable(struct pcie_link_state *root)
|
|
{
|
|
struct pcie_link_state *link;
|
|
BUG_ON(root->parent);
|
|
list_for_each_entry(link, &link_list, sibling) {
|
|
if (link->root != root)
|
|
continue;
|
|
link->aspm_capable = link->aspm_support;
|
|
}
|
|
list_for_each_entry(link, &link_list, sibling) {
|
|
struct pci_dev *child;
|
|
struct pci_bus *linkbus = link->pdev->subordinate;
|
|
if (link->root != root)
|
|
continue;
|
|
list_for_each_entry(child, &linkbus->devices, bus_list) {
|
|
if ((pci_pcie_type(child) != PCI_EXP_TYPE_ENDPOINT) &&
|
|
(pci_pcie_type(child) != PCI_EXP_TYPE_LEG_END))
|
|
continue;
|
|
pcie_aspm_check_latency(child);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* @pdev: the endpoint device */
|
|
void pcie_aspm_exit_link_state(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dev *parent = pdev->bus->self;
|
|
struct pcie_link_state *link, *root, *parent_link;
|
|
|
|
if (!parent || !parent->link_state)
|
|
return;
|
|
|
|
down_read(&pci_bus_sem);
|
|
mutex_lock(&aspm_lock);
|
|
|
|
link = parent->link_state;
|
|
root = link->root;
|
|
parent_link = link->parent;
|
|
|
|
/*
|
|
* link->downstream is a pointer to the pci_dev of function 0. If
|
|
* we remove that function, the pci_dev is about to be deallocated,
|
|
* so we can't use link->downstream again. Free the link state to
|
|
* avoid this.
|
|
*
|
|
* If we're removing a non-0 function, it's possible we could
|
|
* retain the link state, but PCIe r6.0, sec 7.5.3.7, recommends
|
|
* programming the same ASPM Control value for all functions of
|
|
* multi-function devices, so disable ASPM for all of them.
|
|
*/
|
|
pcie_config_aspm_link(link, 0);
|
|
list_del(&link->sibling);
|
|
free_link_state(link);
|
|
|
|
/* Recheck latencies and configure upstream links */
|
|
if (parent_link) {
|
|
pcie_update_aspm_capable(root);
|
|
pcie_config_aspm_path(parent_link);
|
|
}
|
|
|
|
mutex_unlock(&aspm_lock);
|
|
up_read(&pci_bus_sem);
|
|
}
|
|
|
|
void pcie_aspm_powersave_config_link(struct pci_dev *pdev)
|
|
{
|
|
struct pcie_link_state *link = pdev->link_state;
|
|
|
|
if (aspm_disabled || !link)
|
|
return;
|
|
|
|
if (aspm_policy != POLICY_POWERSAVE &&
|
|
aspm_policy != POLICY_POWER_SUPERSAVE)
|
|
return;
|
|
|
|
down_read(&pci_bus_sem);
|
|
mutex_lock(&aspm_lock);
|
|
pcie_config_aspm_path(link);
|
|
pcie_set_clkpm(link, policy_to_clkpm_state(link));
|
|
mutex_unlock(&aspm_lock);
|
|
up_read(&pci_bus_sem);
|
|
}
|
|
|
|
static struct pcie_link_state *pcie_aspm_get_link(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dev *bridge;
|
|
|
|
if (!pci_is_pcie(pdev))
|
|
return NULL;
|
|
|
|
bridge = pci_upstream_bridge(pdev);
|
|
if (!bridge || !pci_is_pcie(bridge))
|
|
return NULL;
|
|
|
|
return bridge->link_state;
|
|
}
|
|
|
|
static int __pci_disable_link_state(struct pci_dev *pdev, int state, bool sem)
|
|
{
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
|
|
if (!link)
|
|
return -EINVAL;
|
|
/*
|
|
* A driver requested that ASPM be disabled on this device, but
|
|
* if we don't have permission to manage ASPM (e.g., on ACPI
|
|
* systems we have to observe the FADT ACPI_FADT_NO_ASPM bit and
|
|
* the _OSC method), we can't honor that request. Windows has
|
|
* a similar mechanism using "PciASPMOptOut", which is also
|
|
* ignored in this situation.
|
|
*/
|
|
if (aspm_disabled) {
|
|
pci_warn(pdev, "can't disable ASPM; OS doesn't have ASPM control\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
if (sem)
|
|
down_read(&pci_bus_sem);
|
|
mutex_lock(&aspm_lock);
|
|
if (state & PCIE_LINK_STATE_L0S)
|
|
link->aspm_disable |= ASPM_STATE_L0S;
|
|
if (state & PCIE_LINK_STATE_L1)
|
|
/* L1 PM substates require L1 */
|
|
link->aspm_disable |= ASPM_STATE_L1 | ASPM_STATE_L1SS;
|
|
if (state & PCIE_LINK_STATE_L1_1)
|
|
link->aspm_disable |= ASPM_STATE_L1_1;
|
|
if (state & PCIE_LINK_STATE_L1_2)
|
|
link->aspm_disable |= ASPM_STATE_L1_2;
|
|
if (state & PCIE_LINK_STATE_L1_1_PCIPM)
|
|
link->aspm_disable |= ASPM_STATE_L1_1_PCIPM;
|
|
if (state & PCIE_LINK_STATE_L1_2_PCIPM)
|
|
link->aspm_disable |= ASPM_STATE_L1_2_PCIPM;
|
|
pcie_config_aspm_link(link, policy_to_aspm_state(link));
|
|
|
|
if (state & PCIE_LINK_STATE_CLKPM)
|
|
link->clkpm_disable = 1;
|
|
pcie_set_clkpm(link, policy_to_clkpm_state(link));
|
|
mutex_unlock(&aspm_lock);
|
|
if (sem)
|
|
up_read(&pci_bus_sem);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pci_disable_link_state_locked(struct pci_dev *pdev, int state)
|
|
{
|
|
return __pci_disable_link_state(pdev, state, false);
|
|
}
|
|
EXPORT_SYMBOL(pci_disable_link_state_locked);
|
|
|
|
/**
|
|
* pci_disable_link_state - Disable device's link state, so the link will
|
|
* never enter specific states. Note that if the BIOS didn't grant ASPM
|
|
* control to the OS, this does nothing because we can't touch the LNKCTL
|
|
* register. Returns 0 or a negative errno.
|
|
*
|
|
* @pdev: PCI device
|
|
* @state: ASPM link state to disable
|
|
*/
|
|
int pci_disable_link_state(struct pci_dev *pdev, int state)
|
|
{
|
|
return __pci_disable_link_state(pdev, state, true);
|
|
}
|
|
EXPORT_SYMBOL(pci_disable_link_state);
|
|
|
|
/**
|
|
* pci_enable_link_state - Clear and set the default device link state so that
|
|
* the link may be allowed to enter the specified states. Note that if the
|
|
* BIOS didn't grant ASPM control to the OS, this does nothing because we can't
|
|
* touch the LNKCTL register. Also note that this does not enable states
|
|
* disabled by pci_disable_link_state(). Return 0 or a negative errno.
|
|
*
|
|
* @pdev: PCI device
|
|
* @state: Mask of ASPM link states to enable
|
|
*/
|
|
int pci_enable_link_state(struct pci_dev *pdev, int state)
|
|
{
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
|
|
if (!link)
|
|
return -EINVAL;
|
|
/*
|
|
* A driver requested that ASPM be enabled on this device, but
|
|
* if we don't have permission to manage ASPM (e.g., on ACPI
|
|
* systems we have to observe the FADT ACPI_FADT_NO_ASPM bit and
|
|
* the _OSC method), we can't honor that request.
|
|
*/
|
|
if (aspm_disabled) {
|
|
pci_warn(pdev, "can't override BIOS ASPM; OS doesn't have ASPM control\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
down_read(&pci_bus_sem);
|
|
mutex_lock(&aspm_lock);
|
|
link->aspm_default = 0;
|
|
if (state & PCIE_LINK_STATE_L0S)
|
|
link->aspm_default |= ASPM_STATE_L0S;
|
|
if (state & PCIE_LINK_STATE_L1)
|
|
link->aspm_default |= ASPM_STATE_L1;
|
|
/* L1 PM substates require L1 */
|
|
if (state & PCIE_LINK_STATE_L1_1)
|
|
link->aspm_default |= ASPM_STATE_L1_1 | ASPM_STATE_L1;
|
|
if (state & PCIE_LINK_STATE_L1_2)
|
|
link->aspm_default |= ASPM_STATE_L1_2 | ASPM_STATE_L1;
|
|
if (state & PCIE_LINK_STATE_L1_1_PCIPM)
|
|
link->aspm_default |= ASPM_STATE_L1_1_PCIPM | ASPM_STATE_L1;
|
|
if (state & PCIE_LINK_STATE_L1_2_PCIPM)
|
|
link->aspm_default |= ASPM_STATE_L1_2_PCIPM | ASPM_STATE_L1;
|
|
pcie_config_aspm_link(link, policy_to_aspm_state(link));
|
|
|
|
link->clkpm_default = (state & PCIE_LINK_STATE_CLKPM) ? 1 : 0;
|
|
pcie_set_clkpm(link, policy_to_clkpm_state(link));
|
|
mutex_unlock(&aspm_lock);
|
|
up_read(&pci_bus_sem);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pci_enable_link_state);
|
|
|
|
static int pcie_aspm_set_policy(const char *val,
|
|
const struct kernel_param *kp)
|
|
{
|
|
int i;
|
|
struct pcie_link_state *link;
|
|
|
|
if (aspm_disabled)
|
|
return -EPERM;
|
|
i = sysfs_match_string(policy_str, val);
|
|
if (i < 0)
|
|
return i;
|
|
if (i == aspm_policy)
|
|
return 0;
|
|
|
|
down_read(&pci_bus_sem);
|
|
mutex_lock(&aspm_lock);
|
|
aspm_policy = i;
|
|
list_for_each_entry(link, &link_list, sibling) {
|
|
pcie_config_aspm_link(link, policy_to_aspm_state(link));
|
|
pcie_set_clkpm(link, policy_to_clkpm_state(link));
|
|
}
|
|
mutex_unlock(&aspm_lock);
|
|
up_read(&pci_bus_sem);
|
|
return 0;
|
|
}
|
|
|
|
static int pcie_aspm_get_policy(char *buffer, const struct kernel_param *kp)
|
|
{
|
|
int i, cnt = 0;
|
|
for (i = 0; i < ARRAY_SIZE(policy_str); i++)
|
|
if (i == aspm_policy)
|
|
cnt += sprintf(buffer + cnt, "[%s] ", policy_str[i]);
|
|
else
|
|
cnt += sprintf(buffer + cnt, "%s ", policy_str[i]);
|
|
cnt += sprintf(buffer + cnt, "\n");
|
|
return cnt;
|
|
}
|
|
|
|
module_param_call(policy, pcie_aspm_set_policy, pcie_aspm_get_policy,
|
|
NULL, 0644);
|
|
|
|
/**
|
|
* pcie_aspm_enabled - Check if PCIe ASPM has been enabled for a device.
|
|
* @pdev: Target device.
|
|
*
|
|
* Relies on the upstream bridge's link_state being valid. The link_state
|
|
* is deallocated only when the last child of the bridge (i.e., @pdev or a
|
|
* sibling) is removed, and the caller should be holding a reference to
|
|
* @pdev, so this should be safe.
|
|
*/
|
|
bool pcie_aspm_enabled(struct pci_dev *pdev)
|
|
{
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
|
|
if (!link)
|
|
return false;
|
|
|
|
return link->aspm_enabled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcie_aspm_enabled);
|
|
|
|
static ssize_t aspm_attr_show_common(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf, u8 state)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
|
|
return sysfs_emit(buf, "%d\n", (link->aspm_enabled & state) ? 1 : 0);
|
|
}
|
|
|
|
static ssize_t aspm_attr_store_common(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t len, u8 state)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
bool state_enable;
|
|
|
|
if (kstrtobool(buf, &state_enable) < 0)
|
|
return -EINVAL;
|
|
|
|
down_read(&pci_bus_sem);
|
|
mutex_lock(&aspm_lock);
|
|
|
|
if (state_enable) {
|
|
link->aspm_disable &= ~state;
|
|
/* need to enable L1 for substates */
|
|
if (state & ASPM_STATE_L1SS)
|
|
link->aspm_disable &= ~ASPM_STATE_L1;
|
|
} else {
|
|
link->aspm_disable |= state;
|
|
if (state & ASPM_STATE_L1)
|
|
link->aspm_disable |= ASPM_STATE_L1SS;
|
|
}
|
|
|
|
pcie_config_aspm_link(link, policy_to_aspm_state(link));
|
|
|
|
mutex_unlock(&aspm_lock);
|
|
up_read(&pci_bus_sem);
|
|
|
|
return len;
|
|
}
|
|
|
|
#define ASPM_ATTR(_f, _s) \
|
|
static ssize_t _f##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ return aspm_attr_show_common(dev, attr, buf, ASPM_STATE_##_s); } \
|
|
\
|
|
static ssize_t _f##_store(struct device *dev, \
|
|
struct device_attribute *attr, \
|
|
const char *buf, size_t len) \
|
|
{ return aspm_attr_store_common(dev, attr, buf, len, ASPM_STATE_##_s); }
|
|
|
|
ASPM_ATTR(l0s_aspm, L0S)
|
|
ASPM_ATTR(l1_aspm, L1)
|
|
ASPM_ATTR(l1_1_aspm, L1_1)
|
|
ASPM_ATTR(l1_2_aspm, L1_2)
|
|
ASPM_ATTR(l1_1_pcipm, L1_1_PCIPM)
|
|
ASPM_ATTR(l1_2_pcipm, L1_2_PCIPM)
|
|
|
|
static ssize_t clkpm_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
|
|
return sysfs_emit(buf, "%d\n", link->clkpm_enabled);
|
|
}
|
|
|
|
static ssize_t clkpm_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t len)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
bool state_enable;
|
|
|
|
if (kstrtobool(buf, &state_enable) < 0)
|
|
return -EINVAL;
|
|
|
|
down_read(&pci_bus_sem);
|
|
mutex_lock(&aspm_lock);
|
|
|
|
link->clkpm_disable = !state_enable;
|
|
pcie_set_clkpm(link, policy_to_clkpm_state(link));
|
|
|
|
mutex_unlock(&aspm_lock);
|
|
up_read(&pci_bus_sem);
|
|
|
|
return len;
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(clkpm);
|
|
static DEVICE_ATTR_RW(l0s_aspm);
|
|
static DEVICE_ATTR_RW(l1_aspm);
|
|
static DEVICE_ATTR_RW(l1_1_aspm);
|
|
static DEVICE_ATTR_RW(l1_2_aspm);
|
|
static DEVICE_ATTR_RW(l1_1_pcipm);
|
|
static DEVICE_ATTR_RW(l1_2_pcipm);
|
|
|
|
static struct attribute *aspm_ctrl_attrs[] = {
|
|
&dev_attr_clkpm.attr,
|
|
&dev_attr_l0s_aspm.attr,
|
|
&dev_attr_l1_aspm.attr,
|
|
&dev_attr_l1_1_aspm.attr,
|
|
&dev_attr_l1_2_aspm.attr,
|
|
&dev_attr_l1_1_pcipm.attr,
|
|
&dev_attr_l1_2_pcipm.attr,
|
|
NULL
|
|
};
|
|
|
|
static umode_t aspm_ctrl_attrs_are_visible(struct kobject *kobj,
|
|
struct attribute *a, int n)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pcie_link_state *link = pcie_aspm_get_link(pdev);
|
|
static const u8 aspm_state_map[] = {
|
|
ASPM_STATE_L0S,
|
|
ASPM_STATE_L1,
|
|
ASPM_STATE_L1_1,
|
|
ASPM_STATE_L1_2,
|
|
ASPM_STATE_L1_1_PCIPM,
|
|
ASPM_STATE_L1_2_PCIPM,
|
|
};
|
|
|
|
if (aspm_disabled || !link)
|
|
return 0;
|
|
|
|
if (n == 0)
|
|
return link->clkpm_capable ? a->mode : 0;
|
|
|
|
return link->aspm_capable & aspm_state_map[n - 1] ? a->mode : 0;
|
|
}
|
|
|
|
const struct attribute_group aspm_ctrl_attr_group = {
|
|
.name = "link",
|
|
.attrs = aspm_ctrl_attrs,
|
|
.is_visible = aspm_ctrl_attrs_are_visible,
|
|
};
|
|
|
|
static int __init pcie_aspm_disable(char *str)
|
|
{
|
|
if (!strcmp(str, "off")) {
|
|
aspm_policy = POLICY_DEFAULT;
|
|
aspm_disabled = 1;
|
|
aspm_support_enabled = false;
|
|
pr_info("PCIe ASPM is disabled\n");
|
|
} else if (!strcmp(str, "force")) {
|
|
aspm_force = 1;
|
|
pr_info("PCIe ASPM is forcibly enabled\n");
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
__setup("pcie_aspm=", pcie_aspm_disable);
|
|
|
|
void pcie_no_aspm(void)
|
|
{
|
|
/*
|
|
* Disabling ASPM is intended to prevent the kernel from modifying
|
|
* existing hardware state, not to clear existing state. To that end:
|
|
* (a) set policy to POLICY_DEFAULT in order to avoid changing state
|
|
* (b) prevent userspace from changing policy
|
|
*/
|
|
if (!aspm_force) {
|
|
aspm_policy = POLICY_DEFAULT;
|
|
aspm_disabled = 1;
|
|
}
|
|
}
|
|
|
|
bool pcie_aspm_support_enabled(void)
|
|
{
|
|
return aspm_support_enabled;
|
|
}
|