mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-24 12:44:11 +08:00
ca98278a14
The irda usb driver uses 'timeval', which we try to remove in the kernel because all 32-bit time types will break in the year 2038. This patch also changes do_gettimeofday() to ktime_get() accordingly, since ktime_get returns a ktime_t, but do_gettimeofday returns a struct timeval, and the other reason is that ktime_get() uses the monotonic clock. This patch uses ktime_us_delta to get the elapsed time, and in this way it no longer needs to check for the overflow, because ktime_us_delta returns time difference of microsecond. Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David S. Miller <davem@davemloft.net>
175 lines
6.8 KiB
C
175 lines
6.8 KiB
C
/*****************************************************************************
|
|
*
|
|
* Filename: irda-usb.h
|
|
* Version: 0.10
|
|
* Description: IrDA-USB Driver
|
|
* Status: Experimental
|
|
* Author: Dag Brattli <dag@brattli.net>
|
|
*
|
|
* Copyright (C) 2001, Roman Weissgaerber <weissg@vienna.at>
|
|
* Copyright (C) 2000, Dag Brattli <dag@brattli.net>
|
|
* Copyright (C) 2001, Jean Tourrilhes <jt@hpl.hp.com>
|
|
* Copyright (C) 2004, SigmaTel, Inc. <irquality@sigmatel.com>
|
|
* Copyright (C) 2005, Milan Beno <beno@pobox.sk>
|
|
* Copyright (C) 2006, Nick FEdchik <nick@fedchik.org.ua>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#include <linux/ktime.h>
|
|
|
|
#include <net/irda/irda.h>
|
|
#include <net/irda/irda_device.h> /* struct irlap_cb */
|
|
|
|
#define RX_COPY_THRESHOLD 200
|
|
#define IRDA_USB_MAX_MTU 2051
|
|
#define IRDA_USB_SPEED_MTU 64 /* Weird, but work like this */
|
|
|
|
/* Maximum number of active URB on the Rx path
|
|
* This is the amount of buffers the we keep between the USB harware and the
|
|
* IrDA stack.
|
|
*
|
|
* Note : the network layer does also queue the packets between us and the
|
|
* IrDA stack, and is actually pretty fast and efficient in doing that.
|
|
* Therefore, we don't need to have a large number of URBs, and we can
|
|
* perfectly live happy with only one. We certainly don't need to keep the
|
|
* full IrTTP window around here...
|
|
* I repeat for those who have trouble to understand : 1 URB is plenty
|
|
* good enough to handle back-to-back (brickwalled) frames. I tried it,
|
|
* it works (it's the hardware that has trouble doing it).
|
|
*
|
|
* Having 2 URBs would allow the USB stack to process one URB while we take
|
|
* care of the other and then swap the URBs...
|
|
* On the other hand, increasing the number of URB will have penalities
|
|
* in term of latency and will interact with the link management in IrLAP...
|
|
* Jean II */
|
|
#define IU_MAX_ACTIVE_RX_URBS 1 /* Don't touch !!! */
|
|
|
|
/* When a Rx URB is passed back to us, we can't reuse it immediately,
|
|
* because it may still be referenced by the USB layer. Therefore we
|
|
* need to keep one extra URB in the Rx path.
|
|
* Jean II */
|
|
#define IU_MAX_RX_URBS (IU_MAX_ACTIVE_RX_URBS + 1)
|
|
|
|
/* Various ugly stuff to try to workaround generic problems */
|
|
/* Send speed command in case of timeout, just for trying to get things sane */
|
|
#define IU_BUG_KICK_TIMEOUT
|
|
/* Show the USB class descriptor */
|
|
#undef IU_DUMP_CLASS_DESC
|
|
/* Assume a minimum round trip latency for USB transfer (in us)...
|
|
* USB transfer are done in the next USB slot if there is no traffic
|
|
* (1/19 msec) and is done at 12 Mb/s :
|
|
* Waiting for slot + tx = (53us + 16us) * 2 = 137us minimum.
|
|
* Rx notification will only be done at the end of the USB frame period :
|
|
* OHCI : frame period = 1ms
|
|
* UHCI : frame period = 1ms, but notification can take 2 or 3 ms :-(
|
|
* EHCI : frame period = 125us */
|
|
#define IU_USB_MIN_RTT 500 /* This should be safe in most cases */
|
|
|
|
/* Inbound header */
|
|
#define MEDIA_BUSY 0x80
|
|
|
|
#define SPEED_2400 0x01
|
|
#define SPEED_9600 0x02
|
|
#define SPEED_19200 0x03
|
|
#define SPEED_38400 0x04
|
|
#define SPEED_57600 0x05
|
|
#define SPEED_115200 0x06
|
|
#define SPEED_576000 0x07
|
|
#define SPEED_1152000 0x08
|
|
#define SPEED_4000000 0x09
|
|
#define SPEED_16000000 0x0a
|
|
|
|
/* Basic capabilities */
|
|
#define IUC_DEFAULT 0x00 /* Basic device compliant with 1.0 spec */
|
|
/* Main bugs */
|
|
#define IUC_SPEED_BUG 0x01 /* Device doesn't set speed after the frame */
|
|
#define IUC_NO_WINDOW 0x02 /* Device doesn't behave with big Rx window */
|
|
#define IUC_NO_TURN 0x04 /* Device doesn't do turnaround by itself */
|
|
/* Not currently used */
|
|
#define IUC_SIR_ONLY 0x08 /* Device doesn't behave at FIR speeds */
|
|
#define IUC_SMALL_PKT 0x10 /* Device doesn't behave with big Rx packets */
|
|
#define IUC_MAX_WINDOW 0x20 /* Device underestimate the Rx window */
|
|
#define IUC_MAX_XBOFS 0x40 /* Device need more xbofs than advertised */
|
|
#define IUC_STIR421X 0x80 /* SigmaTel 4210/4220/4116 VFIR */
|
|
|
|
/* USB class definitions */
|
|
#define USB_IRDA_HEADER 0x01
|
|
#define USB_CLASS_IRDA 0x02 /* USB_CLASS_APP_SPEC subclass */
|
|
#define USB_DT_IRDA 0x21
|
|
#define USB_IRDA_STIR421X_HEADER 0x03
|
|
#define IU_SIGMATEL_MAX_RX_URBS (IU_MAX_ACTIVE_RX_URBS + \
|
|
USB_IRDA_STIR421X_HEADER)
|
|
|
|
struct irda_class_desc {
|
|
__u8 bLength;
|
|
__u8 bDescriptorType;
|
|
__le16 bcdSpecRevision;
|
|
__u8 bmDataSize;
|
|
__u8 bmWindowSize;
|
|
__u8 bmMinTurnaroundTime;
|
|
__le16 wBaudRate;
|
|
__u8 bmAdditionalBOFs;
|
|
__u8 bIrdaRateSniff;
|
|
__u8 bMaxUnicastList;
|
|
} __packed;
|
|
|
|
/* class specific interface request to get the IrDA-USB class descriptor
|
|
* (6.2.5, USB-IrDA class spec 1.0) */
|
|
|
|
#define IU_REQ_GET_CLASS_DESC 0x06
|
|
#define STIR421X_MAX_PATCH_DOWNLOAD_SIZE 1023
|
|
|
|
struct irda_usb_cb {
|
|
struct irda_class_desc *irda_desc;
|
|
struct usb_device *usbdev; /* init: probe_irda */
|
|
struct usb_interface *usbintf; /* init: probe_irda */
|
|
int netopen; /* Device is active for network */
|
|
int present; /* Device is present on the bus */
|
|
__u32 capability; /* Capability of the hardware */
|
|
__u8 bulk_in_ep; /* Rx Endpoint assignments */
|
|
__u8 bulk_out_ep; /* Tx Endpoint assignments */
|
|
__u16 bulk_out_mtu; /* Max Tx packet size in bytes */
|
|
__u8 bulk_int_ep; /* Interrupt Endpoint assignments */
|
|
|
|
__u8 max_rx_urb;
|
|
struct urb **rx_urb; /* URBs used to receive data frames */
|
|
struct urb *idle_rx_urb; /* Pointer to idle URB in Rx path */
|
|
struct urb *tx_urb; /* URB used to send data frames */
|
|
struct urb *speed_urb; /* URB used to send speed commands */
|
|
|
|
struct net_device *netdev; /* Yes! we are some kind of netdev. */
|
|
struct irlap_cb *irlap; /* The link layer we are binded to */
|
|
struct qos_info qos;
|
|
char *speed_buff; /* Buffer for speed changes */
|
|
char *tx_buff;
|
|
|
|
ktime_t stamp;
|
|
|
|
spinlock_t lock; /* For serializing Tx operations */
|
|
|
|
__u16 xbofs; /* Current xbofs setting */
|
|
__s16 new_xbofs; /* xbofs we need to set */
|
|
__u32 speed; /* Current speed */
|
|
__s32 new_speed; /* speed we need to set */
|
|
|
|
__u8 header_length; /* USB-IrDA frame header size */
|
|
int needspatch; /* device needs firmware patch */
|
|
|
|
struct timer_list rx_defer_timer; /* Wait for Rx error to clear */
|
|
};
|
|
|