mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-24 04:34:08 +08:00
2bc19cd5fd
We trigger this warning: block/blk-throttle.c: In function ‘blk_throtl_bio’: block/blk-throttle.c:2042:6: warning: variable ‘ret’ set but not used [-Wunused-but-set-variable] int ret; ^~~ since we only assign 'ret' if BLK_DEV_THROTTLING_LOW is off, we never check it. Reported-by: Bart Van Assche <bart.vanassche@sandisk.com> Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2428 lines
65 KiB
C
2428 lines
65 KiB
C
/*
|
|
* Interface for controlling IO bandwidth on a request queue
|
|
*
|
|
* Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blktrace_api.h>
|
|
#include <linux/blk-cgroup.h>
|
|
#include "blk.h"
|
|
|
|
/* Max dispatch from a group in 1 round */
|
|
static int throtl_grp_quantum = 8;
|
|
|
|
/* Total max dispatch from all groups in one round */
|
|
static int throtl_quantum = 32;
|
|
|
|
/* Throttling is performed over a slice and after that slice is renewed */
|
|
#define DFL_THROTL_SLICE_HD (HZ / 10)
|
|
#define DFL_THROTL_SLICE_SSD (HZ / 50)
|
|
#define MAX_THROTL_SLICE (HZ)
|
|
#define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
|
|
#define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
|
|
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
|
|
/* default latency target is 0, eg, guarantee IO latency by default */
|
|
#define DFL_LATENCY_TARGET (0)
|
|
|
|
#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
|
|
|
|
static struct blkcg_policy blkcg_policy_throtl;
|
|
|
|
/* A workqueue to queue throttle related work */
|
|
static struct workqueue_struct *kthrotld_workqueue;
|
|
|
|
/*
|
|
* To implement hierarchical throttling, throtl_grps form a tree and bios
|
|
* are dispatched upwards level by level until they reach the top and get
|
|
* issued. When dispatching bios from the children and local group at each
|
|
* level, if the bios are dispatched into a single bio_list, there's a risk
|
|
* of a local or child group which can queue many bios at once filling up
|
|
* the list starving others.
|
|
*
|
|
* To avoid such starvation, dispatched bios are queued separately
|
|
* according to where they came from. When they are again dispatched to
|
|
* the parent, they're popped in round-robin order so that no single source
|
|
* hogs the dispatch window.
|
|
*
|
|
* throtl_qnode is used to keep the queued bios separated by their sources.
|
|
* Bios are queued to throtl_qnode which in turn is queued to
|
|
* throtl_service_queue and then dispatched in round-robin order.
|
|
*
|
|
* It's also used to track the reference counts on blkg's. A qnode always
|
|
* belongs to a throtl_grp and gets queued on itself or the parent, so
|
|
* incrementing the reference of the associated throtl_grp when a qnode is
|
|
* queued and decrementing when dequeued is enough to keep the whole blkg
|
|
* tree pinned while bios are in flight.
|
|
*/
|
|
struct throtl_qnode {
|
|
struct list_head node; /* service_queue->queued[] */
|
|
struct bio_list bios; /* queued bios */
|
|
struct throtl_grp *tg; /* tg this qnode belongs to */
|
|
};
|
|
|
|
struct throtl_service_queue {
|
|
struct throtl_service_queue *parent_sq; /* the parent service_queue */
|
|
|
|
/*
|
|
* Bios queued directly to this service_queue or dispatched from
|
|
* children throtl_grp's.
|
|
*/
|
|
struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
|
|
unsigned int nr_queued[2]; /* number of queued bios */
|
|
|
|
/*
|
|
* RB tree of active children throtl_grp's, which are sorted by
|
|
* their ->disptime.
|
|
*/
|
|
struct rb_root pending_tree; /* RB tree of active tgs */
|
|
struct rb_node *first_pending; /* first node in the tree */
|
|
unsigned int nr_pending; /* # queued in the tree */
|
|
unsigned long first_pending_disptime; /* disptime of the first tg */
|
|
struct timer_list pending_timer; /* fires on first_pending_disptime */
|
|
};
|
|
|
|
enum tg_state_flags {
|
|
THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
|
|
THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
|
|
};
|
|
|
|
#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
|
|
|
|
enum {
|
|
LIMIT_LOW,
|
|
LIMIT_MAX,
|
|
LIMIT_CNT,
|
|
};
|
|
|
|
struct throtl_grp {
|
|
/* must be the first member */
|
|
struct blkg_policy_data pd;
|
|
|
|
/* active throtl group service_queue member */
|
|
struct rb_node rb_node;
|
|
|
|
/* throtl_data this group belongs to */
|
|
struct throtl_data *td;
|
|
|
|
/* this group's service queue */
|
|
struct throtl_service_queue service_queue;
|
|
|
|
/*
|
|
* qnode_on_self is used when bios are directly queued to this
|
|
* throtl_grp so that local bios compete fairly with bios
|
|
* dispatched from children. qnode_on_parent is used when bios are
|
|
* dispatched from this throtl_grp into its parent and will compete
|
|
* with the sibling qnode_on_parents and the parent's
|
|
* qnode_on_self.
|
|
*/
|
|
struct throtl_qnode qnode_on_self[2];
|
|
struct throtl_qnode qnode_on_parent[2];
|
|
|
|
/*
|
|
* Dispatch time in jiffies. This is the estimated time when group
|
|
* will unthrottle and is ready to dispatch more bio. It is used as
|
|
* key to sort active groups in service tree.
|
|
*/
|
|
unsigned long disptime;
|
|
|
|
unsigned int flags;
|
|
|
|
/* are there any throtl rules between this group and td? */
|
|
bool has_rules[2];
|
|
|
|
/* internally used bytes per second rate limits */
|
|
uint64_t bps[2][LIMIT_CNT];
|
|
/* user configured bps limits */
|
|
uint64_t bps_conf[2][LIMIT_CNT];
|
|
|
|
/* internally used IOPS limits */
|
|
unsigned int iops[2][LIMIT_CNT];
|
|
/* user configured IOPS limits */
|
|
unsigned int iops_conf[2][LIMIT_CNT];
|
|
|
|
/* Number of bytes disptached in current slice */
|
|
uint64_t bytes_disp[2];
|
|
/* Number of bio's dispatched in current slice */
|
|
unsigned int io_disp[2];
|
|
|
|
unsigned long last_low_overflow_time[2];
|
|
|
|
uint64_t last_bytes_disp[2];
|
|
unsigned int last_io_disp[2];
|
|
|
|
unsigned long last_check_time;
|
|
|
|
unsigned long latency_target; /* us */
|
|
/* When did we start a new slice */
|
|
unsigned long slice_start[2];
|
|
unsigned long slice_end[2];
|
|
|
|
unsigned long last_finish_time; /* ns / 1024 */
|
|
unsigned long checked_last_finish_time; /* ns / 1024 */
|
|
unsigned long avg_idletime; /* ns / 1024 */
|
|
unsigned long idletime_threshold; /* us */
|
|
|
|
unsigned int bio_cnt; /* total bios */
|
|
unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
|
|
unsigned long bio_cnt_reset_time;
|
|
};
|
|
|
|
/* We measure latency for request size from <= 4k to >= 1M */
|
|
#define LATENCY_BUCKET_SIZE 9
|
|
|
|
struct latency_bucket {
|
|
unsigned long total_latency; /* ns / 1024 */
|
|
int samples;
|
|
};
|
|
|
|
struct avg_latency_bucket {
|
|
unsigned long latency; /* ns / 1024 */
|
|
bool valid;
|
|
};
|
|
|
|
struct throtl_data
|
|
{
|
|
/* service tree for active throtl groups */
|
|
struct throtl_service_queue service_queue;
|
|
|
|
struct request_queue *queue;
|
|
|
|
/* Total Number of queued bios on READ and WRITE lists */
|
|
unsigned int nr_queued[2];
|
|
|
|
unsigned int throtl_slice;
|
|
|
|
/* Work for dispatching throttled bios */
|
|
struct work_struct dispatch_work;
|
|
unsigned int limit_index;
|
|
bool limit_valid[LIMIT_CNT];
|
|
|
|
unsigned long dft_idletime_threshold; /* us */
|
|
|
|
unsigned long low_upgrade_time;
|
|
unsigned long low_downgrade_time;
|
|
|
|
unsigned int scale;
|
|
|
|
struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
|
|
struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
|
|
struct latency_bucket __percpu *latency_buckets;
|
|
unsigned long last_calculate_time;
|
|
|
|
bool track_bio_latency;
|
|
};
|
|
|
|
static void throtl_pending_timer_fn(unsigned long arg);
|
|
|
|
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
|
|
{
|
|
return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
|
|
}
|
|
|
|
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
|
|
{
|
|
return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
|
|
}
|
|
|
|
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
|
|
{
|
|
return pd_to_blkg(&tg->pd);
|
|
}
|
|
|
|
/**
|
|
* sq_to_tg - return the throl_grp the specified service queue belongs to
|
|
* @sq: the throtl_service_queue of interest
|
|
*
|
|
* Return the throtl_grp @sq belongs to. If @sq is the top-level one
|
|
* embedded in throtl_data, %NULL is returned.
|
|
*/
|
|
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
|
|
{
|
|
if (sq && sq->parent_sq)
|
|
return container_of(sq, struct throtl_grp, service_queue);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* sq_to_td - return throtl_data the specified service queue belongs to
|
|
* @sq: the throtl_service_queue of interest
|
|
*
|
|
* A service_queue can be embedded in either a throtl_grp or throtl_data.
|
|
* Determine the associated throtl_data accordingly and return it.
|
|
*/
|
|
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
|
|
{
|
|
struct throtl_grp *tg = sq_to_tg(sq);
|
|
|
|
if (tg)
|
|
return tg->td;
|
|
else
|
|
return container_of(sq, struct throtl_data, service_queue);
|
|
}
|
|
|
|
/*
|
|
* cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
|
|
* make the IO dispatch more smooth.
|
|
* Scale up: linearly scale up according to lapsed time since upgrade. For
|
|
* every throtl_slice, the limit scales up 1/2 .low limit till the
|
|
* limit hits .max limit
|
|
* Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
|
|
*/
|
|
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
|
|
{
|
|
/* arbitrary value to avoid too big scale */
|
|
if (td->scale < 4096 && time_after_eq(jiffies,
|
|
td->low_upgrade_time + td->scale * td->throtl_slice))
|
|
td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
|
|
|
|
return low + (low >> 1) * td->scale;
|
|
}
|
|
|
|
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
|
|
{
|
|
struct blkcg_gq *blkg = tg_to_blkg(tg);
|
|
struct throtl_data *td;
|
|
uint64_t ret;
|
|
|
|
if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
|
|
return U64_MAX;
|
|
|
|
td = tg->td;
|
|
ret = tg->bps[rw][td->limit_index];
|
|
if (ret == 0 && td->limit_index == LIMIT_LOW)
|
|
return tg->bps[rw][LIMIT_MAX];
|
|
|
|
if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
|
|
tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
|
|
uint64_t adjusted;
|
|
|
|
adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
|
|
ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
|
|
{
|
|
struct blkcg_gq *blkg = tg_to_blkg(tg);
|
|
struct throtl_data *td;
|
|
unsigned int ret;
|
|
|
|
if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
|
|
return UINT_MAX;
|
|
td = tg->td;
|
|
ret = tg->iops[rw][td->limit_index];
|
|
if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
|
|
return tg->iops[rw][LIMIT_MAX];
|
|
|
|
if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
|
|
tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
|
|
uint64_t adjusted;
|
|
|
|
adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
|
|
if (adjusted > UINT_MAX)
|
|
adjusted = UINT_MAX;
|
|
ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define request_bucket_index(sectors) \
|
|
clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
|
|
|
|
/**
|
|
* throtl_log - log debug message via blktrace
|
|
* @sq: the service_queue being reported
|
|
* @fmt: printf format string
|
|
* @args: printf args
|
|
*
|
|
* The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
|
|
* throtl_grp; otherwise, just "throtl".
|
|
*/
|
|
#define throtl_log(sq, fmt, args...) do { \
|
|
struct throtl_grp *__tg = sq_to_tg((sq)); \
|
|
struct throtl_data *__td = sq_to_td((sq)); \
|
|
\
|
|
(void)__td; \
|
|
if (likely(!blk_trace_note_message_enabled(__td->queue))) \
|
|
break; \
|
|
if ((__tg)) { \
|
|
char __pbuf[128]; \
|
|
\
|
|
blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
|
|
blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
|
|
} else { \
|
|
blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
|
|
{
|
|
INIT_LIST_HEAD(&qn->node);
|
|
bio_list_init(&qn->bios);
|
|
qn->tg = tg;
|
|
}
|
|
|
|
/**
|
|
* throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
|
|
* @bio: bio being added
|
|
* @qn: qnode to add bio to
|
|
* @queued: the service_queue->queued[] list @qn belongs to
|
|
*
|
|
* Add @bio to @qn and put @qn on @queued if it's not already on.
|
|
* @qn->tg's reference count is bumped when @qn is activated. See the
|
|
* comment on top of throtl_qnode definition for details.
|
|
*/
|
|
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
|
|
struct list_head *queued)
|
|
{
|
|
bio_list_add(&qn->bios, bio);
|
|
if (list_empty(&qn->node)) {
|
|
list_add_tail(&qn->node, queued);
|
|
blkg_get(tg_to_blkg(qn->tg));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* throtl_peek_queued - peek the first bio on a qnode list
|
|
* @queued: the qnode list to peek
|
|
*/
|
|
static struct bio *throtl_peek_queued(struct list_head *queued)
|
|
{
|
|
struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
|
|
struct bio *bio;
|
|
|
|
if (list_empty(queued))
|
|
return NULL;
|
|
|
|
bio = bio_list_peek(&qn->bios);
|
|
WARN_ON_ONCE(!bio);
|
|
return bio;
|
|
}
|
|
|
|
/**
|
|
* throtl_pop_queued - pop the first bio form a qnode list
|
|
* @queued: the qnode list to pop a bio from
|
|
* @tg_to_put: optional out argument for throtl_grp to put
|
|
*
|
|
* Pop the first bio from the qnode list @queued. After popping, the first
|
|
* qnode is removed from @queued if empty or moved to the end of @queued so
|
|
* that the popping order is round-robin.
|
|
*
|
|
* When the first qnode is removed, its associated throtl_grp should be put
|
|
* too. If @tg_to_put is NULL, this function automatically puts it;
|
|
* otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
|
|
* responsible for putting it.
|
|
*/
|
|
static struct bio *throtl_pop_queued(struct list_head *queued,
|
|
struct throtl_grp **tg_to_put)
|
|
{
|
|
struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
|
|
struct bio *bio;
|
|
|
|
if (list_empty(queued))
|
|
return NULL;
|
|
|
|
bio = bio_list_pop(&qn->bios);
|
|
WARN_ON_ONCE(!bio);
|
|
|
|
if (bio_list_empty(&qn->bios)) {
|
|
list_del_init(&qn->node);
|
|
if (tg_to_put)
|
|
*tg_to_put = qn->tg;
|
|
else
|
|
blkg_put(tg_to_blkg(qn->tg));
|
|
} else {
|
|
list_move_tail(&qn->node, queued);
|
|
}
|
|
|
|
return bio;
|
|
}
|
|
|
|
/* init a service_queue, assumes the caller zeroed it */
|
|
static void throtl_service_queue_init(struct throtl_service_queue *sq)
|
|
{
|
|
INIT_LIST_HEAD(&sq->queued[0]);
|
|
INIT_LIST_HEAD(&sq->queued[1]);
|
|
sq->pending_tree = RB_ROOT;
|
|
setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
|
|
(unsigned long)sq);
|
|
}
|
|
|
|
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
|
|
{
|
|
struct throtl_grp *tg;
|
|
int rw;
|
|
|
|
tg = kzalloc_node(sizeof(*tg), gfp, node);
|
|
if (!tg)
|
|
return NULL;
|
|
|
|
throtl_service_queue_init(&tg->service_queue);
|
|
|
|
for (rw = READ; rw <= WRITE; rw++) {
|
|
throtl_qnode_init(&tg->qnode_on_self[rw], tg);
|
|
throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
|
|
}
|
|
|
|
RB_CLEAR_NODE(&tg->rb_node);
|
|
tg->bps[READ][LIMIT_MAX] = U64_MAX;
|
|
tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
|
|
tg->iops[READ][LIMIT_MAX] = UINT_MAX;
|
|
tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
|
|
tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
|
|
tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
|
|
tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
|
|
tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
|
|
/* LIMIT_LOW will have default value 0 */
|
|
|
|
tg->latency_target = DFL_LATENCY_TARGET;
|
|
|
|
return &tg->pd;
|
|
}
|
|
|
|
static void throtl_pd_init(struct blkg_policy_data *pd)
|
|
{
|
|
struct throtl_grp *tg = pd_to_tg(pd);
|
|
struct blkcg_gq *blkg = tg_to_blkg(tg);
|
|
struct throtl_data *td = blkg->q->td;
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
|
|
/*
|
|
* If on the default hierarchy, we switch to properly hierarchical
|
|
* behavior where limits on a given throtl_grp are applied to the
|
|
* whole subtree rather than just the group itself. e.g. If 16M
|
|
* read_bps limit is set on the root group, the whole system can't
|
|
* exceed 16M for the device.
|
|
*
|
|
* If not on the default hierarchy, the broken flat hierarchy
|
|
* behavior is retained where all throtl_grps are treated as if
|
|
* they're all separate root groups right below throtl_data.
|
|
* Limits of a group don't interact with limits of other groups
|
|
* regardless of the position of the group in the hierarchy.
|
|
*/
|
|
sq->parent_sq = &td->service_queue;
|
|
if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
|
|
sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
|
|
tg->td = td;
|
|
|
|
tg->idletime_threshold = td->dft_idletime_threshold;
|
|
}
|
|
|
|
/*
|
|
* Set has_rules[] if @tg or any of its parents have limits configured.
|
|
* This doesn't require walking up to the top of the hierarchy as the
|
|
* parent's has_rules[] is guaranteed to be correct.
|
|
*/
|
|
static void tg_update_has_rules(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
|
|
struct throtl_data *td = tg->td;
|
|
int rw;
|
|
|
|
for (rw = READ; rw <= WRITE; rw++)
|
|
tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
|
|
(td->limit_valid[td->limit_index] &&
|
|
(tg_bps_limit(tg, rw) != U64_MAX ||
|
|
tg_iops_limit(tg, rw) != UINT_MAX));
|
|
}
|
|
|
|
static void throtl_pd_online(struct blkg_policy_data *pd)
|
|
{
|
|
struct throtl_grp *tg = pd_to_tg(pd);
|
|
/*
|
|
* We don't want new groups to escape the limits of its ancestors.
|
|
* Update has_rules[] after a new group is brought online.
|
|
*/
|
|
tg_update_has_rules(tg);
|
|
}
|
|
|
|
static void blk_throtl_update_limit_valid(struct throtl_data *td)
|
|
{
|
|
struct cgroup_subsys_state *pos_css;
|
|
struct blkcg_gq *blkg;
|
|
bool low_valid = false;
|
|
|
|
rcu_read_lock();
|
|
blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
|
|
if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
|
|
tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
|
|
low_valid = true;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
td->limit_valid[LIMIT_LOW] = low_valid;
|
|
}
|
|
|
|
static void throtl_upgrade_state(struct throtl_data *td);
|
|
static void throtl_pd_offline(struct blkg_policy_data *pd)
|
|
{
|
|
struct throtl_grp *tg = pd_to_tg(pd);
|
|
|
|
tg->bps[READ][LIMIT_LOW] = 0;
|
|
tg->bps[WRITE][LIMIT_LOW] = 0;
|
|
tg->iops[READ][LIMIT_LOW] = 0;
|
|
tg->iops[WRITE][LIMIT_LOW] = 0;
|
|
|
|
blk_throtl_update_limit_valid(tg->td);
|
|
|
|
if (!tg->td->limit_valid[tg->td->limit_index])
|
|
throtl_upgrade_state(tg->td);
|
|
}
|
|
|
|
static void throtl_pd_free(struct blkg_policy_data *pd)
|
|
{
|
|
struct throtl_grp *tg = pd_to_tg(pd);
|
|
|
|
del_timer_sync(&tg->service_queue.pending_timer);
|
|
kfree(tg);
|
|
}
|
|
|
|
static struct throtl_grp *
|
|
throtl_rb_first(struct throtl_service_queue *parent_sq)
|
|
{
|
|
/* Service tree is empty */
|
|
if (!parent_sq->nr_pending)
|
|
return NULL;
|
|
|
|
if (!parent_sq->first_pending)
|
|
parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
|
|
|
|
if (parent_sq->first_pending)
|
|
return rb_entry_tg(parent_sq->first_pending);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
|
|
{
|
|
rb_erase(n, root);
|
|
RB_CLEAR_NODE(n);
|
|
}
|
|
|
|
static void throtl_rb_erase(struct rb_node *n,
|
|
struct throtl_service_queue *parent_sq)
|
|
{
|
|
if (parent_sq->first_pending == n)
|
|
parent_sq->first_pending = NULL;
|
|
rb_erase_init(n, &parent_sq->pending_tree);
|
|
--parent_sq->nr_pending;
|
|
}
|
|
|
|
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
|
|
{
|
|
struct throtl_grp *tg;
|
|
|
|
tg = throtl_rb_first(parent_sq);
|
|
if (!tg)
|
|
return;
|
|
|
|
parent_sq->first_pending_disptime = tg->disptime;
|
|
}
|
|
|
|
static void tg_service_queue_add(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
|
|
struct rb_node **node = &parent_sq->pending_tree.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct throtl_grp *__tg;
|
|
unsigned long key = tg->disptime;
|
|
int left = 1;
|
|
|
|
while (*node != NULL) {
|
|
parent = *node;
|
|
__tg = rb_entry_tg(parent);
|
|
|
|
if (time_before(key, __tg->disptime))
|
|
node = &parent->rb_left;
|
|
else {
|
|
node = &parent->rb_right;
|
|
left = 0;
|
|
}
|
|
}
|
|
|
|
if (left)
|
|
parent_sq->first_pending = &tg->rb_node;
|
|
|
|
rb_link_node(&tg->rb_node, parent, node);
|
|
rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
|
|
}
|
|
|
|
static void __throtl_enqueue_tg(struct throtl_grp *tg)
|
|
{
|
|
tg_service_queue_add(tg);
|
|
tg->flags |= THROTL_TG_PENDING;
|
|
tg->service_queue.parent_sq->nr_pending++;
|
|
}
|
|
|
|
static void throtl_enqueue_tg(struct throtl_grp *tg)
|
|
{
|
|
if (!(tg->flags & THROTL_TG_PENDING))
|
|
__throtl_enqueue_tg(tg);
|
|
}
|
|
|
|
static void __throtl_dequeue_tg(struct throtl_grp *tg)
|
|
{
|
|
throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
|
|
tg->flags &= ~THROTL_TG_PENDING;
|
|
}
|
|
|
|
static void throtl_dequeue_tg(struct throtl_grp *tg)
|
|
{
|
|
if (tg->flags & THROTL_TG_PENDING)
|
|
__throtl_dequeue_tg(tg);
|
|
}
|
|
|
|
/* Call with queue lock held */
|
|
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
|
|
unsigned long expires)
|
|
{
|
|
unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
|
|
|
|
/*
|
|
* Since we are adjusting the throttle limit dynamically, the sleep
|
|
* time calculated according to previous limit might be invalid. It's
|
|
* possible the cgroup sleep time is very long and no other cgroups
|
|
* have IO running so notify the limit changes. Make sure the cgroup
|
|
* doesn't sleep too long to avoid the missed notification.
|
|
*/
|
|
if (time_after(expires, max_expire))
|
|
expires = max_expire;
|
|
mod_timer(&sq->pending_timer, expires);
|
|
throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
|
|
expires - jiffies, jiffies);
|
|
}
|
|
|
|
/**
|
|
* throtl_schedule_next_dispatch - schedule the next dispatch cycle
|
|
* @sq: the service_queue to schedule dispatch for
|
|
* @force: force scheduling
|
|
*
|
|
* Arm @sq->pending_timer so that the next dispatch cycle starts on the
|
|
* dispatch time of the first pending child. Returns %true if either timer
|
|
* is armed or there's no pending child left. %false if the current
|
|
* dispatch window is still open and the caller should continue
|
|
* dispatching.
|
|
*
|
|
* If @force is %true, the dispatch timer is always scheduled and this
|
|
* function is guaranteed to return %true. This is to be used when the
|
|
* caller can't dispatch itself and needs to invoke pending_timer
|
|
* unconditionally. Note that forced scheduling is likely to induce short
|
|
* delay before dispatch starts even if @sq->first_pending_disptime is not
|
|
* in the future and thus shouldn't be used in hot paths.
|
|
*/
|
|
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
|
|
bool force)
|
|
{
|
|
/* any pending children left? */
|
|
if (!sq->nr_pending)
|
|
return true;
|
|
|
|
update_min_dispatch_time(sq);
|
|
|
|
/* is the next dispatch time in the future? */
|
|
if (force || time_after(sq->first_pending_disptime, jiffies)) {
|
|
throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
|
|
return true;
|
|
}
|
|
|
|
/* tell the caller to continue dispatching */
|
|
return false;
|
|
}
|
|
|
|
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
|
|
bool rw, unsigned long start)
|
|
{
|
|
tg->bytes_disp[rw] = 0;
|
|
tg->io_disp[rw] = 0;
|
|
|
|
/*
|
|
* Previous slice has expired. We must have trimmed it after last
|
|
* bio dispatch. That means since start of last slice, we never used
|
|
* that bandwidth. Do try to make use of that bandwidth while giving
|
|
* credit.
|
|
*/
|
|
if (time_after_eq(start, tg->slice_start[rw]))
|
|
tg->slice_start[rw] = start;
|
|
|
|
tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
|
|
throtl_log(&tg->service_queue,
|
|
"[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
|
|
rw == READ ? 'R' : 'W', tg->slice_start[rw],
|
|
tg->slice_end[rw], jiffies);
|
|
}
|
|
|
|
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
|
|
{
|
|
tg->bytes_disp[rw] = 0;
|
|
tg->io_disp[rw] = 0;
|
|
tg->slice_start[rw] = jiffies;
|
|
tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
|
|
throtl_log(&tg->service_queue,
|
|
"[%c] new slice start=%lu end=%lu jiffies=%lu",
|
|
rw == READ ? 'R' : 'W', tg->slice_start[rw],
|
|
tg->slice_end[rw], jiffies);
|
|
}
|
|
|
|
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
|
|
unsigned long jiffy_end)
|
|
{
|
|
tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
|
|
}
|
|
|
|
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
|
|
unsigned long jiffy_end)
|
|
{
|
|
tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
|
|
throtl_log(&tg->service_queue,
|
|
"[%c] extend slice start=%lu end=%lu jiffies=%lu",
|
|
rw == READ ? 'R' : 'W', tg->slice_start[rw],
|
|
tg->slice_end[rw], jiffies);
|
|
}
|
|
|
|
/* Determine if previously allocated or extended slice is complete or not */
|
|
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
|
|
{
|
|
if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
|
|
return false;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Trim the used slices and adjust slice start accordingly */
|
|
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
|
|
{
|
|
unsigned long nr_slices, time_elapsed, io_trim;
|
|
u64 bytes_trim, tmp;
|
|
|
|
BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
|
|
|
|
/*
|
|
* If bps are unlimited (-1), then time slice don't get
|
|
* renewed. Don't try to trim the slice if slice is used. A new
|
|
* slice will start when appropriate.
|
|
*/
|
|
if (throtl_slice_used(tg, rw))
|
|
return;
|
|
|
|
/*
|
|
* A bio has been dispatched. Also adjust slice_end. It might happen
|
|
* that initially cgroup limit was very low resulting in high
|
|
* slice_end, but later limit was bumped up and bio was dispached
|
|
* sooner, then we need to reduce slice_end. A high bogus slice_end
|
|
* is bad because it does not allow new slice to start.
|
|
*/
|
|
|
|
throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
|
|
|
|
time_elapsed = jiffies - tg->slice_start[rw];
|
|
|
|
nr_slices = time_elapsed / tg->td->throtl_slice;
|
|
|
|
if (!nr_slices)
|
|
return;
|
|
tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
|
|
do_div(tmp, HZ);
|
|
bytes_trim = tmp;
|
|
|
|
io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
|
|
HZ;
|
|
|
|
if (!bytes_trim && !io_trim)
|
|
return;
|
|
|
|
if (tg->bytes_disp[rw] >= bytes_trim)
|
|
tg->bytes_disp[rw] -= bytes_trim;
|
|
else
|
|
tg->bytes_disp[rw] = 0;
|
|
|
|
if (tg->io_disp[rw] >= io_trim)
|
|
tg->io_disp[rw] -= io_trim;
|
|
else
|
|
tg->io_disp[rw] = 0;
|
|
|
|
tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
|
|
|
|
throtl_log(&tg->service_queue,
|
|
"[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
|
|
rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
|
|
tg->slice_start[rw], tg->slice_end[rw], jiffies);
|
|
}
|
|
|
|
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
|
|
unsigned long *wait)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
unsigned int io_allowed;
|
|
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
|
|
u64 tmp;
|
|
|
|
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
|
|
|
|
/* Slice has just started. Consider one slice interval */
|
|
if (!jiffy_elapsed)
|
|
jiffy_elapsed_rnd = tg->td->throtl_slice;
|
|
|
|
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
|
|
|
|
/*
|
|
* jiffy_elapsed_rnd should not be a big value as minimum iops can be
|
|
* 1 then at max jiffy elapsed should be equivalent of 1 second as we
|
|
* will allow dispatch after 1 second and after that slice should
|
|
* have been trimmed.
|
|
*/
|
|
|
|
tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
|
|
do_div(tmp, HZ);
|
|
|
|
if (tmp > UINT_MAX)
|
|
io_allowed = UINT_MAX;
|
|
else
|
|
io_allowed = tmp;
|
|
|
|
if (tg->io_disp[rw] + 1 <= io_allowed) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return true;
|
|
}
|
|
|
|
/* Calc approx time to dispatch */
|
|
jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
|
|
|
|
if (jiffy_wait > jiffy_elapsed)
|
|
jiffy_wait = jiffy_wait - jiffy_elapsed;
|
|
else
|
|
jiffy_wait = 1;
|
|
|
|
if (wait)
|
|
*wait = jiffy_wait;
|
|
return 0;
|
|
}
|
|
|
|
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
|
|
unsigned long *wait)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
u64 bytes_allowed, extra_bytes, tmp;
|
|
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
|
|
|
|
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
|
|
|
|
/* Slice has just started. Consider one slice interval */
|
|
if (!jiffy_elapsed)
|
|
jiffy_elapsed_rnd = tg->td->throtl_slice;
|
|
|
|
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
|
|
|
|
tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
|
|
do_div(tmp, HZ);
|
|
bytes_allowed = tmp;
|
|
|
|
if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return true;
|
|
}
|
|
|
|
/* Calc approx time to dispatch */
|
|
extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
|
|
jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
|
|
|
|
if (!jiffy_wait)
|
|
jiffy_wait = 1;
|
|
|
|
/*
|
|
* This wait time is without taking into consideration the rounding
|
|
* up we did. Add that time also.
|
|
*/
|
|
jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
|
|
if (wait)
|
|
*wait = jiffy_wait;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns whether one can dispatch a bio or not. Also returns approx number
|
|
* of jiffies to wait before this bio is with-in IO rate and can be dispatched
|
|
*/
|
|
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
|
|
unsigned long *wait)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
|
|
|
|
/*
|
|
* Currently whole state machine of group depends on first bio
|
|
* queued in the group bio list. So one should not be calling
|
|
* this function with a different bio if there are other bios
|
|
* queued.
|
|
*/
|
|
BUG_ON(tg->service_queue.nr_queued[rw] &&
|
|
bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
|
|
|
|
/* If tg->bps = -1, then BW is unlimited */
|
|
if (tg_bps_limit(tg, rw) == U64_MAX &&
|
|
tg_iops_limit(tg, rw) == UINT_MAX) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If previous slice expired, start a new one otherwise renew/extend
|
|
* existing slice to make sure it is at least throtl_slice interval
|
|
* long since now. New slice is started only for empty throttle group.
|
|
* If there is queued bio, that means there should be an active
|
|
* slice and it should be extended instead.
|
|
*/
|
|
if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
|
|
throtl_start_new_slice(tg, rw);
|
|
else {
|
|
if (time_before(tg->slice_end[rw],
|
|
jiffies + tg->td->throtl_slice))
|
|
throtl_extend_slice(tg, rw,
|
|
jiffies + tg->td->throtl_slice);
|
|
}
|
|
|
|
if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
|
|
tg_with_in_iops_limit(tg, bio, &iops_wait)) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return 1;
|
|
}
|
|
|
|
max_wait = max(bps_wait, iops_wait);
|
|
|
|
if (wait)
|
|
*wait = max_wait;
|
|
|
|
if (time_before(tg->slice_end[rw], jiffies + max_wait))
|
|
throtl_extend_slice(tg, rw, jiffies + max_wait);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
|
|
/* Charge the bio to the group */
|
|
tg->bytes_disp[rw] += bio->bi_iter.bi_size;
|
|
tg->io_disp[rw]++;
|
|
tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
|
|
tg->last_io_disp[rw]++;
|
|
|
|
/*
|
|
* BIO_THROTTLED is used to prevent the same bio to be throttled
|
|
* more than once as a throttled bio will go through blk-throtl the
|
|
* second time when it eventually gets issued. Set it when a bio
|
|
* is being charged to a tg.
|
|
*/
|
|
if (!bio_flagged(bio, BIO_THROTTLED))
|
|
bio_set_flag(bio, BIO_THROTTLED);
|
|
}
|
|
|
|
/**
|
|
* throtl_add_bio_tg - add a bio to the specified throtl_grp
|
|
* @bio: bio to add
|
|
* @qn: qnode to use
|
|
* @tg: the target throtl_grp
|
|
*
|
|
* Add @bio to @tg's service_queue using @qn. If @qn is not specified,
|
|
* tg->qnode_on_self[] is used.
|
|
*/
|
|
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
|
|
struct throtl_grp *tg)
|
|
{
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
bool rw = bio_data_dir(bio);
|
|
|
|
if (!qn)
|
|
qn = &tg->qnode_on_self[rw];
|
|
|
|
/*
|
|
* If @tg doesn't currently have any bios queued in the same
|
|
* direction, queueing @bio can change when @tg should be
|
|
* dispatched. Mark that @tg was empty. This is automatically
|
|
* cleaered on the next tg_update_disptime().
|
|
*/
|
|
if (!sq->nr_queued[rw])
|
|
tg->flags |= THROTL_TG_WAS_EMPTY;
|
|
|
|
throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
|
|
|
|
sq->nr_queued[rw]++;
|
|
throtl_enqueue_tg(tg);
|
|
}
|
|
|
|
static void tg_update_disptime(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
|
|
struct bio *bio;
|
|
|
|
bio = throtl_peek_queued(&sq->queued[READ]);
|
|
if (bio)
|
|
tg_may_dispatch(tg, bio, &read_wait);
|
|
|
|
bio = throtl_peek_queued(&sq->queued[WRITE]);
|
|
if (bio)
|
|
tg_may_dispatch(tg, bio, &write_wait);
|
|
|
|
min_wait = min(read_wait, write_wait);
|
|
disptime = jiffies + min_wait;
|
|
|
|
/* Update dispatch time */
|
|
throtl_dequeue_tg(tg);
|
|
tg->disptime = disptime;
|
|
throtl_enqueue_tg(tg);
|
|
|
|
/* see throtl_add_bio_tg() */
|
|
tg->flags &= ~THROTL_TG_WAS_EMPTY;
|
|
}
|
|
|
|
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
|
|
struct throtl_grp *parent_tg, bool rw)
|
|
{
|
|
if (throtl_slice_used(parent_tg, rw)) {
|
|
throtl_start_new_slice_with_credit(parent_tg, rw,
|
|
child_tg->slice_start[rw]);
|
|
}
|
|
|
|
}
|
|
|
|
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
|
|
{
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
struct throtl_service_queue *parent_sq = sq->parent_sq;
|
|
struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
|
|
struct throtl_grp *tg_to_put = NULL;
|
|
struct bio *bio;
|
|
|
|
/*
|
|
* @bio is being transferred from @tg to @parent_sq. Popping a bio
|
|
* from @tg may put its reference and @parent_sq might end up
|
|
* getting released prematurely. Remember the tg to put and put it
|
|
* after @bio is transferred to @parent_sq.
|
|
*/
|
|
bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
|
|
sq->nr_queued[rw]--;
|
|
|
|
throtl_charge_bio(tg, bio);
|
|
|
|
/*
|
|
* If our parent is another tg, we just need to transfer @bio to
|
|
* the parent using throtl_add_bio_tg(). If our parent is
|
|
* @td->service_queue, @bio is ready to be issued. Put it on its
|
|
* bio_lists[] and decrease total number queued. The caller is
|
|
* responsible for issuing these bios.
|
|
*/
|
|
if (parent_tg) {
|
|
throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
|
|
start_parent_slice_with_credit(tg, parent_tg, rw);
|
|
} else {
|
|
throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
|
|
&parent_sq->queued[rw]);
|
|
BUG_ON(tg->td->nr_queued[rw] <= 0);
|
|
tg->td->nr_queued[rw]--;
|
|
}
|
|
|
|
throtl_trim_slice(tg, rw);
|
|
|
|
if (tg_to_put)
|
|
blkg_put(tg_to_blkg(tg_to_put));
|
|
}
|
|
|
|
static int throtl_dispatch_tg(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
unsigned int nr_reads = 0, nr_writes = 0;
|
|
unsigned int max_nr_reads = throtl_grp_quantum*3/4;
|
|
unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
|
|
struct bio *bio;
|
|
|
|
/* Try to dispatch 75% READS and 25% WRITES */
|
|
|
|
while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
|
|
tg_may_dispatch(tg, bio, NULL)) {
|
|
|
|
tg_dispatch_one_bio(tg, bio_data_dir(bio));
|
|
nr_reads++;
|
|
|
|
if (nr_reads >= max_nr_reads)
|
|
break;
|
|
}
|
|
|
|
while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
|
|
tg_may_dispatch(tg, bio, NULL)) {
|
|
|
|
tg_dispatch_one_bio(tg, bio_data_dir(bio));
|
|
nr_writes++;
|
|
|
|
if (nr_writes >= max_nr_writes)
|
|
break;
|
|
}
|
|
|
|
return nr_reads + nr_writes;
|
|
}
|
|
|
|
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
|
|
{
|
|
unsigned int nr_disp = 0;
|
|
|
|
while (1) {
|
|
struct throtl_grp *tg = throtl_rb_first(parent_sq);
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
|
|
if (!tg)
|
|
break;
|
|
|
|
if (time_before(jiffies, tg->disptime))
|
|
break;
|
|
|
|
throtl_dequeue_tg(tg);
|
|
|
|
nr_disp += throtl_dispatch_tg(tg);
|
|
|
|
if (sq->nr_queued[0] || sq->nr_queued[1])
|
|
tg_update_disptime(tg);
|
|
|
|
if (nr_disp >= throtl_quantum)
|
|
break;
|
|
}
|
|
|
|
return nr_disp;
|
|
}
|
|
|
|
static bool throtl_can_upgrade(struct throtl_data *td,
|
|
struct throtl_grp *this_tg);
|
|
/**
|
|
* throtl_pending_timer_fn - timer function for service_queue->pending_timer
|
|
* @arg: the throtl_service_queue being serviced
|
|
*
|
|
* This timer is armed when a child throtl_grp with active bio's become
|
|
* pending and queued on the service_queue's pending_tree and expires when
|
|
* the first child throtl_grp should be dispatched. This function
|
|
* dispatches bio's from the children throtl_grps to the parent
|
|
* service_queue.
|
|
*
|
|
* If the parent's parent is another throtl_grp, dispatching is propagated
|
|
* by either arming its pending_timer or repeating dispatch directly. If
|
|
* the top-level service_tree is reached, throtl_data->dispatch_work is
|
|
* kicked so that the ready bio's are issued.
|
|
*/
|
|
static void throtl_pending_timer_fn(unsigned long arg)
|
|
{
|
|
struct throtl_service_queue *sq = (void *)arg;
|
|
struct throtl_grp *tg = sq_to_tg(sq);
|
|
struct throtl_data *td = sq_to_td(sq);
|
|
struct request_queue *q = td->queue;
|
|
struct throtl_service_queue *parent_sq;
|
|
bool dispatched;
|
|
int ret;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
if (throtl_can_upgrade(td, NULL))
|
|
throtl_upgrade_state(td);
|
|
|
|
again:
|
|
parent_sq = sq->parent_sq;
|
|
dispatched = false;
|
|
|
|
while (true) {
|
|
throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
|
|
sq->nr_queued[READ] + sq->nr_queued[WRITE],
|
|
sq->nr_queued[READ], sq->nr_queued[WRITE]);
|
|
|
|
ret = throtl_select_dispatch(sq);
|
|
if (ret) {
|
|
throtl_log(sq, "bios disp=%u", ret);
|
|
dispatched = true;
|
|
}
|
|
|
|
if (throtl_schedule_next_dispatch(sq, false))
|
|
break;
|
|
|
|
/* this dispatch windows is still open, relax and repeat */
|
|
spin_unlock_irq(q->queue_lock);
|
|
cpu_relax();
|
|
spin_lock_irq(q->queue_lock);
|
|
}
|
|
|
|
if (!dispatched)
|
|
goto out_unlock;
|
|
|
|
if (parent_sq) {
|
|
/* @parent_sq is another throl_grp, propagate dispatch */
|
|
if (tg->flags & THROTL_TG_WAS_EMPTY) {
|
|
tg_update_disptime(tg);
|
|
if (!throtl_schedule_next_dispatch(parent_sq, false)) {
|
|
/* window is already open, repeat dispatching */
|
|
sq = parent_sq;
|
|
tg = sq_to_tg(sq);
|
|
goto again;
|
|
}
|
|
}
|
|
} else {
|
|
/* reached the top-level, queue issueing */
|
|
queue_work(kthrotld_workqueue, &td->dispatch_work);
|
|
}
|
|
out_unlock:
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
|
|
/**
|
|
* blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
|
|
* @work: work item being executed
|
|
*
|
|
* This function is queued for execution when bio's reach the bio_lists[]
|
|
* of throtl_data->service_queue. Those bio's are ready and issued by this
|
|
* function.
|
|
*/
|
|
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
|
|
{
|
|
struct throtl_data *td = container_of(work, struct throtl_data,
|
|
dispatch_work);
|
|
struct throtl_service_queue *td_sq = &td->service_queue;
|
|
struct request_queue *q = td->queue;
|
|
struct bio_list bio_list_on_stack;
|
|
struct bio *bio;
|
|
struct blk_plug plug;
|
|
int rw;
|
|
|
|
bio_list_init(&bio_list_on_stack);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
for (rw = READ; rw <= WRITE; rw++)
|
|
while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
|
|
bio_list_add(&bio_list_on_stack, bio);
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
if (!bio_list_empty(&bio_list_on_stack)) {
|
|
blk_start_plug(&plug);
|
|
while((bio = bio_list_pop(&bio_list_on_stack)))
|
|
generic_make_request(bio);
|
|
blk_finish_plug(&plug);
|
|
}
|
|
}
|
|
|
|
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
|
|
int off)
|
|
{
|
|
struct throtl_grp *tg = pd_to_tg(pd);
|
|
u64 v = *(u64 *)((void *)tg + off);
|
|
|
|
if (v == U64_MAX)
|
|
return 0;
|
|
return __blkg_prfill_u64(sf, pd, v);
|
|
}
|
|
|
|
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
|
|
int off)
|
|
{
|
|
struct throtl_grp *tg = pd_to_tg(pd);
|
|
unsigned int v = *(unsigned int *)((void *)tg + off);
|
|
|
|
if (v == UINT_MAX)
|
|
return 0;
|
|
return __blkg_prfill_u64(sf, pd, v);
|
|
}
|
|
|
|
static int tg_print_conf_u64(struct seq_file *sf, void *v)
|
|
{
|
|
blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
|
|
&blkcg_policy_throtl, seq_cft(sf)->private, false);
|
|
return 0;
|
|
}
|
|
|
|
static int tg_print_conf_uint(struct seq_file *sf, void *v)
|
|
{
|
|
blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
|
|
&blkcg_policy_throtl, seq_cft(sf)->private, false);
|
|
return 0;
|
|
}
|
|
|
|
static void tg_conf_updated(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
struct cgroup_subsys_state *pos_css;
|
|
struct blkcg_gq *blkg;
|
|
|
|
throtl_log(&tg->service_queue,
|
|
"limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
|
|
tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
|
|
tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
|
|
|
|
/*
|
|
* Update has_rules[] flags for the updated tg's subtree. A tg is
|
|
* considered to have rules if either the tg itself or any of its
|
|
* ancestors has rules. This identifies groups without any
|
|
* restrictions in the whole hierarchy and allows them to bypass
|
|
* blk-throttle.
|
|
*/
|
|
blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
|
|
tg_update_has_rules(blkg_to_tg(blkg));
|
|
|
|
/*
|
|
* We're already holding queue_lock and know @tg is valid. Let's
|
|
* apply the new config directly.
|
|
*
|
|
* Restart the slices for both READ and WRITES. It might happen
|
|
* that a group's limit are dropped suddenly and we don't want to
|
|
* account recently dispatched IO with new low rate.
|
|
*/
|
|
throtl_start_new_slice(tg, 0);
|
|
throtl_start_new_slice(tg, 1);
|
|
|
|
if (tg->flags & THROTL_TG_PENDING) {
|
|
tg_update_disptime(tg);
|
|
throtl_schedule_next_dispatch(sq->parent_sq, true);
|
|
}
|
|
}
|
|
|
|
static ssize_t tg_set_conf(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off, bool is_u64)
|
|
{
|
|
struct blkcg *blkcg = css_to_blkcg(of_css(of));
|
|
struct blkg_conf_ctx ctx;
|
|
struct throtl_grp *tg;
|
|
int ret;
|
|
u64 v;
|
|
|
|
ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = -EINVAL;
|
|
if (sscanf(ctx.body, "%llu", &v) != 1)
|
|
goto out_finish;
|
|
if (!v)
|
|
v = U64_MAX;
|
|
|
|
tg = blkg_to_tg(ctx.blkg);
|
|
|
|
if (is_u64)
|
|
*(u64 *)((void *)tg + of_cft(of)->private) = v;
|
|
else
|
|
*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
|
|
|
|
tg_conf_updated(tg);
|
|
ret = 0;
|
|
out_finish:
|
|
blkg_conf_finish(&ctx);
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
return tg_set_conf(of, buf, nbytes, off, true);
|
|
}
|
|
|
|
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
return tg_set_conf(of, buf, nbytes, off, false);
|
|
}
|
|
|
|
static struct cftype throtl_legacy_files[] = {
|
|
{
|
|
.name = "throttle.read_bps_device",
|
|
.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
|
|
.seq_show = tg_print_conf_u64,
|
|
.write = tg_set_conf_u64,
|
|
},
|
|
{
|
|
.name = "throttle.write_bps_device",
|
|
.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
|
|
.seq_show = tg_print_conf_u64,
|
|
.write = tg_set_conf_u64,
|
|
},
|
|
{
|
|
.name = "throttle.read_iops_device",
|
|
.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
|
|
.seq_show = tg_print_conf_uint,
|
|
.write = tg_set_conf_uint,
|
|
},
|
|
{
|
|
.name = "throttle.write_iops_device",
|
|
.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
|
|
.seq_show = tg_print_conf_uint,
|
|
.write = tg_set_conf_uint,
|
|
},
|
|
{
|
|
.name = "throttle.io_service_bytes",
|
|
.private = (unsigned long)&blkcg_policy_throtl,
|
|
.seq_show = blkg_print_stat_bytes,
|
|
},
|
|
{
|
|
.name = "throttle.io_serviced",
|
|
.private = (unsigned long)&blkcg_policy_throtl,
|
|
.seq_show = blkg_print_stat_ios,
|
|
},
|
|
{ } /* terminate */
|
|
};
|
|
|
|
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
|
|
int off)
|
|
{
|
|
struct throtl_grp *tg = pd_to_tg(pd);
|
|
const char *dname = blkg_dev_name(pd->blkg);
|
|
char bufs[4][21] = { "max", "max", "max", "max" };
|
|
u64 bps_dft;
|
|
unsigned int iops_dft;
|
|
char idle_time[26] = "";
|
|
char latency_time[26] = "";
|
|
|
|
if (!dname)
|
|
return 0;
|
|
|
|
if (off == LIMIT_LOW) {
|
|
bps_dft = 0;
|
|
iops_dft = 0;
|
|
} else {
|
|
bps_dft = U64_MAX;
|
|
iops_dft = UINT_MAX;
|
|
}
|
|
|
|
if (tg->bps_conf[READ][off] == bps_dft &&
|
|
tg->bps_conf[WRITE][off] == bps_dft &&
|
|
tg->iops_conf[READ][off] == iops_dft &&
|
|
tg->iops_conf[WRITE][off] == iops_dft &&
|
|
(off != LIMIT_LOW ||
|
|
(tg->idletime_threshold == tg->td->dft_idletime_threshold &&
|
|
tg->latency_target == DFL_LATENCY_TARGET)))
|
|
return 0;
|
|
|
|
if (tg->bps_conf[READ][off] != bps_dft)
|
|
snprintf(bufs[0], sizeof(bufs[0]), "%llu",
|
|
tg->bps_conf[READ][off]);
|
|
if (tg->bps_conf[WRITE][off] != bps_dft)
|
|
snprintf(bufs[1], sizeof(bufs[1]), "%llu",
|
|
tg->bps_conf[WRITE][off]);
|
|
if (tg->iops_conf[READ][off] != iops_dft)
|
|
snprintf(bufs[2], sizeof(bufs[2]), "%u",
|
|
tg->iops_conf[READ][off]);
|
|
if (tg->iops_conf[WRITE][off] != iops_dft)
|
|
snprintf(bufs[3], sizeof(bufs[3]), "%u",
|
|
tg->iops_conf[WRITE][off]);
|
|
if (off == LIMIT_LOW) {
|
|
if (tg->idletime_threshold == ULONG_MAX)
|
|
strcpy(idle_time, " idle=max");
|
|
else
|
|
snprintf(idle_time, sizeof(idle_time), " idle=%lu",
|
|
tg->idletime_threshold);
|
|
|
|
if (tg->latency_target == ULONG_MAX)
|
|
strcpy(latency_time, " latency=max");
|
|
else
|
|
snprintf(latency_time, sizeof(latency_time),
|
|
" latency=%lu", tg->latency_target);
|
|
}
|
|
|
|
seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
|
|
dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
|
|
latency_time);
|
|
return 0;
|
|
}
|
|
|
|
static int tg_print_limit(struct seq_file *sf, void *v)
|
|
{
|
|
blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
|
|
&blkcg_policy_throtl, seq_cft(sf)->private, false);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t tg_set_limit(struct kernfs_open_file *of,
|
|
char *buf, size_t nbytes, loff_t off)
|
|
{
|
|
struct blkcg *blkcg = css_to_blkcg(of_css(of));
|
|
struct blkg_conf_ctx ctx;
|
|
struct throtl_grp *tg;
|
|
u64 v[4];
|
|
unsigned long idle_time;
|
|
unsigned long latency_time;
|
|
int ret;
|
|
int index = of_cft(of)->private;
|
|
|
|
ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
tg = blkg_to_tg(ctx.blkg);
|
|
|
|
v[0] = tg->bps_conf[READ][index];
|
|
v[1] = tg->bps_conf[WRITE][index];
|
|
v[2] = tg->iops_conf[READ][index];
|
|
v[3] = tg->iops_conf[WRITE][index];
|
|
|
|
idle_time = tg->idletime_threshold;
|
|
latency_time = tg->latency_target;
|
|
while (true) {
|
|
char tok[27]; /* wiops=18446744073709551616 */
|
|
char *p;
|
|
u64 val = U64_MAX;
|
|
int len;
|
|
|
|
if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
|
|
break;
|
|
if (tok[0] == '\0')
|
|
break;
|
|
ctx.body += len;
|
|
|
|
ret = -EINVAL;
|
|
p = tok;
|
|
strsep(&p, "=");
|
|
if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
|
|
goto out_finish;
|
|
|
|
ret = -ERANGE;
|
|
if (!val)
|
|
goto out_finish;
|
|
|
|
ret = -EINVAL;
|
|
if (!strcmp(tok, "rbps"))
|
|
v[0] = val;
|
|
else if (!strcmp(tok, "wbps"))
|
|
v[1] = val;
|
|
else if (!strcmp(tok, "riops"))
|
|
v[2] = min_t(u64, val, UINT_MAX);
|
|
else if (!strcmp(tok, "wiops"))
|
|
v[3] = min_t(u64, val, UINT_MAX);
|
|
else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
|
|
idle_time = val;
|
|
else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
|
|
latency_time = val;
|
|
else
|
|
goto out_finish;
|
|
}
|
|
|
|
tg->bps_conf[READ][index] = v[0];
|
|
tg->bps_conf[WRITE][index] = v[1];
|
|
tg->iops_conf[READ][index] = v[2];
|
|
tg->iops_conf[WRITE][index] = v[3];
|
|
|
|
if (index == LIMIT_MAX) {
|
|
tg->bps[READ][index] = v[0];
|
|
tg->bps[WRITE][index] = v[1];
|
|
tg->iops[READ][index] = v[2];
|
|
tg->iops[WRITE][index] = v[3];
|
|
}
|
|
tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
|
|
tg->bps_conf[READ][LIMIT_MAX]);
|
|
tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
|
|
tg->bps_conf[WRITE][LIMIT_MAX]);
|
|
tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
|
|
tg->iops_conf[READ][LIMIT_MAX]);
|
|
tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
|
|
tg->iops_conf[WRITE][LIMIT_MAX]);
|
|
|
|
if (index == LIMIT_LOW) {
|
|
blk_throtl_update_limit_valid(tg->td);
|
|
if (tg->td->limit_valid[LIMIT_LOW])
|
|
tg->td->limit_index = LIMIT_LOW;
|
|
tg->idletime_threshold = (idle_time == ULONG_MAX) ?
|
|
ULONG_MAX : idle_time;
|
|
tg->latency_target = (latency_time == ULONG_MAX) ?
|
|
ULONG_MAX : latency_time;
|
|
}
|
|
tg_conf_updated(tg);
|
|
ret = 0;
|
|
out_finish:
|
|
blkg_conf_finish(&ctx);
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static struct cftype throtl_files[] = {
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
{
|
|
.name = "low",
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.seq_show = tg_print_limit,
|
|
.write = tg_set_limit,
|
|
.private = LIMIT_LOW,
|
|
},
|
|
#endif
|
|
{
|
|
.name = "max",
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.seq_show = tg_print_limit,
|
|
.write = tg_set_limit,
|
|
.private = LIMIT_MAX,
|
|
},
|
|
{ } /* terminate */
|
|
};
|
|
|
|
static void throtl_shutdown_wq(struct request_queue *q)
|
|
{
|
|
struct throtl_data *td = q->td;
|
|
|
|
cancel_work_sync(&td->dispatch_work);
|
|
}
|
|
|
|
static struct blkcg_policy blkcg_policy_throtl = {
|
|
.dfl_cftypes = throtl_files,
|
|
.legacy_cftypes = throtl_legacy_files,
|
|
|
|
.pd_alloc_fn = throtl_pd_alloc,
|
|
.pd_init_fn = throtl_pd_init,
|
|
.pd_online_fn = throtl_pd_online,
|
|
.pd_offline_fn = throtl_pd_offline,
|
|
.pd_free_fn = throtl_pd_free,
|
|
};
|
|
|
|
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
|
|
{
|
|
unsigned long rtime = jiffies, wtime = jiffies;
|
|
|
|
if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
|
|
rtime = tg->last_low_overflow_time[READ];
|
|
if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
|
|
wtime = tg->last_low_overflow_time[WRITE];
|
|
return min(rtime, wtime);
|
|
}
|
|
|
|
/* tg should not be an intermediate node */
|
|
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_service_queue *parent_sq;
|
|
struct throtl_grp *parent = tg;
|
|
unsigned long ret = __tg_last_low_overflow_time(tg);
|
|
|
|
while (true) {
|
|
parent_sq = parent->service_queue.parent_sq;
|
|
parent = sq_to_tg(parent_sq);
|
|
if (!parent)
|
|
break;
|
|
|
|
/*
|
|
* The parent doesn't have low limit, it always reaches low
|
|
* limit. Its overflow time is useless for children
|
|
*/
|
|
if (!parent->bps[READ][LIMIT_LOW] &&
|
|
!parent->iops[READ][LIMIT_LOW] &&
|
|
!parent->bps[WRITE][LIMIT_LOW] &&
|
|
!parent->iops[WRITE][LIMIT_LOW])
|
|
continue;
|
|
if (time_after(__tg_last_low_overflow_time(parent), ret))
|
|
ret = __tg_last_low_overflow_time(parent);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static bool throtl_tg_is_idle(struct throtl_grp *tg)
|
|
{
|
|
/*
|
|
* cgroup is idle if:
|
|
* - single idle is too long, longer than a fixed value (in case user
|
|
* configure a too big threshold) or 4 times of slice
|
|
* - average think time is more than threshold
|
|
* - IO latency is largely below threshold
|
|
*/
|
|
unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
|
|
|
|
time = min_t(unsigned long, MAX_IDLE_TIME, time);
|
|
return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
|
|
tg->avg_idletime > tg->idletime_threshold ||
|
|
(tg->latency_target && tg->bio_cnt &&
|
|
tg->bad_bio_cnt * 5 < tg->bio_cnt);
|
|
}
|
|
|
|
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
bool read_limit, write_limit;
|
|
|
|
/*
|
|
* if cgroup reaches low limit (if low limit is 0, the cgroup always
|
|
* reaches), it's ok to upgrade to next limit
|
|
*/
|
|
read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
|
|
write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
|
|
if (!read_limit && !write_limit)
|
|
return true;
|
|
if (read_limit && sq->nr_queued[READ] &&
|
|
(!write_limit || sq->nr_queued[WRITE]))
|
|
return true;
|
|
if (write_limit && sq->nr_queued[WRITE] &&
|
|
(!read_limit || sq->nr_queued[READ]))
|
|
return true;
|
|
|
|
if (time_after_eq(jiffies,
|
|
tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
|
|
throtl_tg_is_idle(tg))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
|
|
{
|
|
while (true) {
|
|
if (throtl_tg_can_upgrade(tg))
|
|
return true;
|
|
tg = sq_to_tg(tg->service_queue.parent_sq);
|
|
if (!tg || !tg_to_blkg(tg)->parent)
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool throtl_can_upgrade(struct throtl_data *td,
|
|
struct throtl_grp *this_tg)
|
|
{
|
|
struct cgroup_subsys_state *pos_css;
|
|
struct blkcg_gq *blkg;
|
|
|
|
if (td->limit_index != LIMIT_LOW)
|
|
return false;
|
|
|
|
if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
|
|
return false;
|
|
|
|
rcu_read_lock();
|
|
blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
|
|
if (tg == this_tg)
|
|
continue;
|
|
if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
|
|
continue;
|
|
if (!throtl_hierarchy_can_upgrade(tg)) {
|
|
rcu_read_unlock();
|
|
return false;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return true;
|
|
}
|
|
|
|
static void throtl_upgrade_check(struct throtl_grp *tg)
|
|
{
|
|
unsigned long now = jiffies;
|
|
|
|
if (tg->td->limit_index != LIMIT_LOW)
|
|
return;
|
|
|
|
if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
|
|
return;
|
|
|
|
tg->last_check_time = now;
|
|
|
|
if (!time_after_eq(now,
|
|
__tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
|
|
return;
|
|
|
|
if (throtl_can_upgrade(tg->td, NULL))
|
|
throtl_upgrade_state(tg->td);
|
|
}
|
|
|
|
static void throtl_upgrade_state(struct throtl_data *td)
|
|
{
|
|
struct cgroup_subsys_state *pos_css;
|
|
struct blkcg_gq *blkg;
|
|
|
|
td->limit_index = LIMIT_MAX;
|
|
td->low_upgrade_time = jiffies;
|
|
td->scale = 0;
|
|
rcu_read_lock();
|
|
blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
|
|
tg->disptime = jiffies - 1;
|
|
throtl_select_dispatch(sq);
|
|
throtl_schedule_next_dispatch(sq, false);
|
|
}
|
|
rcu_read_unlock();
|
|
throtl_select_dispatch(&td->service_queue);
|
|
throtl_schedule_next_dispatch(&td->service_queue, false);
|
|
queue_work(kthrotld_workqueue, &td->dispatch_work);
|
|
}
|
|
|
|
static void throtl_downgrade_state(struct throtl_data *td, int new)
|
|
{
|
|
td->scale /= 2;
|
|
|
|
if (td->scale) {
|
|
td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
|
|
return;
|
|
}
|
|
|
|
td->limit_index = new;
|
|
td->low_downgrade_time = jiffies;
|
|
}
|
|
|
|
static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
|
|
{
|
|
struct throtl_data *td = tg->td;
|
|
unsigned long now = jiffies;
|
|
|
|
/*
|
|
* If cgroup is below low limit, consider downgrade and throttle other
|
|
* cgroups
|
|
*/
|
|
if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
|
|
time_after_eq(now, tg_last_low_overflow_time(tg) +
|
|
td->throtl_slice) &&
|
|
(!throtl_tg_is_idle(tg) ||
|
|
!list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
|
|
{
|
|
while (true) {
|
|
if (!throtl_tg_can_downgrade(tg))
|
|
return false;
|
|
tg = sq_to_tg(tg->service_queue.parent_sq);
|
|
if (!tg || !tg_to_blkg(tg)->parent)
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void throtl_downgrade_check(struct throtl_grp *tg)
|
|
{
|
|
uint64_t bps;
|
|
unsigned int iops;
|
|
unsigned long elapsed_time;
|
|
unsigned long now = jiffies;
|
|
|
|
if (tg->td->limit_index != LIMIT_MAX ||
|
|
!tg->td->limit_valid[LIMIT_LOW])
|
|
return;
|
|
if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
|
|
return;
|
|
if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
|
|
return;
|
|
|
|
elapsed_time = now - tg->last_check_time;
|
|
tg->last_check_time = now;
|
|
|
|
if (time_before(now, tg_last_low_overflow_time(tg) +
|
|
tg->td->throtl_slice))
|
|
return;
|
|
|
|
if (tg->bps[READ][LIMIT_LOW]) {
|
|
bps = tg->last_bytes_disp[READ] * HZ;
|
|
do_div(bps, elapsed_time);
|
|
if (bps >= tg->bps[READ][LIMIT_LOW])
|
|
tg->last_low_overflow_time[READ] = now;
|
|
}
|
|
|
|
if (tg->bps[WRITE][LIMIT_LOW]) {
|
|
bps = tg->last_bytes_disp[WRITE] * HZ;
|
|
do_div(bps, elapsed_time);
|
|
if (bps >= tg->bps[WRITE][LIMIT_LOW])
|
|
tg->last_low_overflow_time[WRITE] = now;
|
|
}
|
|
|
|
if (tg->iops[READ][LIMIT_LOW]) {
|
|
iops = tg->last_io_disp[READ] * HZ / elapsed_time;
|
|
if (iops >= tg->iops[READ][LIMIT_LOW])
|
|
tg->last_low_overflow_time[READ] = now;
|
|
}
|
|
|
|
if (tg->iops[WRITE][LIMIT_LOW]) {
|
|
iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
|
|
if (iops >= tg->iops[WRITE][LIMIT_LOW])
|
|
tg->last_low_overflow_time[WRITE] = now;
|
|
}
|
|
|
|
/*
|
|
* If cgroup is below low limit, consider downgrade and throttle other
|
|
* cgroups
|
|
*/
|
|
if (throtl_hierarchy_can_downgrade(tg))
|
|
throtl_downgrade_state(tg->td, LIMIT_LOW);
|
|
|
|
tg->last_bytes_disp[READ] = 0;
|
|
tg->last_bytes_disp[WRITE] = 0;
|
|
tg->last_io_disp[READ] = 0;
|
|
tg->last_io_disp[WRITE] = 0;
|
|
}
|
|
|
|
static void blk_throtl_update_idletime(struct throtl_grp *tg)
|
|
{
|
|
unsigned long now = ktime_get_ns() >> 10;
|
|
unsigned long last_finish_time = tg->last_finish_time;
|
|
|
|
if (now <= last_finish_time || last_finish_time == 0 ||
|
|
last_finish_time == tg->checked_last_finish_time)
|
|
return;
|
|
|
|
tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
|
|
tg->checked_last_finish_time = last_finish_time;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
static void throtl_update_latency_buckets(struct throtl_data *td)
|
|
{
|
|
struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
|
|
int i, cpu;
|
|
unsigned long last_latency = 0;
|
|
unsigned long latency;
|
|
|
|
if (!blk_queue_nonrot(td->queue))
|
|
return;
|
|
if (time_before(jiffies, td->last_calculate_time + HZ))
|
|
return;
|
|
td->last_calculate_time = jiffies;
|
|
|
|
memset(avg_latency, 0, sizeof(avg_latency));
|
|
for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
|
|
struct latency_bucket *tmp = &td->tmp_buckets[i];
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct latency_bucket *bucket;
|
|
|
|
/* this isn't race free, but ok in practice */
|
|
bucket = per_cpu_ptr(td->latency_buckets, cpu);
|
|
tmp->total_latency += bucket[i].total_latency;
|
|
tmp->samples += bucket[i].samples;
|
|
bucket[i].total_latency = 0;
|
|
bucket[i].samples = 0;
|
|
}
|
|
|
|
if (tmp->samples >= 32) {
|
|
int samples = tmp->samples;
|
|
|
|
latency = tmp->total_latency;
|
|
|
|
tmp->total_latency = 0;
|
|
tmp->samples = 0;
|
|
latency /= samples;
|
|
if (latency == 0)
|
|
continue;
|
|
avg_latency[i].latency = latency;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
|
|
if (!avg_latency[i].latency) {
|
|
if (td->avg_buckets[i].latency < last_latency)
|
|
td->avg_buckets[i].latency = last_latency;
|
|
continue;
|
|
}
|
|
|
|
if (!td->avg_buckets[i].valid)
|
|
latency = avg_latency[i].latency;
|
|
else
|
|
latency = (td->avg_buckets[i].latency * 7 +
|
|
avg_latency[i].latency) >> 3;
|
|
|
|
td->avg_buckets[i].latency = max(latency, last_latency);
|
|
td->avg_buckets[i].valid = true;
|
|
last_latency = td->avg_buckets[i].latency;
|
|
}
|
|
}
|
|
#else
|
|
static inline void throtl_update_latency_buckets(struct throtl_data *td)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
int ret;
|
|
|
|
ret = bio_associate_current(bio);
|
|
if (ret == 0 || ret == -EBUSY)
|
|
bio->bi_cg_private = tg;
|
|
blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
|
|
#else
|
|
bio_associate_current(bio);
|
|
#endif
|
|
}
|
|
|
|
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
|
|
struct bio *bio)
|
|
{
|
|
struct throtl_qnode *qn = NULL;
|
|
struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
|
|
struct throtl_service_queue *sq;
|
|
bool rw = bio_data_dir(bio);
|
|
bool throttled = false;
|
|
struct throtl_data *td = tg->td;
|
|
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
|
|
/* see throtl_charge_bio() */
|
|
if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
|
|
goto out;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
throtl_update_latency_buckets(td);
|
|
|
|
if (unlikely(blk_queue_bypass(q)))
|
|
goto out_unlock;
|
|
|
|
blk_throtl_assoc_bio(tg, bio);
|
|
blk_throtl_update_idletime(tg);
|
|
|
|
sq = &tg->service_queue;
|
|
|
|
again:
|
|
while (true) {
|
|
if (tg->last_low_overflow_time[rw] == 0)
|
|
tg->last_low_overflow_time[rw] = jiffies;
|
|
throtl_downgrade_check(tg);
|
|
throtl_upgrade_check(tg);
|
|
/* throtl is FIFO - if bios are already queued, should queue */
|
|
if (sq->nr_queued[rw])
|
|
break;
|
|
|
|
/* if above limits, break to queue */
|
|
if (!tg_may_dispatch(tg, bio, NULL)) {
|
|
tg->last_low_overflow_time[rw] = jiffies;
|
|
if (throtl_can_upgrade(td, tg)) {
|
|
throtl_upgrade_state(td);
|
|
goto again;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* within limits, let's charge and dispatch directly */
|
|
throtl_charge_bio(tg, bio);
|
|
|
|
/*
|
|
* We need to trim slice even when bios are not being queued
|
|
* otherwise it might happen that a bio is not queued for
|
|
* a long time and slice keeps on extending and trim is not
|
|
* called for a long time. Now if limits are reduced suddenly
|
|
* we take into account all the IO dispatched so far at new
|
|
* low rate and * newly queued IO gets a really long dispatch
|
|
* time.
|
|
*
|
|
* So keep on trimming slice even if bio is not queued.
|
|
*/
|
|
throtl_trim_slice(tg, rw);
|
|
|
|
/*
|
|
* @bio passed through this layer without being throttled.
|
|
* Climb up the ladder. If we''re already at the top, it
|
|
* can be executed directly.
|
|
*/
|
|
qn = &tg->qnode_on_parent[rw];
|
|
sq = sq->parent_sq;
|
|
tg = sq_to_tg(sq);
|
|
if (!tg)
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* out-of-limit, queue to @tg */
|
|
throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
|
|
rw == READ ? 'R' : 'W',
|
|
tg->bytes_disp[rw], bio->bi_iter.bi_size,
|
|
tg_bps_limit(tg, rw),
|
|
tg->io_disp[rw], tg_iops_limit(tg, rw),
|
|
sq->nr_queued[READ], sq->nr_queued[WRITE]);
|
|
|
|
tg->last_low_overflow_time[rw] = jiffies;
|
|
|
|
td->nr_queued[rw]++;
|
|
throtl_add_bio_tg(bio, qn, tg);
|
|
throttled = true;
|
|
|
|
/*
|
|
* Update @tg's dispatch time and force schedule dispatch if @tg
|
|
* was empty before @bio. The forced scheduling isn't likely to
|
|
* cause undue delay as @bio is likely to be dispatched directly if
|
|
* its @tg's disptime is not in the future.
|
|
*/
|
|
if (tg->flags & THROTL_TG_WAS_EMPTY) {
|
|
tg_update_disptime(tg);
|
|
throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(q->queue_lock);
|
|
out:
|
|
/*
|
|
* As multiple blk-throtls may stack in the same issue path, we
|
|
* don't want bios to leave with the flag set. Clear the flag if
|
|
* being issued.
|
|
*/
|
|
if (!throttled)
|
|
bio_clear_flag(bio, BIO_THROTTLED);
|
|
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
if (throttled || !td->track_bio_latency)
|
|
bio->bi_issue_stat.stat |= SKIP_LATENCY;
|
|
#endif
|
|
return throttled;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
static void throtl_track_latency(struct throtl_data *td, sector_t size,
|
|
int op, unsigned long time)
|
|
{
|
|
struct latency_bucket *latency;
|
|
int index;
|
|
|
|
if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
|
|
!blk_queue_nonrot(td->queue))
|
|
return;
|
|
|
|
index = request_bucket_index(size);
|
|
|
|
latency = get_cpu_ptr(td->latency_buckets);
|
|
latency[index].total_latency += time;
|
|
latency[index].samples++;
|
|
put_cpu_ptr(td->latency_buckets);
|
|
}
|
|
|
|
void blk_throtl_stat_add(struct request *rq, u64 time_ns)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct throtl_data *td = q->td;
|
|
|
|
throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
|
|
req_op(rq), time_ns >> 10);
|
|
}
|
|
|
|
void blk_throtl_bio_endio(struct bio *bio)
|
|
{
|
|
struct throtl_grp *tg;
|
|
u64 finish_time_ns;
|
|
unsigned long finish_time;
|
|
unsigned long start_time;
|
|
unsigned long lat;
|
|
|
|
tg = bio->bi_cg_private;
|
|
if (!tg)
|
|
return;
|
|
bio->bi_cg_private = NULL;
|
|
|
|
finish_time_ns = ktime_get_ns();
|
|
tg->last_finish_time = finish_time_ns >> 10;
|
|
|
|
start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
|
|
finish_time = __blk_stat_time(finish_time_ns) >> 10;
|
|
if (!start_time || finish_time <= start_time)
|
|
return;
|
|
|
|
lat = finish_time - start_time;
|
|
/* this is only for bio based driver */
|
|
if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
|
|
throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
|
|
bio_op(bio), lat);
|
|
|
|
if (tg->latency_target) {
|
|
int bucket;
|
|
unsigned int threshold;
|
|
|
|
bucket = request_bucket_index(
|
|
blk_stat_size(&bio->bi_issue_stat));
|
|
threshold = tg->td->avg_buckets[bucket].latency +
|
|
tg->latency_target;
|
|
if (lat > threshold)
|
|
tg->bad_bio_cnt++;
|
|
/*
|
|
* Not race free, could get wrong count, which means cgroups
|
|
* will be throttled
|
|
*/
|
|
tg->bio_cnt++;
|
|
}
|
|
|
|
if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
|
|
tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
|
|
tg->bio_cnt /= 2;
|
|
tg->bad_bio_cnt /= 2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Dispatch all bios from all children tg's queued on @parent_sq. On
|
|
* return, @parent_sq is guaranteed to not have any active children tg's
|
|
* and all bios from previously active tg's are on @parent_sq->bio_lists[].
|
|
*/
|
|
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
|
|
{
|
|
struct throtl_grp *tg;
|
|
|
|
while ((tg = throtl_rb_first(parent_sq))) {
|
|
struct throtl_service_queue *sq = &tg->service_queue;
|
|
struct bio *bio;
|
|
|
|
throtl_dequeue_tg(tg);
|
|
|
|
while ((bio = throtl_peek_queued(&sq->queued[READ])))
|
|
tg_dispatch_one_bio(tg, bio_data_dir(bio));
|
|
while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
|
|
tg_dispatch_one_bio(tg, bio_data_dir(bio));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* blk_throtl_drain - drain throttled bios
|
|
* @q: request_queue to drain throttled bios for
|
|
*
|
|
* Dispatch all currently throttled bios on @q through ->make_request_fn().
|
|
*/
|
|
void blk_throtl_drain(struct request_queue *q)
|
|
__releases(q->queue_lock) __acquires(q->queue_lock)
|
|
{
|
|
struct throtl_data *td = q->td;
|
|
struct blkcg_gq *blkg;
|
|
struct cgroup_subsys_state *pos_css;
|
|
struct bio *bio;
|
|
int rw;
|
|
|
|
queue_lockdep_assert_held(q);
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* Drain each tg while doing post-order walk on the blkg tree, so
|
|
* that all bios are propagated to td->service_queue. It'd be
|
|
* better to walk service_queue tree directly but blkg walk is
|
|
* easier.
|
|
*/
|
|
blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
|
|
tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
|
|
|
|
/* finally, transfer bios from top-level tg's into the td */
|
|
tg_drain_bios(&td->service_queue);
|
|
|
|
rcu_read_unlock();
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
/* all bios now should be in td->service_queue, issue them */
|
|
for (rw = READ; rw <= WRITE; rw++)
|
|
while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
|
|
NULL)))
|
|
generic_make_request(bio);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
}
|
|
|
|
int blk_throtl_init(struct request_queue *q)
|
|
{
|
|
struct throtl_data *td;
|
|
int ret;
|
|
|
|
td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
|
|
if (!td)
|
|
return -ENOMEM;
|
|
td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
|
|
LATENCY_BUCKET_SIZE, __alignof__(u64));
|
|
if (!td->latency_buckets) {
|
|
kfree(td);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
|
|
throtl_service_queue_init(&td->service_queue);
|
|
|
|
q->td = td;
|
|
td->queue = q;
|
|
|
|
td->limit_valid[LIMIT_MAX] = true;
|
|
td->limit_index = LIMIT_MAX;
|
|
td->low_upgrade_time = jiffies;
|
|
td->low_downgrade_time = jiffies;
|
|
|
|
/* activate policy */
|
|
ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
|
|
if (ret) {
|
|
free_percpu(td->latency_buckets);
|
|
kfree(td);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void blk_throtl_exit(struct request_queue *q)
|
|
{
|
|
BUG_ON(!q->td);
|
|
throtl_shutdown_wq(q);
|
|
blkcg_deactivate_policy(q, &blkcg_policy_throtl);
|
|
free_percpu(q->td->latency_buckets);
|
|
kfree(q->td);
|
|
}
|
|
|
|
void blk_throtl_register_queue(struct request_queue *q)
|
|
{
|
|
struct throtl_data *td;
|
|
struct cgroup_subsys_state *pos_css;
|
|
struct blkcg_gq *blkg;
|
|
|
|
td = q->td;
|
|
BUG_ON(!td);
|
|
|
|
if (blk_queue_nonrot(q)) {
|
|
td->throtl_slice = DFL_THROTL_SLICE_SSD;
|
|
td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
|
|
} else {
|
|
td->throtl_slice = DFL_THROTL_SLICE_HD;
|
|
td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
|
|
}
|
|
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
/* if no low limit, use previous default */
|
|
td->throtl_slice = DFL_THROTL_SLICE_HD;
|
|
#endif
|
|
|
|
td->track_bio_latency = !q->mq_ops && !q->request_fn;
|
|
if (!td->track_bio_latency)
|
|
blk_stat_enable_accounting(q);
|
|
|
|
/*
|
|
* some tg are created before queue is fully initialized, eg, nonrot
|
|
* isn't initialized yet
|
|
*/
|
|
rcu_read_lock();
|
|
blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
|
|
tg->idletime_threshold = td->dft_idletime_threshold;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
|
|
{
|
|
if (!q->td)
|
|
return -EINVAL;
|
|
return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
|
|
}
|
|
|
|
ssize_t blk_throtl_sample_time_store(struct request_queue *q,
|
|
const char *page, size_t count)
|
|
{
|
|
unsigned long v;
|
|
unsigned long t;
|
|
|
|
if (!q->td)
|
|
return -EINVAL;
|
|
if (kstrtoul(page, 10, &v))
|
|
return -EINVAL;
|
|
t = msecs_to_jiffies(v);
|
|
if (t == 0 || t > MAX_THROTL_SLICE)
|
|
return -EINVAL;
|
|
q->td->throtl_slice = t;
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
static int __init throtl_init(void)
|
|
{
|
|
kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
|
|
if (!kthrotld_workqueue)
|
|
panic("Failed to create kthrotld\n");
|
|
|
|
return blkcg_policy_register(&blkcg_policy_throtl);
|
|
}
|
|
|
|
module_init(throtl_init);
|