mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
653a39d1f6
When there's an xHCI host power loss after a suspend from memory, the USB core attempts to reset and verify the USB devices that are attached to the system. The xHCI driver has to reallocate those devices, since the hardware lost all knowledge of them during the power loss. When a hub is plugged in, and the host loses power, the xHCI hardware structures are not updated to say the device is a hub. This is usually done in hub_configure() when the USB hub is detected. That function is skipped during a reset and verify by the USB core, since the core restores the old configuration and alternate settings, and the hub driver has no idea this happened. This bug makes the xHCI host controller reject the enumeration of low speed devices under the resumed hub. Therefore, make the USB core re-setup the internal xHCI hub device information by calling update_hub_device() when hub_activate() is called for a hub reset resume. After a host power loss, all devices under the roothub get a reset-resume or a disconnect. This patch should be queued for the 2.6.37 stable tree. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com> Cc: stable@kernel.org |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
class | ||
core | ||
early | ||
gadget | ||
host | ||
image | ||
misc | ||
mon | ||
musb | ||
otg | ||
serial | ||
storage | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.