linux/drivers/net/wireless/ath/ath10k/htt_tx.c
Kalle Valo c4cdf753ed ath10k: move fw_features to struct ath10k_fw_file
Preparation for testmode.c to use ath10k_core_fetch_board_data_api_n().

Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2016-04-20 20:00:25 +03:00

1033 lines
27 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/etherdevice.h>
#include "htt.h"
#include "mac.h"
#include "hif.h"
#include "txrx.h"
#include "debug.h"
static u8 ath10k_htt_tx_txq_calc_size(size_t count)
{
int exp;
int factor;
exp = 0;
factor = count >> 7;
while (factor >= 64 && exp < 4) {
factor >>= 3;
exp++;
}
if (exp == 4)
return 0xff;
if (count > 0)
factor = max(1, factor);
return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
}
static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ath10k *ar = hw->priv;
struct ath10k_sta *arsta = (void *)txq->sta->drv_priv;
struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
unsigned long frame_cnt;
unsigned long byte_cnt;
int idx;
u32 bit;
u16 peer_id;
u8 tid;
u8 count;
lockdep_assert_held(&ar->htt.tx_lock);
if (!ar->htt.tx_q_state.enabled)
return;
if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
return;
if (txq->sta)
peer_id = arsta->peer_id;
else
peer_id = arvif->peer_id;
tid = txq->tid;
bit = BIT(peer_id % 32);
idx = peer_id / 32;
ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
count = ath10k_htt_tx_txq_calc_size(byte_cnt);
if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
peer_id, tid);
return;
}
ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
peer_id, tid, count);
}
static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
{
u32 seq;
size_t size;
lockdep_assert_held(&ar->htt.tx_lock);
if (!ar->htt.tx_q_state.enabled)
return;
if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
return;
seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
seq++;
ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
seq);
size = sizeof(*ar->htt.tx_q_state.vaddr);
dma_sync_single_for_device(ar->dev,
ar->htt.tx_q_state.paddr,
size,
DMA_TO_DEVICE);
}
void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ath10k *ar = hw->priv;
spin_lock_bh(&ar->htt.tx_lock);
__ath10k_htt_tx_txq_recalc(hw, txq);
spin_unlock_bh(&ar->htt.tx_lock);
}
void ath10k_htt_tx_txq_sync(struct ath10k *ar)
{
spin_lock_bh(&ar->htt.tx_lock);
__ath10k_htt_tx_txq_sync(ar);
spin_unlock_bh(&ar->htt.tx_lock);
}
void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
struct ieee80211_txq *txq)
{
struct ath10k *ar = hw->priv;
spin_lock_bh(&ar->htt.tx_lock);
__ath10k_htt_tx_txq_recalc(hw, txq);
__ath10k_htt_tx_txq_sync(ar);
spin_unlock_bh(&ar->htt.tx_lock);
}
void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
{
lockdep_assert_held(&htt->tx_lock);
htt->num_pending_tx--;
if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
}
int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
{
lockdep_assert_held(&htt->tx_lock);
if (htt->num_pending_tx >= htt->max_num_pending_tx)
return -EBUSY;
htt->num_pending_tx++;
if (htt->num_pending_tx == htt->max_num_pending_tx)
ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
return 0;
}
int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
bool is_presp)
{
struct ath10k *ar = htt->ar;
lockdep_assert_held(&htt->tx_lock);
if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
return 0;
if (is_presp &&
ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
return -EBUSY;
htt->num_pending_mgmt_tx++;
return 0;
}
void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
{
lockdep_assert_held(&htt->tx_lock);
if (!htt->ar->hw_params.max_probe_resp_desc_thres)
return;
htt->num_pending_mgmt_tx--;
}
int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
{
struct ath10k *ar = htt->ar;
int ret;
lockdep_assert_held(&htt->tx_lock);
ret = idr_alloc(&htt->pending_tx, skb, 0,
htt->max_num_pending_tx, GFP_ATOMIC);
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
return ret;
}
void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
{
struct ath10k *ar = htt->ar;
lockdep_assert_held(&htt->tx_lock);
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
idr_remove(&htt->pending_tx, msdu_id);
}
static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
{
size_t size;
if (!htt->frag_desc.vaddr)
return;
size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
dma_free_coherent(htt->ar->dev,
size,
htt->frag_desc.vaddr,
htt->frag_desc.paddr);
}
static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
size_t size;
if (!ar->hw_params.continuous_frag_desc)
return 0;
size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
&htt->frag_desc.paddr,
GFP_KERNEL);
if (!htt->frag_desc.vaddr) {
ath10k_err(ar, "failed to alloc fragment desc memory\n");
return -ENOMEM;
}
return 0;
}
static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
size_t size;
if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
ar->running_fw->fw_file.fw_features))
return;
size = sizeof(*htt->tx_q_state.vaddr);
dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
kfree(htt->tx_q_state.vaddr);
}
static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
size_t size;
int ret;
if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
ar->running_fw->fw_file.fw_features))
return 0;
htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
size = sizeof(*htt->tx_q_state.vaddr);
htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
if (!htt->tx_q_state.vaddr)
return -ENOMEM;
htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
size, DMA_TO_DEVICE);
ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
if (ret) {
ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
kfree(htt->tx_q_state.vaddr);
return -EIO;
}
return 0;
}
int ath10k_htt_tx_alloc(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
int ret, size;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
htt->max_num_pending_tx);
spin_lock_init(&htt->tx_lock);
idr_init(&htt->pending_tx);
size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size,
&htt->txbuf.paddr,
GFP_KERNEL);
if (!htt->txbuf.vaddr) {
ath10k_err(ar, "failed to alloc tx buffer\n");
ret = -ENOMEM;
goto free_idr_pending_tx;
}
ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
if (ret) {
ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
goto free_txbuf;
}
ret = ath10k_htt_tx_alloc_txq(htt);
if (ret) {
ath10k_err(ar, "failed to alloc txq: %d\n", ret);
goto free_frag_desc;
}
size = roundup_pow_of_two(htt->max_num_pending_tx);
ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
if (ret) {
ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
goto free_txq;
}
return 0;
free_txq:
ath10k_htt_tx_free_txq(htt);
free_frag_desc:
ath10k_htt_tx_free_cont_frag_desc(htt);
free_txbuf:
size = htt->max_num_pending_tx *
sizeof(struct ath10k_htt_txbuf);
dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
htt->txbuf.paddr);
free_idr_pending_tx:
idr_destroy(&htt->pending_tx);
return ret;
}
static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
{
struct ath10k *ar = ctx;
struct ath10k_htt *htt = &ar->htt;
struct htt_tx_done tx_done = {0};
ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
tx_done.msdu_id = msdu_id;
tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
ath10k_txrx_tx_unref(htt, &tx_done);
return 0;
}
void ath10k_htt_tx_free(struct ath10k_htt *htt)
{
int size;
idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
idr_destroy(&htt->pending_tx);
if (htt->txbuf.vaddr) {
size = htt->max_num_pending_tx *
sizeof(struct ath10k_htt_txbuf);
dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
htt->txbuf.paddr);
}
ath10k_htt_tx_free_txq(htt);
ath10k_htt_tx_free_cont_frag_desc(htt);
WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
kfifo_free(&htt->txdone_fifo);
}
void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
}
void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
}
EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
struct sk_buff *skb;
struct htt_cmd *cmd;
int len = 0;
int ret;
len += sizeof(cmd->hdr);
len += sizeof(cmd->ver_req);
skb = ath10k_htc_alloc_skb(ar, len);
if (!skb)
return -ENOMEM;
skb_put(skb, len);
cmd = (struct htt_cmd *)skb->data;
cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
if (ret) {
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
{
struct ath10k *ar = htt->ar;
struct htt_stats_req *req;
struct sk_buff *skb;
struct htt_cmd *cmd;
int len = 0, ret;
len += sizeof(cmd->hdr);
len += sizeof(cmd->stats_req);
skb = ath10k_htc_alloc_skb(ar, len);
if (!skb)
return -ENOMEM;
skb_put(skb, len);
cmd = (struct htt_cmd *)skb->data;
cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
req = &cmd->stats_req;
memset(req, 0, sizeof(*req));
/* currently we support only max 8 bit masks so no need to worry
* about endian support */
req->upload_types[0] = mask;
req->reset_types[0] = mask;
req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
if (ret) {
ath10k_warn(ar, "failed to send htt type stats request: %d",
ret);
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
struct sk_buff *skb;
struct htt_cmd *cmd;
struct htt_frag_desc_bank_cfg *cfg;
int ret, size;
u8 info;
if (!ar->hw_params.continuous_frag_desc)
return 0;
if (!htt->frag_desc.paddr) {
ath10k_warn(ar, "invalid frag desc memory\n");
return -EINVAL;
}
size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
skb = ath10k_htc_alloc_skb(ar, size);
if (!skb)
return -ENOMEM;
skb_put(skb, size);
cmd = (struct htt_cmd *)skb->data;
cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
info = 0;
info |= SM(htt->tx_q_state.type,
HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
ar->running_fw->fw_file.fw_features))
info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
cfg = &cmd->frag_desc_bank_cfg;
cfg->info = info;
cfg->num_banks = 1;
cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
cfg->bank_id[0].bank_min_id = 0;
cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
1);
cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
if (ret) {
ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
ret);
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
struct sk_buff *skb;
struct htt_cmd *cmd;
struct htt_rx_ring_setup_ring *ring;
const int num_rx_ring = 1;
u16 flags;
u32 fw_idx;
int len;
int ret;
/*
* the HW expects the buffer to be an integral number of 4-byte
* "words"
*/
BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
+ (sizeof(*ring) * num_rx_ring);
skb = ath10k_htc_alloc_skb(ar, len);
if (!skb)
return -ENOMEM;
skb_put(skb, len);
cmd = (struct htt_cmd *)skb->data;
ring = &cmd->rx_setup.rings[0];
cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
cmd->rx_setup.hdr.num_rings = 1;
/* FIXME: do we need all of this? */
flags = 0;
flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
flags |= HTT_RX_RING_FLAGS_PPDU_START;
flags |= HTT_RX_RING_FLAGS_PPDU_END;
flags |= HTT_RX_RING_FLAGS_MPDU_START;
flags |= HTT_RX_RING_FLAGS_MPDU_END;
flags |= HTT_RX_RING_FLAGS_MSDU_START;
flags |= HTT_RX_RING_FLAGS_MSDU_END;
flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
flags |= HTT_RX_RING_FLAGS_CTRL_RX;
flags |= HTT_RX_RING_FLAGS_MGMT_RX;
flags |= HTT_RX_RING_FLAGS_NULL_RX;
flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
ring->fw_idx_shadow_reg_paddr =
__cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
ring->flags = __cpu_to_le16(flags);
ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
#define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
#undef desc_offset
ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
if (ret) {
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
u8 max_subfrms_ampdu,
u8 max_subfrms_amsdu)
{
struct ath10k *ar = htt->ar;
struct htt_aggr_conf *aggr_conf;
struct sk_buff *skb;
struct htt_cmd *cmd;
int len;
int ret;
/* Firmware defaults are: amsdu = 3 and ampdu = 64 */
if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
return -EINVAL;
if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
return -EINVAL;
len = sizeof(cmd->hdr);
len += sizeof(cmd->aggr_conf);
skb = ath10k_htc_alloc_skb(ar, len);
if (!skb)
return -ENOMEM;
skb_put(skb, len);
cmd = (struct htt_cmd *)skb->data;
cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
aggr_conf = &cmd->aggr_conf;
aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
aggr_conf->max_num_amsdu_subframes,
aggr_conf->max_num_ampdu_subframes);
ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
if (ret) {
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
__le32 token,
__le16 fetch_seq_num,
struct htt_tx_fetch_record *records,
size_t num_records)
{
struct sk_buff *skb;
struct htt_cmd *cmd;
const u16 resp_id = 0;
int len = 0;
int ret;
/* Response IDs are echo-ed back only for host driver convienence
* purposes. They aren't used for anything in the driver yet so use 0.
*/
len += sizeof(cmd->hdr);
len += sizeof(cmd->tx_fetch_resp);
len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
skb = ath10k_htc_alloc_skb(ar, len);
if (!skb)
return -ENOMEM;
skb_put(skb, len);
cmd = (struct htt_cmd *)skb->data;
cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
cmd->tx_fetch_resp.token = token;
memcpy(cmd->tx_fetch_resp.records, records,
sizeof(records[0]) * num_records);
ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
if (ret) {
ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
goto err_free_skb;
}
return 0;
err_free_skb:
dev_kfree_skb_any(skb);
return ret;
}
static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
struct ath10k_vif *arvif = (void *)cb->vif->drv_priv;
if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
return ar->scan.vdev_id;
else if (cb->vif)
return arvif->vdev_id;
else if (ar->monitor_started)
return ar->monitor_vdev_id;
else
return 0;
}
static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
{
struct ieee80211_hdr *hdr = (void *)skb->data;
struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
return HTT_DATA_TX_EXT_TID_MGMT;
else if (cb->flags & ATH10K_SKB_F_QOS)
return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
else
return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
}
int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
{
struct ath10k *ar = htt->ar;
struct device *dev = ar->dev;
struct sk_buff *txdesc = NULL;
struct htt_cmd *cmd;
struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
int len = 0;
int msdu_id = -1;
int res;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
len += sizeof(cmd->hdr);
len += sizeof(cmd->mgmt_tx);
spin_lock_bh(&htt->tx_lock);
res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
spin_unlock_bh(&htt->tx_lock);
if (res < 0)
goto err;
msdu_id = res;
if ((ieee80211_is_action(hdr->frame_control) ||
ieee80211_is_deauth(hdr->frame_control) ||
ieee80211_is_disassoc(hdr->frame_control)) &&
ieee80211_has_protected(hdr->frame_control)) {
skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
}
txdesc = ath10k_htc_alloc_skb(ar, len);
if (!txdesc) {
res = -ENOMEM;
goto err_free_msdu_id;
}
skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
DMA_TO_DEVICE);
res = dma_mapping_error(dev, skb_cb->paddr);
if (res) {
res = -EIO;
goto err_free_txdesc;
}
skb_put(txdesc, len);
cmd = (struct htt_cmd *)txdesc->data;
memset(cmd, 0, len);
cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
memcpy(cmd->mgmt_tx.hdr, msdu->data,
min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
if (res)
goto err_unmap_msdu;
return 0;
err_unmap_msdu:
dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
err_free_txdesc:
dev_kfree_skb_any(txdesc);
err_free_msdu_id:
spin_lock_bh(&htt->tx_lock);
ath10k_htt_tx_free_msdu_id(htt, msdu_id);
spin_unlock_bh(&htt->tx_lock);
err:
return res;
}
int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
struct sk_buff *msdu)
{
struct ath10k *ar = htt->ar;
struct device *dev = ar->dev;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
struct ath10k_hif_sg_item sg_items[2];
struct ath10k_htt_txbuf *txbuf;
struct htt_data_tx_desc_frag *frags;
bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
int prefetch_len;
int res;
u8 flags0 = 0;
u16 msdu_id, flags1 = 0;
u16 freq = 0;
u32 frags_paddr = 0;
u32 txbuf_paddr;
struct htt_msdu_ext_desc *ext_desc = NULL;
spin_lock_bh(&htt->tx_lock);
res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
spin_unlock_bh(&htt->tx_lock);
if (res < 0)
goto err;
msdu_id = res;
prefetch_len = min(htt->prefetch_len, msdu->len);
prefetch_len = roundup(prefetch_len, 4);
txbuf = &htt->txbuf.vaddr[msdu_id];
txbuf_paddr = htt->txbuf.paddr +
(sizeof(struct ath10k_htt_txbuf) * msdu_id);
if ((ieee80211_is_action(hdr->frame_control) ||
ieee80211_is_deauth(hdr->frame_control) ||
ieee80211_is_disassoc(hdr->frame_control)) &&
ieee80211_has_protected(hdr->frame_control)) {
skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
} else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
txmode == ATH10K_HW_TXRX_RAW &&
ieee80211_has_protected(hdr->frame_control)) {
skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
}
skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
DMA_TO_DEVICE);
res = dma_mapping_error(dev, skb_cb->paddr);
if (res) {
res = -EIO;
goto err_free_msdu_id;
}
if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
freq = ar->scan.roc_freq;
switch (txmode) {
case ATH10K_HW_TXRX_RAW:
case ATH10K_HW_TXRX_NATIVE_WIFI:
flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
/* pass through */
case ATH10K_HW_TXRX_ETHERNET:
if (ar->hw_params.continuous_frag_desc) {
memset(&htt->frag_desc.vaddr[msdu_id], 0,
sizeof(struct htt_msdu_ext_desc));
frags = (struct htt_data_tx_desc_frag *)
&htt->frag_desc.vaddr[msdu_id].frags;
ext_desc = &htt->frag_desc.vaddr[msdu_id];
frags[0].tword_addr.paddr_lo =
__cpu_to_le32(skb_cb->paddr);
frags[0].tword_addr.paddr_hi = 0;
frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
frags_paddr = htt->frag_desc.paddr +
(sizeof(struct htt_msdu_ext_desc) * msdu_id);
} else {
frags = txbuf->frags;
frags[0].dword_addr.paddr =
__cpu_to_le32(skb_cb->paddr);
frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
frags[1].dword_addr.paddr = 0;
frags[1].dword_addr.len = 0;
frags_paddr = txbuf_paddr;
}
flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
break;
case ATH10K_HW_TXRX_MGMT:
flags0 |= SM(ATH10K_HW_TXRX_MGMT,
HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
frags_paddr = skb_cb->paddr;
break;
}
/* Normally all commands go through HTC which manages tx credits for
* each endpoint and notifies when tx is completed.
*
* HTT endpoint is creditless so there's no need to care about HTC
* flags. In that case it is trivial to fill the HTC header here.
*
* MSDU transmission is considered completed upon HTT event. This
* implies no relevant resources can be freed until after the event is
* received. That's why HTC tx completion handler itself is ignored by
* setting NULL to transfer_context for all sg items.
*
* There is simply no point in pushing HTT TX_FRM through HTC tx path
* as it's a waste of resources. By bypassing HTC it is possible to
* avoid extra memory allocations, compress data structures and thus
* improve performance. */
txbuf->htc_hdr.eid = htt->eid;
txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
sizeof(txbuf->cmd_tx) +
prefetch_len);
txbuf->htc_hdr.flags = 0;
if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
if (msdu->ip_summed == CHECKSUM_PARTIAL &&
!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
if (ar->hw_params.continuous_frag_desc)
ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
}
/* Prevent firmware from sending up tx inspection requests. There's
* nothing ath10k can do with frames requested for inspection so force
* it to simply rely a regular tx completion with discard status.
*/
flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
txbuf->cmd_tx.flags0 = flags0;
txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
if (ath10k_mac_tx_frm_has_freq(ar)) {
txbuf->cmd_tx.offchan_tx.peerid =
__cpu_to_le16(HTT_INVALID_PEERID);
txbuf->cmd_tx.offchan_tx.freq =
__cpu_to_le16(freq);
} else {
txbuf->cmd_tx.peerid =
__cpu_to_le32(HTT_INVALID_PEERID);
}
trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
flags0, flags1, msdu->len, msdu_id, frags_paddr,
(u32)skb_cb->paddr, vdev_id, tid, freq);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
msdu->data, msdu->len);
trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
sg_items[0].transfer_id = 0;
sg_items[0].transfer_context = NULL;
sg_items[0].vaddr = &txbuf->htc_hdr;
sg_items[0].paddr = txbuf_paddr +
sizeof(txbuf->frags);
sg_items[0].len = sizeof(txbuf->htc_hdr) +
sizeof(txbuf->cmd_hdr) +
sizeof(txbuf->cmd_tx);
sg_items[1].transfer_id = 0;
sg_items[1].transfer_context = NULL;
sg_items[1].vaddr = msdu->data;
sg_items[1].paddr = skb_cb->paddr;
sg_items[1].len = prefetch_len;
res = ath10k_hif_tx_sg(htt->ar,
htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
sg_items, ARRAY_SIZE(sg_items));
if (res)
goto err_unmap_msdu;
return 0;
err_unmap_msdu:
dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
err_free_msdu_id:
ath10k_htt_tx_free_msdu_id(htt, msdu_id);
err:
return res;
}