mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-29 23:24:11 +08:00
c33c794828
Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2041 lines
49 KiB
C
2041 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/pagewalk.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/pkeys.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include "internal.h"
|
|
|
|
#define SEQ_PUT_DEC(str, val) \
|
|
seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
|
|
void task_mem(struct seq_file *m, struct mm_struct *mm)
|
|
{
|
|
unsigned long text, lib, swap, anon, file, shmem;
|
|
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
|
|
|
|
anon = get_mm_counter(mm, MM_ANONPAGES);
|
|
file = get_mm_counter(mm, MM_FILEPAGES);
|
|
shmem = get_mm_counter(mm, MM_SHMEMPAGES);
|
|
|
|
/*
|
|
* Note: to minimize their overhead, mm maintains hiwater_vm and
|
|
* hiwater_rss only when about to *lower* total_vm or rss. Any
|
|
* collector of these hiwater stats must therefore get total_vm
|
|
* and rss too, which will usually be the higher. Barriers? not
|
|
* worth the effort, such snapshots can always be inconsistent.
|
|
*/
|
|
hiwater_vm = total_vm = mm->total_vm;
|
|
if (hiwater_vm < mm->hiwater_vm)
|
|
hiwater_vm = mm->hiwater_vm;
|
|
hiwater_rss = total_rss = anon + file + shmem;
|
|
if (hiwater_rss < mm->hiwater_rss)
|
|
hiwater_rss = mm->hiwater_rss;
|
|
|
|
/* split executable areas between text and lib */
|
|
text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
|
|
text = min(text, mm->exec_vm << PAGE_SHIFT);
|
|
lib = (mm->exec_vm << PAGE_SHIFT) - text;
|
|
|
|
swap = get_mm_counter(mm, MM_SWAPENTS);
|
|
SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
|
|
SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
|
|
SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
|
|
SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
|
|
SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
|
|
SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
|
|
SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
|
|
SEQ_PUT_DEC(" kB\nRssFile:\t", file);
|
|
SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
|
|
SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
|
|
SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
|
|
seq_put_decimal_ull_width(m,
|
|
" kB\nVmExe:\t", text >> 10, 8);
|
|
seq_put_decimal_ull_width(m,
|
|
" kB\nVmLib:\t", lib >> 10, 8);
|
|
seq_put_decimal_ull_width(m,
|
|
" kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
|
|
SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
|
|
seq_puts(m, " kB\n");
|
|
hugetlb_report_usage(m, mm);
|
|
}
|
|
#undef SEQ_PUT_DEC
|
|
|
|
unsigned long task_vsize(struct mm_struct *mm)
|
|
{
|
|
return PAGE_SIZE * mm->total_vm;
|
|
}
|
|
|
|
unsigned long task_statm(struct mm_struct *mm,
|
|
unsigned long *shared, unsigned long *text,
|
|
unsigned long *data, unsigned long *resident)
|
|
{
|
|
*shared = get_mm_counter(mm, MM_FILEPAGES) +
|
|
get_mm_counter(mm, MM_SHMEMPAGES);
|
|
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
|
|
>> PAGE_SHIFT;
|
|
*data = mm->data_vm + mm->stack_vm;
|
|
*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
|
|
return mm->total_vm;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Save get_task_policy() for show_numa_map().
|
|
*/
|
|
static void hold_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
struct task_struct *task = priv->task;
|
|
|
|
task_lock(task);
|
|
priv->task_mempolicy = get_task_policy(task);
|
|
mpol_get(priv->task_mempolicy);
|
|
task_unlock(task);
|
|
}
|
|
static void release_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
mpol_put(priv->task_mempolicy);
|
|
}
|
|
#else
|
|
static void hold_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
}
|
|
static void release_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
|
|
loff_t *ppos)
|
|
{
|
|
struct vm_area_struct *vma = vma_next(&priv->iter);
|
|
|
|
if (vma) {
|
|
*ppos = vma->vm_start;
|
|
} else {
|
|
*ppos = -2UL;
|
|
vma = get_gate_vma(priv->mm);
|
|
}
|
|
|
|
return vma;
|
|
}
|
|
|
|
static void *m_start(struct seq_file *m, loff_t *ppos)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
unsigned long last_addr = *ppos;
|
|
struct mm_struct *mm;
|
|
|
|
/* See m_next(). Zero at the start or after lseek. */
|
|
if (last_addr == -1UL)
|
|
return NULL;
|
|
|
|
priv->task = get_proc_task(priv->inode);
|
|
if (!priv->task)
|
|
return ERR_PTR(-ESRCH);
|
|
|
|
mm = priv->mm;
|
|
if (!mm || !mmget_not_zero(mm)) {
|
|
put_task_struct(priv->task);
|
|
priv->task = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
if (mmap_read_lock_killable(mm)) {
|
|
mmput(mm);
|
|
put_task_struct(priv->task);
|
|
priv->task = NULL;
|
|
return ERR_PTR(-EINTR);
|
|
}
|
|
|
|
vma_iter_init(&priv->iter, mm, last_addr);
|
|
hold_task_mempolicy(priv);
|
|
if (last_addr == -2UL)
|
|
return get_gate_vma(mm);
|
|
|
|
return proc_get_vma(priv, ppos);
|
|
}
|
|
|
|
static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
|
|
{
|
|
if (*ppos == -2UL) {
|
|
*ppos = -1UL;
|
|
return NULL;
|
|
}
|
|
return proc_get_vma(m->private, ppos);
|
|
}
|
|
|
|
static void m_stop(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct mm_struct *mm = priv->mm;
|
|
|
|
if (!priv->task)
|
|
return;
|
|
|
|
release_task_mempolicy(priv);
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
put_task_struct(priv->task);
|
|
priv->task = NULL;
|
|
}
|
|
|
|
static int proc_maps_open(struct inode *inode, struct file *file,
|
|
const struct seq_operations *ops, int psize)
|
|
{
|
|
struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
|
|
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
priv->inode = inode;
|
|
priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
|
|
if (IS_ERR(priv->mm)) {
|
|
int err = PTR_ERR(priv->mm);
|
|
|
|
seq_release_private(inode, file);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int proc_map_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq = file->private_data;
|
|
struct proc_maps_private *priv = seq->private;
|
|
|
|
if (priv->mm)
|
|
mmdrop(priv->mm);
|
|
|
|
return seq_release_private(inode, file);
|
|
}
|
|
|
|
static int do_maps_open(struct inode *inode, struct file *file,
|
|
const struct seq_operations *ops)
|
|
{
|
|
return proc_maps_open(inode, file, ops,
|
|
sizeof(struct proc_maps_private));
|
|
}
|
|
|
|
/*
|
|
* Indicate if the VMA is a stack for the given task; for
|
|
* /proc/PID/maps that is the stack of the main task.
|
|
*/
|
|
static int is_stack(struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* We make no effort to guess what a given thread considers to be
|
|
* its "stack". It's not even well-defined for programs written
|
|
* languages like Go.
|
|
*/
|
|
return vma->vm_start <= vma->vm_mm->start_stack &&
|
|
vma->vm_end >= vma->vm_mm->start_stack;
|
|
}
|
|
|
|
static void show_vma_header_prefix(struct seq_file *m,
|
|
unsigned long start, unsigned long end,
|
|
vm_flags_t flags, unsigned long long pgoff,
|
|
dev_t dev, unsigned long ino)
|
|
{
|
|
seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
|
|
seq_put_hex_ll(m, NULL, start, 8);
|
|
seq_put_hex_ll(m, "-", end, 8);
|
|
seq_putc(m, ' ');
|
|
seq_putc(m, flags & VM_READ ? 'r' : '-');
|
|
seq_putc(m, flags & VM_WRITE ? 'w' : '-');
|
|
seq_putc(m, flags & VM_EXEC ? 'x' : '-');
|
|
seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
|
|
seq_put_hex_ll(m, " ", pgoff, 8);
|
|
seq_put_hex_ll(m, " ", MAJOR(dev), 2);
|
|
seq_put_hex_ll(m, ":", MINOR(dev), 2);
|
|
seq_put_decimal_ull(m, " ", ino);
|
|
seq_putc(m, ' ');
|
|
}
|
|
|
|
static void
|
|
show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
|
|
{
|
|
struct anon_vma_name *anon_name = NULL;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct file *file = vma->vm_file;
|
|
vm_flags_t flags = vma->vm_flags;
|
|
unsigned long ino = 0;
|
|
unsigned long long pgoff = 0;
|
|
unsigned long start, end;
|
|
dev_t dev = 0;
|
|
const char *name = NULL;
|
|
|
|
if (file) {
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
dev = inode->i_sb->s_dev;
|
|
ino = inode->i_ino;
|
|
pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
|
|
}
|
|
|
|
start = vma->vm_start;
|
|
end = vma->vm_end;
|
|
show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
|
|
if (mm)
|
|
anon_name = anon_vma_name(vma);
|
|
|
|
/*
|
|
* Print the dentry name for named mappings, and a
|
|
* special [heap] marker for the heap:
|
|
*/
|
|
if (file) {
|
|
seq_pad(m, ' ');
|
|
/*
|
|
* If user named this anon shared memory via
|
|
* prctl(PR_SET_VMA ..., use the provided name.
|
|
*/
|
|
if (anon_name)
|
|
seq_printf(m, "[anon_shmem:%s]", anon_name->name);
|
|
else
|
|
seq_file_path(m, file, "\n");
|
|
goto done;
|
|
}
|
|
|
|
if (vma->vm_ops && vma->vm_ops->name) {
|
|
name = vma->vm_ops->name(vma);
|
|
if (name)
|
|
goto done;
|
|
}
|
|
|
|
name = arch_vma_name(vma);
|
|
if (!name) {
|
|
if (!mm) {
|
|
name = "[vdso]";
|
|
goto done;
|
|
}
|
|
|
|
if (vma->vm_start <= mm->brk &&
|
|
vma->vm_end >= mm->start_brk) {
|
|
name = "[heap]";
|
|
goto done;
|
|
}
|
|
|
|
if (is_stack(vma)) {
|
|
name = "[stack]";
|
|
goto done;
|
|
}
|
|
|
|
if (anon_name) {
|
|
seq_pad(m, ' ');
|
|
seq_printf(m, "[anon:%s]", anon_name->name);
|
|
}
|
|
}
|
|
|
|
done:
|
|
if (name) {
|
|
seq_pad(m, ' ');
|
|
seq_puts(m, name);
|
|
}
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
static int show_map(struct seq_file *m, void *v)
|
|
{
|
|
show_map_vma(m, v);
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_map
|
|
};
|
|
|
|
static int pid_maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_pid_maps_op);
|
|
}
|
|
|
|
const struct file_operations proc_pid_maps_operations = {
|
|
.open = pid_maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = proc_map_release,
|
|
};
|
|
|
|
/*
|
|
* Proportional Set Size(PSS): my share of RSS.
|
|
*
|
|
* PSS of a process is the count of pages it has in memory, where each
|
|
* page is divided by the number of processes sharing it. So if a
|
|
* process has 1000 pages all to itself, and 1000 shared with one other
|
|
* process, its PSS will be 1500.
|
|
*
|
|
* To keep (accumulated) division errors low, we adopt a 64bit
|
|
* fixed-point pss counter to minimize division errors. So (pss >>
|
|
* PSS_SHIFT) would be the real byte count.
|
|
*
|
|
* A shift of 12 before division means (assuming 4K page size):
|
|
* - 1M 3-user-pages add up to 8KB errors;
|
|
* - supports mapcount up to 2^24, or 16M;
|
|
* - supports PSS up to 2^52 bytes, or 4PB.
|
|
*/
|
|
#define PSS_SHIFT 12
|
|
|
|
#ifdef CONFIG_PROC_PAGE_MONITOR
|
|
struct mem_size_stats {
|
|
unsigned long resident;
|
|
unsigned long shared_clean;
|
|
unsigned long shared_dirty;
|
|
unsigned long private_clean;
|
|
unsigned long private_dirty;
|
|
unsigned long referenced;
|
|
unsigned long anonymous;
|
|
unsigned long lazyfree;
|
|
unsigned long anonymous_thp;
|
|
unsigned long shmem_thp;
|
|
unsigned long file_thp;
|
|
unsigned long swap;
|
|
unsigned long shared_hugetlb;
|
|
unsigned long private_hugetlb;
|
|
u64 pss;
|
|
u64 pss_anon;
|
|
u64 pss_file;
|
|
u64 pss_shmem;
|
|
u64 pss_dirty;
|
|
u64 pss_locked;
|
|
u64 swap_pss;
|
|
};
|
|
|
|
static void smaps_page_accumulate(struct mem_size_stats *mss,
|
|
struct page *page, unsigned long size, unsigned long pss,
|
|
bool dirty, bool locked, bool private)
|
|
{
|
|
mss->pss += pss;
|
|
|
|
if (PageAnon(page))
|
|
mss->pss_anon += pss;
|
|
else if (PageSwapBacked(page))
|
|
mss->pss_shmem += pss;
|
|
else
|
|
mss->pss_file += pss;
|
|
|
|
if (locked)
|
|
mss->pss_locked += pss;
|
|
|
|
if (dirty || PageDirty(page)) {
|
|
mss->pss_dirty += pss;
|
|
if (private)
|
|
mss->private_dirty += size;
|
|
else
|
|
mss->shared_dirty += size;
|
|
} else {
|
|
if (private)
|
|
mss->private_clean += size;
|
|
else
|
|
mss->shared_clean += size;
|
|
}
|
|
}
|
|
|
|
static void smaps_account(struct mem_size_stats *mss, struct page *page,
|
|
bool compound, bool young, bool dirty, bool locked,
|
|
bool migration)
|
|
{
|
|
int i, nr = compound ? compound_nr(page) : 1;
|
|
unsigned long size = nr * PAGE_SIZE;
|
|
|
|
/*
|
|
* First accumulate quantities that depend only on |size| and the type
|
|
* of the compound page.
|
|
*/
|
|
if (PageAnon(page)) {
|
|
mss->anonymous += size;
|
|
if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
|
|
mss->lazyfree += size;
|
|
}
|
|
|
|
mss->resident += size;
|
|
/* Accumulate the size in pages that have been accessed. */
|
|
if (young || page_is_young(page) || PageReferenced(page))
|
|
mss->referenced += size;
|
|
|
|
/*
|
|
* Then accumulate quantities that may depend on sharing, or that may
|
|
* differ page-by-page.
|
|
*
|
|
* page_count(page) == 1 guarantees the page is mapped exactly once.
|
|
* If any subpage of the compound page mapped with PTE it would elevate
|
|
* page_count().
|
|
*
|
|
* The page_mapcount() is called to get a snapshot of the mapcount.
|
|
* Without holding the page lock this snapshot can be slightly wrong as
|
|
* we cannot always read the mapcount atomically. It is not safe to
|
|
* call page_mapcount() even with PTL held if the page is not mapped,
|
|
* especially for migration entries. Treat regular migration entries
|
|
* as mapcount == 1.
|
|
*/
|
|
if ((page_count(page) == 1) || migration) {
|
|
smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
|
|
locked, true);
|
|
return;
|
|
}
|
|
for (i = 0; i < nr; i++, page++) {
|
|
int mapcount = page_mapcount(page);
|
|
unsigned long pss = PAGE_SIZE << PSS_SHIFT;
|
|
if (mapcount >= 2)
|
|
pss /= mapcount;
|
|
smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
|
|
mapcount < 2);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SHMEM
|
|
static int smaps_pte_hole(unsigned long addr, unsigned long end,
|
|
__always_unused int depth, struct mm_walk *walk)
|
|
{
|
|
struct mem_size_stats *mss = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
|
|
mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
|
|
linear_page_index(vma, addr),
|
|
linear_page_index(vma, end));
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define smaps_pte_hole NULL
|
|
#endif /* CONFIG_SHMEM */
|
|
|
|
static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
|
|
{
|
|
#ifdef CONFIG_SHMEM
|
|
if (walk->ops->pte_hole) {
|
|
/* depth is not used */
|
|
smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void smaps_pte_entry(pte_t *pte, unsigned long addr,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct mem_size_stats *mss = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
bool locked = !!(vma->vm_flags & VM_LOCKED);
|
|
struct page *page = NULL;
|
|
bool migration = false, young = false, dirty = false;
|
|
pte_t ptent = ptep_get(pte);
|
|
|
|
if (pte_present(ptent)) {
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
young = pte_young(ptent);
|
|
dirty = pte_dirty(ptent);
|
|
} else if (is_swap_pte(ptent)) {
|
|
swp_entry_t swpent = pte_to_swp_entry(ptent);
|
|
|
|
if (!non_swap_entry(swpent)) {
|
|
int mapcount;
|
|
|
|
mss->swap += PAGE_SIZE;
|
|
mapcount = swp_swapcount(swpent);
|
|
if (mapcount >= 2) {
|
|
u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
|
|
|
|
do_div(pss_delta, mapcount);
|
|
mss->swap_pss += pss_delta;
|
|
} else {
|
|
mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
|
|
}
|
|
} else if (is_pfn_swap_entry(swpent)) {
|
|
if (is_migration_entry(swpent))
|
|
migration = true;
|
|
page = pfn_swap_entry_to_page(swpent);
|
|
}
|
|
} else {
|
|
smaps_pte_hole_lookup(addr, walk);
|
|
return;
|
|
}
|
|
|
|
if (!page)
|
|
return;
|
|
|
|
smaps_account(mss, page, false, young, dirty, locked, migration);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct mem_size_stats *mss = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
bool locked = !!(vma->vm_flags & VM_LOCKED);
|
|
struct page *page = NULL;
|
|
bool migration = false;
|
|
|
|
if (pmd_present(*pmd)) {
|
|
/* FOLL_DUMP will return -EFAULT on huge zero page */
|
|
page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
|
|
} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
|
|
swp_entry_t entry = pmd_to_swp_entry(*pmd);
|
|
|
|
if (is_migration_entry(entry)) {
|
|
migration = true;
|
|
page = pfn_swap_entry_to_page(entry);
|
|
}
|
|
}
|
|
if (IS_ERR_OR_NULL(page))
|
|
return;
|
|
if (PageAnon(page))
|
|
mss->anonymous_thp += HPAGE_PMD_SIZE;
|
|
else if (PageSwapBacked(page))
|
|
mss->shmem_thp += HPAGE_PMD_SIZE;
|
|
else if (is_zone_device_page(page))
|
|
/* pass */;
|
|
else
|
|
mss->file_thp += HPAGE_PMD_SIZE;
|
|
|
|
smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
|
|
locked, migration);
|
|
}
|
|
#else
|
|
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
struct mm_walk *walk)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma = walk->vma;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (ptl) {
|
|
smaps_pmd_entry(pmd, addr, walk);
|
|
spin_unlock(ptl);
|
|
goto out;
|
|
}
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
if (!pte) {
|
|
walk->action = ACTION_AGAIN;
|
|
return 0;
|
|
}
|
|
for (; addr != end; pte++, addr += PAGE_SIZE)
|
|
smaps_pte_entry(pte, addr, walk);
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
out:
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* Don't forget to update Documentation/ on changes.
|
|
*/
|
|
static const char mnemonics[BITS_PER_LONG][2] = {
|
|
/*
|
|
* In case if we meet a flag we don't know about.
|
|
*/
|
|
[0 ... (BITS_PER_LONG-1)] = "??",
|
|
|
|
[ilog2(VM_READ)] = "rd",
|
|
[ilog2(VM_WRITE)] = "wr",
|
|
[ilog2(VM_EXEC)] = "ex",
|
|
[ilog2(VM_SHARED)] = "sh",
|
|
[ilog2(VM_MAYREAD)] = "mr",
|
|
[ilog2(VM_MAYWRITE)] = "mw",
|
|
[ilog2(VM_MAYEXEC)] = "me",
|
|
[ilog2(VM_MAYSHARE)] = "ms",
|
|
[ilog2(VM_GROWSDOWN)] = "gd",
|
|
[ilog2(VM_PFNMAP)] = "pf",
|
|
[ilog2(VM_LOCKED)] = "lo",
|
|
[ilog2(VM_IO)] = "io",
|
|
[ilog2(VM_SEQ_READ)] = "sr",
|
|
[ilog2(VM_RAND_READ)] = "rr",
|
|
[ilog2(VM_DONTCOPY)] = "dc",
|
|
[ilog2(VM_DONTEXPAND)] = "de",
|
|
[ilog2(VM_LOCKONFAULT)] = "lf",
|
|
[ilog2(VM_ACCOUNT)] = "ac",
|
|
[ilog2(VM_NORESERVE)] = "nr",
|
|
[ilog2(VM_HUGETLB)] = "ht",
|
|
[ilog2(VM_SYNC)] = "sf",
|
|
[ilog2(VM_ARCH_1)] = "ar",
|
|
[ilog2(VM_WIPEONFORK)] = "wf",
|
|
[ilog2(VM_DONTDUMP)] = "dd",
|
|
#ifdef CONFIG_ARM64_BTI
|
|
[ilog2(VM_ARM64_BTI)] = "bt",
|
|
#endif
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
[ilog2(VM_SOFTDIRTY)] = "sd",
|
|
#endif
|
|
[ilog2(VM_MIXEDMAP)] = "mm",
|
|
[ilog2(VM_HUGEPAGE)] = "hg",
|
|
[ilog2(VM_NOHUGEPAGE)] = "nh",
|
|
[ilog2(VM_MERGEABLE)] = "mg",
|
|
[ilog2(VM_UFFD_MISSING)]= "um",
|
|
[ilog2(VM_UFFD_WP)] = "uw",
|
|
#ifdef CONFIG_ARM64_MTE
|
|
[ilog2(VM_MTE)] = "mt",
|
|
[ilog2(VM_MTE_ALLOWED)] = "",
|
|
#endif
|
|
#ifdef CONFIG_ARCH_HAS_PKEYS
|
|
/* These come out via ProtectionKey: */
|
|
[ilog2(VM_PKEY_BIT0)] = "",
|
|
[ilog2(VM_PKEY_BIT1)] = "",
|
|
[ilog2(VM_PKEY_BIT2)] = "",
|
|
[ilog2(VM_PKEY_BIT3)] = "",
|
|
#if VM_PKEY_BIT4
|
|
[ilog2(VM_PKEY_BIT4)] = "",
|
|
#endif
|
|
#endif /* CONFIG_ARCH_HAS_PKEYS */
|
|
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
|
|
[ilog2(VM_UFFD_MINOR)] = "ui",
|
|
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
|
|
};
|
|
size_t i;
|
|
|
|
seq_puts(m, "VmFlags: ");
|
|
for (i = 0; i < BITS_PER_LONG; i++) {
|
|
if (!mnemonics[i][0])
|
|
continue;
|
|
if (vma->vm_flags & (1UL << i)) {
|
|
seq_putc(m, mnemonics[i][0]);
|
|
seq_putc(m, mnemonics[i][1]);
|
|
seq_putc(m, ' ');
|
|
}
|
|
}
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct mem_size_stats *mss = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
struct page *page = NULL;
|
|
pte_t ptent = ptep_get(pte);
|
|
|
|
if (pte_present(ptent)) {
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
} else if (is_swap_pte(ptent)) {
|
|
swp_entry_t swpent = pte_to_swp_entry(ptent);
|
|
|
|
if (is_pfn_swap_entry(swpent))
|
|
page = pfn_swap_entry_to_page(swpent);
|
|
}
|
|
if (page) {
|
|
if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
|
|
mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
|
|
else
|
|
mss->private_hugetlb += huge_page_size(hstate_vma(vma));
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
#define smaps_hugetlb_range NULL
|
|
#endif /* HUGETLB_PAGE */
|
|
|
|
static const struct mm_walk_ops smaps_walk_ops = {
|
|
.pmd_entry = smaps_pte_range,
|
|
.hugetlb_entry = smaps_hugetlb_range,
|
|
};
|
|
|
|
static const struct mm_walk_ops smaps_shmem_walk_ops = {
|
|
.pmd_entry = smaps_pte_range,
|
|
.hugetlb_entry = smaps_hugetlb_range,
|
|
.pte_hole = smaps_pte_hole,
|
|
};
|
|
|
|
/*
|
|
* Gather mem stats from @vma with the indicated beginning
|
|
* address @start, and keep them in @mss.
|
|
*
|
|
* Use vm_start of @vma as the beginning address if @start is 0.
|
|
*/
|
|
static void smap_gather_stats(struct vm_area_struct *vma,
|
|
struct mem_size_stats *mss, unsigned long start)
|
|
{
|
|
const struct mm_walk_ops *ops = &smaps_walk_ops;
|
|
|
|
/* Invalid start */
|
|
if (start >= vma->vm_end)
|
|
return;
|
|
|
|
if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
|
|
/*
|
|
* For shared or readonly shmem mappings we know that all
|
|
* swapped out pages belong to the shmem object, and we can
|
|
* obtain the swap value much more efficiently. For private
|
|
* writable mappings, we might have COW pages that are
|
|
* not affected by the parent swapped out pages of the shmem
|
|
* object, so we have to distinguish them during the page walk.
|
|
* Unless we know that the shmem object (or the part mapped by
|
|
* our VMA) has no swapped out pages at all.
|
|
*/
|
|
unsigned long shmem_swapped = shmem_swap_usage(vma);
|
|
|
|
if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
|
|
!(vma->vm_flags & VM_WRITE))) {
|
|
mss->swap += shmem_swapped;
|
|
} else {
|
|
ops = &smaps_shmem_walk_ops;
|
|
}
|
|
}
|
|
|
|
/* mmap_lock is held in m_start */
|
|
if (!start)
|
|
walk_page_vma(vma, ops, mss);
|
|
else
|
|
walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
|
|
}
|
|
|
|
#define SEQ_PUT_DEC(str, val) \
|
|
seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
|
|
|
|
/* Show the contents common for smaps and smaps_rollup */
|
|
static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
|
|
bool rollup_mode)
|
|
{
|
|
SEQ_PUT_DEC("Rss: ", mss->resident);
|
|
SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
|
|
SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
|
|
if (rollup_mode) {
|
|
/*
|
|
* These are meaningful only for smaps_rollup, otherwise two of
|
|
* them are zero, and the other one is the same as Pss.
|
|
*/
|
|
SEQ_PUT_DEC(" kB\nPss_Anon: ",
|
|
mss->pss_anon >> PSS_SHIFT);
|
|
SEQ_PUT_DEC(" kB\nPss_File: ",
|
|
mss->pss_file >> PSS_SHIFT);
|
|
SEQ_PUT_DEC(" kB\nPss_Shmem: ",
|
|
mss->pss_shmem >> PSS_SHIFT);
|
|
}
|
|
SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
|
|
SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
|
|
SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
|
|
SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
|
|
SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
|
|
SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
|
|
SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
|
|
SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
|
|
SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
|
|
SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
|
|
SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
|
|
seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
|
|
mss->private_hugetlb >> 10, 7);
|
|
SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
|
|
SEQ_PUT_DEC(" kB\nSwapPss: ",
|
|
mss->swap_pss >> PSS_SHIFT);
|
|
SEQ_PUT_DEC(" kB\nLocked: ",
|
|
mss->pss_locked >> PSS_SHIFT);
|
|
seq_puts(m, " kB\n");
|
|
}
|
|
|
|
static int show_smap(struct seq_file *m, void *v)
|
|
{
|
|
struct vm_area_struct *vma = v;
|
|
struct mem_size_stats mss;
|
|
|
|
memset(&mss, 0, sizeof(mss));
|
|
|
|
smap_gather_stats(vma, &mss, 0);
|
|
|
|
show_map_vma(m, vma);
|
|
|
|
SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
|
|
SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
|
|
SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
|
|
seq_puts(m, " kB\n");
|
|
|
|
__show_smap(m, &mss, false);
|
|
|
|
seq_printf(m, "THPeligible: %d\n",
|
|
hugepage_vma_check(vma, vma->vm_flags, true, false, true));
|
|
|
|
if (arch_pkeys_enabled())
|
|
seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
|
|
show_smap_vma_flags(m, vma);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int show_smaps_rollup(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct mem_size_stats mss;
|
|
struct mm_struct *mm = priv->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long vma_start = 0, last_vma_end = 0;
|
|
int ret = 0;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
priv->task = get_proc_task(priv->inode);
|
|
if (!priv->task)
|
|
return -ESRCH;
|
|
|
|
if (!mm || !mmget_not_zero(mm)) {
|
|
ret = -ESRCH;
|
|
goto out_put_task;
|
|
}
|
|
|
|
memset(&mss, 0, sizeof(mss));
|
|
|
|
ret = mmap_read_lock_killable(mm);
|
|
if (ret)
|
|
goto out_put_mm;
|
|
|
|
hold_task_mempolicy(priv);
|
|
vma = vma_next(&vmi);
|
|
|
|
if (unlikely(!vma))
|
|
goto empty_set;
|
|
|
|
vma_start = vma->vm_start;
|
|
do {
|
|
smap_gather_stats(vma, &mss, 0);
|
|
last_vma_end = vma->vm_end;
|
|
|
|
/*
|
|
* Release mmap_lock temporarily if someone wants to
|
|
* access it for write request.
|
|
*/
|
|
if (mmap_lock_is_contended(mm)) {
|
|
vma_iter_invalidate(&vmi);
|
|
mmap_read_unlock(mm);
|
|
ret = mmap_read_lock_killable(mm);
|
|
if (ret) {
|
|
release_task_mempolicy(priv);
|
|
goto out_put_mm;
|
|
}
|
|
|
|
/*
|
|
* After dropping the lock, there are four cases to
|
|
* consider. See the following example for explanation.
|
|
*
|
|
* +------+------+-----------+
|
|
* | VMA1 | VMA2 | VMA3 |
|
|
* +------+------+-----------+
|
|
* | | | |
|
|
* 4k 8k 16k 400k
|
|
*
|
|
* Suppose we drop the lock after reading VMA2 due to
|
|
* contention, then we get:
|
|
*
|
|
* last_vma_end = 16k
|
|
*
|
|
* 1) VMA2 is freed, but VMA3 exists:
|
|
*
|
|
* vma_next(vmi) will return VMA3.
|
|
* In this case, just continue from VMA3.
|
|
*
|
|
* 2) VMA2 still exists:
|
|
*
|
|
* vma_next(vmi) will return VMA3.
|
|
* In this case, just continue from VMA3.
|
|
*
|
|
* 3) No more VMAs can be found:
|
|
*
|
|
* vma_next(vmi) will return NULL.
|
|
* No more things to do, just break.
|
|
*
|
|
* 4) (last_vma_end - 1) is the middle of a vma (VMA'):
|
|
*
|
|
* vma_next(vmi) will return VMA' whose range
|
|
* contains last_vma_end.
|
|
* Iterate VMA' from last_vma_end.
|
|
*/
|
|
vma = vma_next(&vmi);
|
|
/* Case 3 above */
|
|
if (!vma)
|
|
break;
|
|
|
|
/* Case 1 and 2 above */
|
|
if (vma->vm_start >= last_vma_end)
|
|
continue;
|
|
|
|
/* Case 4 above */
|
|
if (vma->vm_end > last_vma_end)
|
|
smap_gather_stats(vma, &mss, last_vma_end);
|
|
}
|
|
} for_each_vma(vmi, vma);
|
|
|
|
empty_set:
|
|
show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
|
|
seq_pad(m, ' ');
|
|
seq_puts(m, "[rollup]\n");
|
|
|
|
__show_smap(m, &mss, true);
|
|
|
|
release_task_mempolicy(priv);
|
|
mmap_read_unlock(mm);
|
|
|
|
out_put_mm:
|
|
mmput(mm);
|
|
out_put_task:
|
|
put_task_struct(priv->task);
|
|
priv->task = NULL;
|
|
|
|
return ret;
|
|
}
|
|
#undef SEQ_PUT_DEC
|
|
|
|
static const struct seq_operations proc_pid_smaps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_smap
|
|
};
|
|
|
|
static int pid_smaps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_pid_smaps_op);
|
|
}
|
|
|
|
static int smaps_rollup_open(struct inode *inode, struct file *file)
|
|
{
|
|
int ret;
|
|
struct proc_maps_private *priv;
|
|
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
ret = single_open(file, show_smaps_rollup, priv);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
priv->inode = inode;
|
|
priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
|
|
if (IS_ERR(priv->mm)) {
|
|
ret = PTR_ERR(priv->mm);
|
|
|
|
single_release(inode, file);
|
|
goto out_free;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
kfree(priv);
|
|
return ret;
|
|
}
|
|
|
|
static int smaps_rollup_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq = file->private_data;
|
|
struct proc_maps_private *priv = seq->private;
|
|
|
|
if (priv->mm)
|
|
mmdrop(priv->mm);
|
|
|
|
kfree(priv);
|
|
return single_release(inode, file);
|
|
}
|
|
|
|
const struct file_operations proc_pid_smaps_operations = {
|
|
.open = pid_smaps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = proc_map_release,
|
|
};
|
|
|
|
const struct file_operations proc_pid_smaps_rollup_operations = {
|
|
.open = smaps_rollup_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = smaps_rollup_release,
|
|
};
|
|
|
|
enum clear_refs_types {
|
|
CLEAR_REFS_ALL = 1,
|
|
CLEAR_REFS_ANON,
|
|
CLEAR_REFS_MAPPED,
|
|
CLEAR_REFS_SOFT_DIRTY,
|
|
CLEAR_REFS_MM_HIWATER_RSS,
|
|
CLEAR_REFS_LAST,
|
|
};
|
|
|
|
struct clear_refs_private {
|
|
enum clear_refs_types type;
|
|
};
|
|
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
|
|
static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
|
{
|
|
struct page *page;
|
|
|
|
if (!pte_write(pte))
|
|
return false;
|
|
if (!is_cow_mapping(vma->vm_flags))
|
|
return false;
|
|
if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
|
|
return false;
|
|
page = vm_normal_page(vma, addr, pte);
|
|
if (!page)
|
|
return false;
|
|
return page_maybe_dma_pinned(page);
|
|
}
|
|
|
|
static inline void clear_soft_dirty(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *pte)
|
|
{
|
|
/*
|
|
* The soft-dirty tracker uses #PF-s to catch writes
|
|
* to pages, so write-protect the pte as well. See the
|
|
* Documentation/admin-guide/mm/soft-dirty.rst for full description
|
|
* of how soft-dirty works.
|
|
*/
|
|
pte_t ptent = ptep_get(pte);
|
|
|
|
if (pte_present(ptent)) {
|
|
pte_t old_pte;
|
|
|
|
if (pte_is_pinned(vma, addr, ptent))
|
|
return;
|
|
old_pte = ptep_modify_prot_start(vma, addr, pte);
|
|
ptent = pte_wrprotect(old_pte);
|
|
ptent = pte_clear_soft_dirty(ptent);
|
|
ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
|
|
} else if (is_swap_pte(ptent)) {
|
|
ptent = pte_swp_clear_soft_dirty(ptent);
|
|
set_pte_at(vma->vm_mm, addr, pte, ptent);
|
|
}
|
|
}
|
|
#else
|
|
static inline void clear_soft_dirty(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *pte)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t old, pmd = *pmdp;
|
|
|
|
if (pmd_present(pmd)) {
|
|
/* See comment in change_huge_pmd() */
|
|
old = pmdp_invalidate(vma, addr, pmdp);
|
|
if (pmd_dirty(old))
|
|
pmd = pmd_mkdirty(pmd);
|
|
if (pmd_young(old))
|
|
pmd = pmd_mkyoung(pmd);
|
|
|
|
pmd = pmd_wrprotect(pmd);
|
|
pmd = pmd_clear_soft_dirty(pmd);
|
|
|
|
set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
|
|
} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
|
|
pmd = pmd_swp_clear_soft_dirty(pmd);
|
|
set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
|
|
}
|
|
}
|
|
#else
|
|
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
struct clear_refs_private *cp = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
pte_t *pte, ptent;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (ptl) {
|
|
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
|
|
clear_soft_dirty_pmd(vma, addr, pmd);
|
|
goto out;
|
|
}
|
|
|
|
if (!pmd_present(*pmd))
|
|
goto out;
|
|
|
|
page = pmd_page(*pmd);
|
|
|
|
/* Clear accessed and referenced bits. */
|
|
pmdp_test_and_clear_young(vma, addr, pmd);
|
|
test_and_clear_page_young(page);
|
|
ClearPageReferenced(page);
|
|
out:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
if (!pte) {
|
|
walk->action = ACTION_AGAIN;
|
|
return 0;
|
|
}
|
|
for (; addr != end; pte++, addr += PAGE_SIZE) {
|
|
ptent = ptep_get(pte);
|
|
|
|
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
|
|
clear_soft_dirty(vma, addr, pte);
|
|
continue;
|
|
}
|
|
|
|
if (!pte_present(ptent))
|
|
continue;
|
|
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (!page)
|
|
continue;
|
|
|
|
/* Clear accessed and referenced bits. */
|
|
ptep_test_and_clear_young(vma, addr, pte);
|
|
test_and_clear_page_young(page);
|
|
ClearPageReferenced(page);
|
|
}
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static int clear_refs_test_walk(unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct clear_refs_private *cp = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
|
|
if (vma->vm_flags & VM_PFNMAP)
|
|
return 1;
|
|
|
|
/*
|
|
* Writing 1 to /proc/pid/clear_refs affects all pages.
|
|
* Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
|
|
* Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
|
|
* Writing 4 to /proc/pid/clear_refs affects all pages.
|
|
*/
|
|
if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
|
|
return 1;
|
|
if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct mm_walk_ops clear_refs_walk_ops = {
|
|
.pmd_entry = clear_refs_pte_range,
|
|
.test_walk = clear_refs_test_walk,
|
|
};
|
|
|
|
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct task_struct *task;
|
|
char buffer[PROC_NUMBUF];
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
enum clear_refs_types type;
|
|
int itype;
|
|
int rv;
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
if (count > sizeof(buffer) - 1)
|
|
count = sizeof(buffer) - 1;
|
|
if (copy_from_user(buffer, buf, count))
|
|
return -EFAULT;
|
|
rv = kstrtoint(strstrip(buffer), 10, &itype);
|
|
if (rv < 0)
|
|
return rv;
|
|
type = (enum clear_refs_types)itype;
|
|
if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
|
|
return -EINVAL;
|
|
|
|
task = get_proc_task(file_inode(file));
|
|
if (!task)
|
|
return -ESRCH;
|
|
mm = get_task_mm(task);
|
|
if (mm) {
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
struct mmu_notifier_range range;
|
|
struct clear_refs_private cp = {
|
|
.type = type,
|
|
};
|
|
|
|
if (mmap_write_lock_killable(mm)) {
|
|
count = -EINTR;
|
|
goto out_mm;
|
|
}
|
|
if (type == CLEAR_REFS_MM_HIWATER_RSS) {
|
|
/*
|
|
* Writing 5 to /proc/pid/clear_refs resets the peak
|
|
* resident set size to this mm's current rss value.
|
|
*/
|
|
reset_mm_hiwater_rss(mm);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (type == CLEAR_REFS_SOFT_DIRTY) {
|
|
for_each_vma(vmi, vma) {
|
|
if (!(vma->vm_flags & VM_SOFTDIRTY))
|
|
continue;
|
|
vm_flags_clear(vma, VM_SOFTDIRTY);
|
|
vma_set_page_prot(vma);
|
|
}
|
|
|
|
inc_tlb_flush_pending(mm);
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
|
|
0, mm, 0, -1UL);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
}
|
|
walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
|
|
if (type == CLEAR_REFS_SOFT_DIRTY) {
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
flush_tlb_mm(mm);
|
|
dec_tlb_flush_pending(mm);
|
|
}
|
|
out_unlock:
|
|
mmap_write_unlock(mm);
|
|
out_mm:
|
|
mmput(mm);
|
|
}
|
|
put_task_struct(task);
|
|
|
|
return count;
|
|
}
|
|
|
|
const struct file_operations proc_clear_refs_operations = {
|
|
.write = clear_refs_write,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
typedef struct {
|
|
u64 pme;
|
|
} pagemap_entry_t;
|
|
|
|
struct pagemapread {
|
|
int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
|
|
pagemap_entry_t *buffer;
|
|
bool show_pfn;
|
|
};
|
|
|
|
#define PAGEMAP_WALK_SIZE (PMD_SIZE)
|
|
#define PAGEMAP_WALK_MASK (PMD_MASK)
|
|
|
|
#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
|
|
#define PM_PFRAME_BITS 55
|
|
#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
|
|
#define PM_SOFT_DIRTY BIT_ULL(55)
|
|
#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
|
|
#define PM_UFFD_WP BIT_ULL(57)
|
|
#define PM_FILE BIT_ULL(61)
|
|
#define PM_SWAP BIT_ULL(62)
|
|
#define PM_PRESENT BIT_ULL(63)
|
|
|
|
#define PM_END_OF_BUFFER 1
|
|
|
|
static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
|
|
{
|
|
return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
|
|
}
|
|
|
|
static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
|
|
struct pagemapread *pm)
|
|
{
|
|
pm->buffer[pm->pos++] = *pme;
|
|
if (pm->pos >= pm->len)
|
|
return PM_END_OF_BUFFER;
|
|
return 0;
|
|
}
|
|
|
|
static int pagemap_pte_hole(unsigned long start, unsigned long end,
|
|
__always_unused int depth, struct mm_walk *walk)
|
|
{
|
|
struct pagemapread *pm = walk->private;
|
|
unsigned long addr = start;
|
|
int err = 0;
|
|
|
|
while (addr < end) {
|
|
struct vm_area_struct *vma = find_vma(walk->mm, addr);
|
|
pagemap_entry_t pme = make_pme(0, 0);
|
|
/* End of address space hole, which we mark as non-present. */
|
|
unsigned long hole_end;
|
|
|
|
if (vma)
|
|
hole_end = min(end, vma->vm_start);
|
|
else
|
|
hole_end = end;
|
|
|
|
for (; addr < hole_end; addr += PAGE_SIZE) {
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (!vma)
|
|
break;
|
|
|
|
/* Addresses in the VMA. */
|
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
|
pme = make_pme(0, PM_SOFT_DIRTY);
|
|
for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
|
|
struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
|
{
|
|
u64 frame = 0, flags = 0;
|
|
struct page *page = NULL;
|
|
bool migration = false;
|
|
|
|
if (pte_present(pte)) {
|
|
if (pm->show_pfn)
|
|
frame = pte_pfn(pte);
|
|
flags |= PM_PRESENT;
|
|
page = vm_normal_page(vma, addr, pte);
|
|
if (pte_soft_dirty(pte))
|
|
flags |= PM_SOFT_DIRTY;
|
|
if (pte_uffd_wp(pte))
|
|
flags |= PM_UFFD_WP;
|
|
} else if (is_swap_pte(pte)) {
|
|
swp_entry_t entry;
|
|
if (pte_swp_soft_dirty(pte))
|
|
flags |= PM_SOFT_DIRTY;
|
|
if (pte_swp_uffd_wp(pte))
|
|
flags |= PM_UFFD_WP;
|
|
entry = pte_to_swp_entry(pte);
|
|
if (pm->show_pfn) {
|
|
pgoff_t offset;
|
|
/*
|
|
* For PFN swap offsets, keeping the offset field
|
|
* to be PFN only to be compatible with old smaps.
|
|
*/
|
|
if (is_pfn_swap_entry(entry))
|
|
offset = swp_offset_pfn(entry);
|
|
else
|
|
offset = swp_offset(entry);
|
|
frame = swp_type(entry) |
|
|
(offset << MAX_SWAPFILES_SHIFT);
|
|
}
|
|
flags |= PM_SWAP;
|
|
migration = is_migration_entry(entry);
|
|
if (is_pfn_swap_entry(entry))
|
|
page = pfn_swap_entry_to_page(entry);
|
|
if (pte_marker_entry_uffd_wp(entry))
|
|
flags |= PM_UFFD_WP;
|
|
}
|
|
|
|
if (page && !PageAnon(page))
|
|
flags |= PM_FILE;
|
|
if (page && !migration && page_mapcount(page) == 1)
|
|
flags |= PM_MMAP_EXCLUSIVE;
|
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
|
flags |= PM_SOFT_DIRTY;
|
|
|
|
return make_pme(frame, flags);
|
|
}
|
|
|
|
static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma = walk->vma;
|
|
struct pagemapread *pm = walk->private;
|
|
spinlock_t *ptl;
|
|
pte_t *pte, *orig_pte;
|
|
int err = 0;
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
bool migration = false;
|
|
|
|
ptl = pmd_trans_huge_lock(pmdp, vma);
|
|
if (ptl) {
|
|
u64 flags = 0, frame = 0;
|
|
pmd_t pmd = *pmdp;
|
|
struct page *page = NULL;
|
|
|
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
|
flags |= PM_SOFT_DIRTY;
|
|
|
|
if (pmd_present(pmd)) {
|
|
page = pmd_page(pmd);
|
|
|
|
flags |= PM_PRESENT;
|
|
if (pmd_soft_dirty(pmd))
|
|
flags |= PM_SOFT_DIRTY;
|
|
if (pmd_uffd_wp(pmd))
|
|
flags |= PM_UFFD_WP;
|
|
if (pm->show_pfn)
|
|
frame = pmd_pfn(pmd) +
|
|
((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
|
}
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
else if (is_swap_pmd(pmd)) {
|
|
swp_entry_t entry = pmd_to_swp_entry(pmd);
|
|
unsigned long offset;
|
|
|
|
if (pm->show_pfn) {
|
|
if (is_pfn_swap_entry(entry))
|
|
offset = swp_offset_pfn(entry);
|
|
else
|
|
offset = swp_offset(entry);
|
|
offset = offset +
|
|
((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
|
frame = swp_type(entry) |
|
|
(offset << MAX_SWAPFILES_SHIFT);
|
|
}
|
|
flags |= PM_SWAP;
|
|
if (pmd_swp_soft_dirty(pmd))
|
|
flags |= PM_SOFT_DIRTY;
|
|
if (pmd_swp_uffd_wp(pmd))
|
|
flags |= PM_UFFD_WP;
|
|
VM_BUG_ON(!is_pmd_migration_entry(pmd));
|
|
migration = is_migration_entry(entry);
|
|
page = pfn_swap_entry_to_page(entry);
|
|
}
|
|
#endif
|
|
|
|
if (page && !migration && page_mapcount(page) == 1)
|
|
flags |= PM_MMAP_EXCLUSIVE;
|
|
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
pagemap_entry_t pme = make_pme(frame, flags);
|
|
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
break;
|
|
if (pm->show_pfn) {
|
|
if (flags & PM_PRESENT)
|
|
frame++;
|
|
else if (flags & PM_SWAP)
|
|
frame += (1 << MAX_SWAPFILES_SHIFT);
|
|
}
|
|
}
|
|
spin_unlock(ptl);
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/*
|
|
* We can assume that @vma always points to a valid one and @end never
|
|
* goes beyond vma->vm_end.
|
|
*/
|
|
orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
|
|
if (!pte) {
|
|
walk->action = ACTION_AGAIN;
|
|
return err;
|
|
}
|
|
for (; addr < end; pte++, addr += PAGE_SIZE) {
|
|
pagemap_entry_t pme;
|
|
|
|
pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
break;
|
|
}
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
|
|
cond_resched();
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/* This function walks within one hugetlb entry in the single call */
|
|
static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct pagemapread *pm = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
u64 flags = 0, frame = 0;
|
|
int err = 0;
|
|
pte_t pte;
|
|
|
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
|
flags |= PM_SOFT_DIRTY;
|
|
|
|
pte = huge_ptep_get(ptep);
|
|
if (pte_present(pte)) {
|
|
struct page *page = pte_page(pte);
|
|
|
|
if (!PageAnon(page))
|
|
flags |= PM_FILE;
|
|
|
|
if (page_mapcount(page) == 1)
|
|
flags |= PM_MMAP_EXCLUSIVE;
|
|
|
|
if (huge_pte_uffd_wp(pte))
|
|
flags |= PM_UFFD_WP;
|
|
|
|
flags |= PM_PRESENT;
|
|
if (pm->show_pfn)
|
|
frame = pte_pfn(pte) +
|
|
((addr & ~hmask) >> PAGE_SHIFT);
|
|
} else if (pte_swp_uffd_wp_any(pte)) {
|
|
flags |= PM_UFFD_WP;
|
|
}
|
|
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
pagemap_entry_t pme = make_pme(frame, flags);
|
|
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
return err;
|
|
if (pm->show_pfn && (flags & PM_PRESENT))
|
|
frame++;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
return err;
|
|
}
|
|
#else
|
|
#define pagemap_hugetlb_range NULL
|
|
#endif /* HUGETLB_PAGE */
|
|
|
|
static const struct mm_walk_ops pagemap_ops = {
|
|
.pmd_entry = pagemap_pmd_range,
|
|
.pte_hole = pagemap_pte_hole,
|
|
.hugetlb_entry = pagemap_hugetlb_range,
|
|
};
|
|
|
|
/*
|
|
* /proc/pid/pagemap - an array mapping virtual pages to pfns
|
|
*
|
|
* For each page in the address space, this file contains one 64-bit entry
|
|
* consisting of the following:
|
|
*
|
|
* Bits 0-54 page frame number (PFN) if present
|
|
* Bits 0-4 swap type if swapped
|
|
* Bits 5-54 swap offset if swapped
|
|
* Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
|
|
* Bit 56 page exclusively mapped
|
|
* Bit 57 pte is uffd-wp write-protected
|
|
* Bits 58-60 zero
|
|
* Bit 61 page is file-page or shared-anon
|
|
* Bit 62 page swapped
|
|
* Bit 63 page present
|
|
*
|
|
* If the page is not present but in swap, then the PFN contains an
|
|
* encoding of the swap file number and the page's offset into the
|
|
* swap. Unmapped pages return a null PFN. This allows determining
|
|
* precisely which pages are mapped (or in swap) and comparing mapped
|
|
* pages between processes.
|
|
*
|
|
* Efficient users of this interface will use /proc/pid/maps to
|
|
* determine which areas of memory are actually mapped and llseek to
|
|
* skip over unmapped regions.
|
|
*/
|
|
static ssize_t pagemap_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct mm_struct *mm = file->private_data;
|
|
struct pagemapread pm;
|
|
unsigned long src;
|
|
unsigned long svpfn;
|
|
unsigned long start_vaddr;
|
|
unsigned long end_vaddr;
|
|
int ret = 0, copied = 0;
|
|
|
|
if (!mm || !mmget_not_zero(mm))
|
|
goto out;
|
|
|
|
ret = -EINVAL;
|
|
/* file position must be aligned */
|
|
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
|
|
goto out_mm;
|
|
|
|
ret = 0;
|
|
if (!count)
|
|
goto out_mm;
|
|
|
|
/* do not disclose physical addresses: attack vector */
|
|
pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
|
|
|
|
pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
|
|
pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
|
|
ret = -ENOMEM;
|
|
if (!pm.buffer)
|
|
goto out_mm;
|
|
|
|
src = *ppos;
|
|
svpfn = src / PM_ENTRY_BYTES;
|
|
end_vaddr = mm->task_size;
|
|
|
|
/* watch out for wraparound */
|
|
start_vaddr = end_vaddr;
|
|
if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
|
|
unsigned long end;
|
|
|
|
ret = mmap_read_lock_killable(mm);
|
|
if (ret)
|
|
goto out_free;
|
|
start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
|
|
mmap_read_unlock(mm);
|
|
|
|
end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
|
|
if (end >= start_vaddr && end < mm->task_size)
|
|
end_vaddr = end;
|
|
}
|
|
|
|
/* Ensure the address is inside the task */
|
|
if (start_vaddr > mm->task_size)
|
|
start_vaddr = end_vaddr;
|
|
|
|
ret = 0;
|
|
while (count && (start_vaddr < end_vaddr)) {
|
|
int len;
|
|
unsigned long end;
|
|
|
|
pm.pos = 0;
|
|
end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
|
|
/* overflow ? */
|
|
if (end < start_vaddr || end > end_vaddr)
|
|
end = end_vaddr;
|
|
ret = mmap_read_lock_killable(mm);
|
|
if (ret)
|
|
goto out_free;
|
|
ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
|
|
mmap_read_unlock(mm);
|
|
start_vaddr = end;
|
|
|
|
len = min(count, PM_ENTRY_BYTES * pm.pos);
|
|
if (copy_to_user(buf, pm.buffer, len)) {
|
|
ret = -EFAULT;
|
|
goto out_free;
|
|
}
|
|
copied += len;
|
|
buf += len;
|
|
count -= len;
|
|
}
|
|
*ppos += copied;
|
|
if (!ret || ret == PM_END_OF_BUFFER)
|
|
ret = copied;
|
|
|
|
out_free:
|
|
kfree(pm.buffer);
|
|
out_mm:
|
|
mmput(mm);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int pagemap_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct mm_struct *mm;
|
|
|
|
mm = proc_mem_open(inode, PTRACE_MODE_READ);
|
|
if (IS_ERR(mm))
|
|
return PTR_ERR(mm);
|
|
file->private_data = mm;
|
|
return 0;
|
|
}
|
|
|
|
static int pagemap_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct mm_struct *mm = file->private_data;
|
|
|
|
if (mm)
|
|
mmdrop(mm);
|
|
return 0;
|
|
}
|
|
|
|
const struct file_operations proc_pagemap_operations = {
|
|
.llseek = mem_lseek, /* borrow this */
|
|
.read = pagemap_read,
|
|
.open = pagemap_open,
|
|
.release = pagemap_release,
|
|
};
|
|
#endif /* CONFIG_PROC_PAGE_MONITOR */
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
struct numa_maps {
|
|
unsigned long pages;
|
|
unsigned long anon;
|
|
unsigned long active;
|
|
unsigned long writeback;
|
|
unsigned long mapcount_max;
|
|
unsigned long dirty;
|
|
unsigned long swapcache;
|
|
unsigned long node[MAX_NUMNODES];
|
|
};
|
|
|
|
struct numa_maps_private {
|
|
struct proc_maps_private proc_maps;
|
|
struct numa_maps md;
|
|
};
|
|
|
|
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
|
|
unsigned long nr_pages)
|
|
{
|
|
int count = page_mapcount(page);
|
|
|
|
md->pages += nr_pages;
|
|
if (pte_dirty || PageDirty(page))
|
|
md->dirty += nr_pages;
|
|
|
|
if (PageSwapCache(page))
|
|
md->swapcache += nr_pages;
|
|
|
|
if (PageActive(page) || PageUnevictable(page))
|
|
md->active += nr_pages;
|
|
|
|
if (PageWriteback(page))
|
|
md->writeback += nr_pages;
|
|
|
|
if (PageAnon(page))
|
|
md->anon += nr_pages;
|
|
|
|
if (count > md->mapcount_max)
|
|
md->mapcount_max = count;
|
|
|
|
md->node[page_to_nid(page)] += nr_pages;
|
|
}
|
|
|
|
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
struct page *page;
|
|
int nid;
|
|
|
|
if (!pte_present(pte))
|
|
return NULL;
|
|
|
|
page = vm_normal_page(vma, addr, pte);
|
|
if (!page || is_zone_device_page(page))
|
|
return NULL;
|
|
|
|
if (PageReserved(page))
|
|
return NULL;
|
|
|
|
nid = page_to_nid(page);
|
|
if (!node_isset(nid, node_states[N_MEMORY]))
|
|
return NULL;
|
|
|
|
return page;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
struct page *page;
|
|
int nid;
|
|
|
|
if (!pmd_present(pmd))
|
|
return NULL;
|
|
|
|
page = vm_normal_page_pmd(vma, addr, pmd);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (PageReserved(page))
|
|
return NULL;
|
|
|
|
nid = page_to_nid(page);
|
|
if (!node_isset(nid, node_states[N_MEMORY]))
|
|
return NULL;
|
|
|
|
return page;
|
|
}
|
|
#endif
|
|
|
|
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
struct numa_maps *md = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
spinlock_t *ptl;
|
|
pte_t *orig_pte;
|
|
pte_t *pte;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (ptl) {
|
|
struct page *page;
|
|
|
|
page = can_gather_numa_stats_pmd(*pmd, vma, addr);
|
|
if (page)
|
|
gather_stats(page, md, pmd_dirty(*pmd),
|
|
HPAGE_PMD_SIZE/PAGE_SIZE);
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#endif
|
|
orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
if (!pte) {
|
|
walk->action = ACTION_AGAIN;
|
|
return 0;
|
|
}
|
|
do {
|
|
pte_t ptent = ptep_get(pte);
|
|
struct page *page = can_gather_numa_stats(ptent, vma, addr);
|
|
if (!page)
|
|
continue;
|
|
gather_stats(page, md, pte_dirty(ptent), 1);
|
|
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end, struct mm_walk *walk)
|
|
{
|
|
pte_t huge_pte = huge_ptep_get(pte);
|
|
struct numa_maps *md;
|
|
struct page *page;
|
|
|
|
if (!pte_present(huge_pte))
|
|
return 0;
|
|
|
|
page = pte_page(huge_pte);
|
|
|
|
md = walk->private;
|
|
gather_stats(page, md, pte_dirty(huge_pte), 1);
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end, struct mm_walk *walk)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct mm_walk_ops show_numa_ops = {
|
|
.hugetlb_entry = gather_hugetlb_stats,
|
|
.pmd_entry = gather_pte_stats,
|
|
};
|
|
|
|
/*
|
|
* Display pages allocated per node and memory policy via /proc.
|
|
*/
|
|
static int show_numa_map(struct seq_file *m, void *v)
|
|
{
|
|
struct numa_maps_private *numa_priv = m->private;
|
|
struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
|
|
struct vm_area_struct *vma = v;
|
|
struct numa_maps *md = &numa_priv->md;
|
|
struct file *file = vma->vm_file;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct mempolicy *pol;
|
|
char buffer[64];
|
|
int nid;
|
|
|
|
if (!mm)
|
|
return 0;
|
|
|
|
/* Ensure we start with an empty set of numa_maps statistics. */
|
|
memset(md, 0, sizeof(*md));
|
|
|
|
pol = __get_vma_policy(vma, vma->vm_start);
|
|
if (pol) {
|
|
mpol_to_str(buffer, sizeof(buffer), pol);
|
|
mpol_cond_put(pol);
|
|
} else {
|
|
mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
|
|
}
|
|
|
|
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
|
|
|
|
if (file) {
|
|
seq_puts(m, " file=");
|
|
seq_file_path(m, file, "\n\t= ");
|
|
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
|
|
seq_puts(m, " heap");
|
|
} else if (is_stack(vma)) {
|
|
seq_puts(m, " stack");
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
seq_puts(m, " huge");
|
|
|
|
/* mmap_lock is held by m_start */
|
|
walk_page_vma(vma, &show_numa_ops, md);
|
|
|
|
if (!md->pages)
|
|
goto out;
|
|
|
|
if (md->anon)
|
|
seq_printf(m, " anon=%lu", md->anon);
|
|
|
|
if (md->dirty)
|
|
seq_printf(m, " dirty=%lu", md->dirty);
|
|
|
|
if (md->pages != md->anon && md->pages != md->dirty)
|
|
seq_printf(m, " mapped=%lu", md->pages);
|
|
|
|
if (md->mapcount_max > 1)
|
|
seq_printf(m, " mapmax=%lu", md->mapcount_max);
|
|
|
|
if (md->swapcache)
|
|
seq_printf(m, " swapcache=%lu", md->swapcache);
|
|
|
|
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
|
|
seq_printf(m, " active=%lu", md->active);
|
|
|
|
if (md->writeback)
|
|
seq_printf(m, " writeback=%lu", md->writeback);
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
if (md->node[nid])
|
|
seq_printf(m, " N%d=%lu", nid, md->node[nid]);
|
|
|
|
seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
|
|
out:
|
|
seq_putc(m, '\n');
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_numa_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_numa_map,
|
|
};
|
|
|
|
static int pid_numa_maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
|
|
sizeof(struct numa_maps_private));
|
|
}
|
|
|
|
const struct file_operations proc_pid_numa_maps_operations = {
|
|
.open = pid_numa_maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = proc_map_release,
|
|
};
|
|
|
|
#endif /* CONFIG_NUMA */
|