mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 06:55:13 +08:00
304cc6ae1b
Oprofile's ring-buffer use was not considered. Signed-off-by: Ingo Molnar <mingo@elte.hu>
469 lines
11 KiB
C
469 lines
11 KiB
C
/**
|
|
* @file cpu_buffer.c
|
|
*
|
|
* @remark Copyright 2002-2009 OProfile authors
|
|
* @remark Read the file COPYING
|
|
*
|
|
* @author John Levon <levon@movementarian.org>
|
|
* @author Barry Kasindorf <barry.kasindorf@amd.com>
|
|
* @author Robert Richter <robert.richter@amd.com>
|
|
*
|
|
* Each CPU has a local buffer that stores PC value/event
|
|
* pairs. We also log context switches when we notice them.
|
|
* Eventually each CPU's buffer is processed into the global
|
|
* event buffer by sync_buffer().
|
|
*
|
|
* We use a local buffer for two reasons: an NMI or similar
|
|
* interrupt cannot synchronise, and high sampling rates
|
|
* would lead to catastrophic global synchronisation if
|
|
* a global buffer was used.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/oprofile.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/errno.h>
|
|
|
|
#include "event_buffer.h"
|
|
#include "cpu_buffer.h"
|
|
#include "buffer_sync.h"
|
|
#include "oprof.h"
|
|
|
|
#define OP_BUFFER_FLAGS 0
|
|
|
|
/*
|
|
* Read and write access is using spin locking. Thus, writing to the
|
|
* buffer by NMI handler (x86) could occur also during critical
|
|
* sections when reading the buffer. To avoid this, there are 2
|
|
* buffers for independent read and write access. Read access is in
|
|
* process context only, write access only in the NMI handler. If the
|
|
* read buffer runs empty, both buffers are swapped atomically. There
|
|
* is potentially a small window during swapping where the buffers are
|
|
* disabled and samples could be lost.
|
|
*
|
|
* Using 2 buffers is a little bit overhead, but the solution is clear
|
|
* and does not require changes in the ring buffer implementation. It
|
|
* can be changed to a single buffer solution when the ring buffer
|
|
* access is implemented as non-locking atomic code.
|
|
*/
|
|
static struct ring_buffer *op_ring_buffer_read;
|
|
static struct ring_buffer *op_ring_buffer_write;
|
|
DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
|
|
|
|
static void wq_sync_buffer(struct work_struct *work);
|
|
|
|
#define DEFAULT_TIMER_EXPIRE (HZ / 10)
|
|
static int work_enabled;
|
|
|
|
unsigned long oprofile_get_cpu_buffer_size(void)
|
|
{
|
|
return oprofile_cpu_buffer_size;
|
|
}
|
|
|
|
void oprofile_cpu_buffer_inc_smpl_lost(void)
|
|
{
|
|
struct oprofile_cpu_buffer *cpu_buf
|
|
= &__get_cpu_var(cpu_buffer);
|
|
|
|
cpu_buf->sample_lost_overflow++;
|
|
}
|
|
|
|
void free_cpu_buffers(void)
|
|
{
|
|
if (op_ring_buffer_read)
|
|
ring_buffer_free(op_ring_buffer_read);
|
|
op_ring_buffer_read = NULL;
|
|
if (op_ring_buffer_write)
|
|
ring_buffer_free(op_ring_buffer_write);
|
|
op_ring_buffer_write = NULL;
|
|
}
|
|
|
|
int alloc_cpu_buffers(void)
|
|
{
|
|
int i;
|
|
|
|
unsigned long buffer_size = oprofile_cpu_buffer_size;
|
|
|
|
op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
|
|
if (!op_ring_buffer_read)
|
|
goto fail;
|
|
op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
|
|
if (!op_ring_buffer_write)
|
|
goto fail;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
|
|
|
|
b->last_task = NULL;
|
|
b->last_is_kernel = -1;
|
|
b->tracing = 0;
|
|
b->buffer_size = buffer_size;
|
|
b->sample_received = 0;
|
|
b->sample_lost_overflow = 0;
|
|
b->backtrace_aborted = 0;
|
|
b->sample_invalid_eip = 0;
|
|
b->cpu = i;
|
|
INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
free_cpu_buffers();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void start_cpu_work(void)
|
|
{
|
|
int i;
|
|
|
|
work_enabled = 1;
|
|
|
|
for_each_online_cpu(i) {
|
|
struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
|
|
|
|
/*
|
|
* Spread the work by 1 jiffy per cpu so they dont all
|
|
* fire at once.
|
|
*/
|
|
schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
|
|
}
|
|
}
|
|
|
|
void end_cpu_work(void)
|
|
{
|
|
int i;
|
|
|
|
work_enabled = 0;
|
|
|
|
for_each_online_cpu(i) {
|
|
struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
|
|
|
|
cancel_delayed_work(&b->work);
|
|
}
|
|
|
|
flush_scheduled_work();
|
|
}
|
|
|
|
/*
|
|
* This function prepares the cpu buffer to write a sample.
|
|
*
|
|
* Struct op_entry is used during operations on the ring buffer while
|
|
* struct op_sample contains the data that is stored in the ring
|
|
* buffer. Struct entry can be uninitialized. The function reserves a
|
|
* data array that is specified by size. Use
|
|
* op_cpu_buffer_write_commit() after preparing the sample. In case of
|
|
* errors a null pointer is returned, otherwise the pointer to the
|
|
* sample.
|
|
*
|
|
*/
|
|
struct op_sample
|
|
*op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
|
|
{
|
|
entry->event = ring_buffer_lock_reserve
|
|
(op_ring_buffer_write, sizeof(struct op_sample) +
|
|
size * sizeof(entry->sample->data[0]));
|
|
if (entry->event)
|
|
entry->sample = ring_buffer_event_data(entry->event);
|
|
else
|
|
entry->sample = NULL;
|
|
|
|
if (!entry->sample)
|
|
return NULL;
|
|
|
|
entry->size = size;
|
|
entry->data = entry->sample->data;
|
|
|
|
return entry->sample;
|
|
}
|
|
|
|
int op_cpu_buffer_write_commit(struct op_entry *entry)
|
|
{
|
|
return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event);
|
|
}
|
|
|
|
struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
|
|
{
|
|
struct ring_buffer_event *e;
|
|
e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
|
|
if (e)
|
|
goto event;
|
|
if (ring_buffer_swap_cpu(op_ring_buffer_read,
|
|
op_ring_buffer_write,
|
|
cpu))
|
|
return NULL;
|
|
e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
|
|
if (e)
|
|
goto event;
|
|
return NULL;
|
|
|
|
event:
|
|
entry->event = e;
|
|
entry->sample = ring_buffer_event_data(e);
|
|
entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
|
|
/ sizeof(entry->sample->data[0]);
|
|
entry->data = entry->sample->data;
|
|
return entry->sample;
|
|
}
|
|
|
|
unsigned long op_cpu_buffer_entries(int cpu)
|
|
{
|
|
return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
|
|
+ ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
|
|
}
|
|
|
|
static int
|
|
op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
|
|
int is_kernel, struct task_struct *task)
|
|
{
|
|
struct op_entry entry;
|
|
struct op_sample *sample;
|
|
unsigned long flags;
|
|
int size;
|
|
|
|
flags = 0;
|
|
|
|
if (backtrace)
|
|
flags |= TRACE_BEGIN;
|
|
|
|
/* notice a switch from user->kernel or vice versa */
|
|
is_kernel = !!is_kernel;
|
|
if (cpu_buf->last_is_kernel != is_kernel) {
|
|
cpu_buf->last_is_kernel = is_kernel;
|
|
flags |= KERNEL_CTX_SWITCH;
|
|
if (is_kernel)
|
|
flags |= IS_KERNEL;
|
|
}
|
|
|
|
/* notice a task switch */
|
|
if (cpu_buf->last_task != task) {
|
|
cpu_buf->last_task = task;
|
|
flags |= USER_CTX_SWITCH;
|
|
}
|
|
|
|
if (!flags)
|
|
/* nothing to do */
|
|
return 0;
|
|
|
|
if (flags & USER_CTX_SWITCH)
|
|
size = 1;
|
|
else
|
|
size = 0;
|
|
|
|
sample = op_cpu_buffer_write_reserve(&entry, size);
|
|
if (!sample)
|
|
return -ENOMEM;
|
|
|
|
sample->eip = ESCAPE_CODE;
|
|
sample->event = flags;
|
|
|
|
if (size)
|
|
op_cpu_buffer_add_data(&entry, (unsigned long)task);
|
|
|
|
op_cpu_buffer_write_commit(&entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
|
|
unsigned long pc, unsigned long event)
|
|
{
|
|
struct op_entry entry;
|
|
struct op_sample *sample;
|
|
|
|
sample = op_cpu_buffer_write_reserve(&entry, 0);
|
|
if (!sample)
|
|
return -ENOMEM;
|
|
|
|
sample->eip = pc;
|
|
sample->event = event;
|
|
|
|
return op_cpu_buffer_write_commit(&entry);
|
|
}
|
|
|
|
/*
|
|
* This must be safe from any context.
|
|
*
|
|
* is_kernel is needed because on some architectures you cannot
|
|
* tell if you are in kernel or user space simply by looking at
|
|
* pc. We tag this in the buffer by generating kernel enter/exit
|
|
* events whenever is_kernel changes
|
|
*/
|
|
static int
|
|
log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
|
|
unsigned long backtrace, int is_kernel, unsigned long event)
|
|
{
|
|
cpu_buf->sample_received++;
|
|
|
|
if (pc == ESCAPE_CODE) {
|
|
cpu_buf->sample_invalid_eip++;
|
|
return 0;
|
|
}
|
|
|
|
if (op_add_code(cpu_buf, backtrace, is_kernel, current))
|
|
goto fail;
|
|
|
|
if (op_add_sample(cpu_buf, pc, event))
|
|
goto fail;
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
cpu_buf->sample_lost_overflow++;
|
|
return 0;
|
|
}
|
|
|
|
static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
|
|
{
|
|
cpu_buf->tracing = 1;
|
|
}
|
|
|
|
static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
|
|
{
|
|
cpu_buf->tracing = 0;
|
|
}
|
|
|
|
static inline void
|
|
__oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
|
|
unsigned long event, int is_kernel)
|
|
{
|
|
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
|
|
unsigned long backtrace = oprofile_backtrace_depth;
|
|
|
|
/*
|
|
* if log_sample() fail we can't backtrace since we lost the
|
|
* source of this event
|
|
*/
|
|
if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
|
|
/* failed */
|
|
return;
|
|
|
|
if (!backtrace)
|
|
return;
|
|
|
|
oprofile_begin_trace(cpu_buf);
|
|
oprofile_ops.backtrace(regs, backtrace);
|
|
oprofile_end_trace(cpu_buf);
|
|
}
|
|
|
|
void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
|
|
unsigned long event, int is_kernel)
|
|
{
|
|
__oprofile_add_ext_sample(pc, regs, event, is_kernel);
|
|
}
|
|
|
|
void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
|
|
{
|
|
int is_kernel = !user_mode(regs);
|
|
unsigned long pc = profile_pc(regs);
|
|
|
|
__oprofile_add_ext_sample(pc, regs, event, is_kernel);
|
|
}
|
|
|
|
/*
|
|
* Add samples with data to the ring buffer.
|
|
*
|
|
* Use oprofile_add_data(&entry, val) to add data and
|
|
* oprofile_write_commit(&entry) to commit the sample.
|
|
*/
|
|
void
|
|
oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
|
|
unsigned long pc, int code, int size)
|
|
{
|
|
struct op_sample *sample;
|
|
int is_kernel = !user_mode(regs);
|
|
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
|
|
|
|
cpu_buf->sample_received++;
|
|
|
|
/* no backtraces for samples with data */
|
|
if (op_add_code(cpu_buf, 0, is_kernel, current))
|
|
goto fail;
|
|
|
|
sample = op_cpu_buffer_write_reserve(entry, size + 2);
|
|
if (!sample)
|
|
goto fail;
|
|
sample->eip = ESCAPE_CODE;
|
|
sample->event = 0; /* no flags */
|
|
|
|
op_cpu_buffer_add_data(entry, code);
|
|
op_cpu_buffer_add_data(entry, pc);
|
|
|
|
return;
|
|
|
|
fail:
|
|
entry->event = NULL;
|
|
cpu_buf->sample_lost_overflow++;
|
|
}
|
|
|
|
int oprofile_add_data(struct op_entry *entry, unsigned long val)
|
|
{
|
|
if (!entry->event)
|
|
return 0;
|
|
return op_cpu_buffer_add_data(entry, val);
|
|
}
|
|
|
|
int oprofile_write_commit(struct op_entry *entry)
|
|
{
|
|
if (!entry->event)
|
|
return -EINVAL;
|
|
return op_cpu_buffer_write_commit(entry);
|
|
}
|
|
|
|
void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
|
|
{
|
|
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
|
|
log_sample(cpu_buf, pc, 0, is_kernel, event);
|
|
}
|
|
|
|
void oprofile_add_trace(unsigned long pc)
|
|
{
|
|
struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
|
|
|
|
if (!cpu_buf->tracing)
|
|
return;
|
|
|
|
/*
|
|
* broken frame can give an eip with the same value as an
|
|
* escape code, abort the trace if we get it
|
|
*/
|
|
if (pc == ESCAPE_CODE)
|
|
goto fail;
|
|
|
|
if (op_add_sample(cpu_buf, pc, 0))
|
|
goto fail;
|
|
|
|
return;
|
|
fail:
|
|
cpu_buf->tracing = 0;
|
|
cpu_buf->backtrace_aborted++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This serves to avoid cpu buffer overflow, and makes sure
|
|
* the task mortuary progresses
|
|
*
|
|
* By using schedule_delayed_work_on and then schedule_delayed_work
|
|
* we guarantee this will stay on the correct cpu
|
|
*/
|
|
static void wq_sync_buffer(struct work_struct *work)
|
|
{
|
|
struct oprofile_cpu_buffer *b =
|
|
container_of(work, struct oprofile_cpu_buffer, work.work);
|
|
if (b->cpu != smp_processor_id()) {
|
|
printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
|
|
smp_processor_id(), b->cpu);
|
|
|
|
if (!cpu_online(b->cpu)) {
|
|
cancel_delayed_work(&b->work);
|
|
return;
|
|
}
|
|
}
|
|
sync_buffer(b->cpu);
|
|
|
|
/* don't re-add the work if we're shutting down */
|
|
if (work_enabled)
|
|
schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
|
|
}
|