Go to file
Peter Zijlstra 63cae12bce perf/core: Fix sys_perf_event_open() vs. hotplug
There is problem with installing an event in a task that is 'stuck' on
an offline CPU.

Blocked tasks are not dis-assosciated from offlined CPUs, after all, a
blocked task doesn't run and doesn't require a CPU etc.. Only on
wakeup do we ammend the situation and place the task on a available
CPU.

If we hit such a task with perf_install_in_context() we'll loop until
either that task wakes up or the CPU comes back online, if the task
waking depends on the event being installed, we're stuck.

While looking into this issue, I also spotted another problem, if we
hit a task with perf_install_in_context() that is in the middle of
being migrated, that is we observe the old CPU before sending the IPI,
but run the IPI (on the old CPU) while the task is already running on
the new CPU, things also go sideways.

Rework things to rely on task_curr() -- outside of rq->lock -- which
is rather tricky. Imagine the following scenario where we're trying to
install the first event into our task 't':

CPU0            CPU1            CPU2

                (current == t)

t->perf_event_ctxp[] = ctx;
smp_mb();
cpu = task_cpu(t);

                switch(t, n);
                                migrate(t, 2);
                                switch(p, t);

                                ctx = t->perf_event_ctxp[]; // must not be NULL

smp_function_call(cpu, ..);

                generic_exec_single()
                  func();
                    spin_lock(ctx->lock);
                    if (task_curr(t)) // false

                    add_event_to_ctx();
                    spin_unlock(ctx->lock);

                                perf_event_context_sched_in();
                                  spin_lock(ctx->lock);
                                  // sees event

So its CPU0's store of t->perf_event_ctxp[] that must not go 'missing'.
Because if CPU2's load of that variable were to observe NULL, it would
not try to schedule the ctx and we'd have a task running without its
counter, which would be 'bad'.

As long as we observe !NULL, we'll acquire ctx->lock. If we acquire it
first and not see the event yet, then CPU0 must observe task_curr()
and retry. If the install happens first, then we must see the event on
sched-in and all is well.

I think we can translate the first part (until the 'must not be NULL')
of the scenario to a litmus test like:

  C C-peterz

  {
  }

  P0(int *x, int *y)
  {
          int r1;

          WRITE_ONCE(*x, 1);
          smp_mb();
          r1 = READ_ONCE(*y);
  }

  P1(int *y, int *z)
  {
          WRITE_ONCE(*y, 1);
          smp_store_release(z, 1);
  }

  P2(int *x, int *z)
  {
          int r1;
          int r2;

          r1 = smp_load_acquire(z);
	  smp_mb();
          r2 = READ_ONCE(*x);
  }

  exists
  (0:r1=0 /\ 2:r1=1 /\ 2:r2=0)

Where:
  x is perf_event_ctxp[],
  y is our tasks's CPU, and
  z is our task being placed on the rq of CPU2.

The P0 smp_mb() is the one added by this patch, ordering the store to
perf_event_ctxp[] from find_get_context() and the load of task_cpu()
in task_function_call().

The smp_store_release/smp_load_acquire model the RCpc locking of the
rq->lock and the smp_mb() of P2 is the context switch switching from
whatever CPU2 was running to our task 't'.

This litmus test evaluates into:

  Test C-peterz Allowed
  States 7
  0:r1=0; 2:r1=0; 2:r2=0;
  0:r1=0; 2:r1=0; 2:r2=1;
  0:r1=0; 2:r1=1; 2:r2=1;
  0:r1=1; 2:r1=0; 2:r2=0;
  0:r1=1; 2:r1=0; 2:r2=1;
  0:r1=1; 2:r1=1; 2:r2=0;
  0:r1=1; 2:r1=1; 2:r2=1;
  No
  Witnesses
  Positive: 0 Negative: 7
  Condition exists (0:r1=0 /\ 2:r1=1 /\ 2:r2=0)
  Observation C-peterz Never 0 7
  Hash=e427f41d9146b2a5445101d3e2fcaa34

And the strong and weak model agree.

Reported-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: jeremy.linton@arm.com
Link: http://lkml.kernel.org/r/20161209135900.GU3174@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14 10:56:10 +01:00
arch perf/x86/intel: Use ULL constant to prevent undefined shift behaviour 2017-01-11 16:43:30 +01:00
block ktime: Cleanup ktime_set() usage 2016-12-25 17:21:22 +01:00
certs certs: Add a secondary system keyring that can be added to dynamically 2016-04-11 22:48:09 +01:00
crypto crypto: testmgr - Use heap buffer for acomp test input 2016-12-27 17:32:11 +08:00
Documentation Documentation/unaligned-memory-access.txt: fix incorrect comparison operator 2016-12-27 13:08:42 -07:00
drivers Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6 2016-12-27 17:51:36 -08:00
firmware WHENCE: use https://linuxtv.org for LinuxTV URLs 2015-12-04 10:35:11 -02:00
fs ext4: Simplify DAX fault path 2016-12-26 20:29:25 -08:00
include Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm 2017-01-01 12:27:05 -08:00
init mm: add PageWaiters indicating tasks are waiting for a page bit 2016-12-25 11:54:48 -08:00
ipc ipc/sem: avoid idr tree lookup for interrupted semop 2016-12-14 16:04:08 -08:00
kernel perf/core: Fix sys_perf_event_open() vs. hotplug 2017-01-14 10:56:10 +01:00
lib Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip 2016-12-25 14:30:04 -08:00
mm Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm 2017-01-01 12:27:05 -08:00
net Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2016-12-27 16:04:37 -08:00
samples perf/urgent fixes and one improvement: 2017-01-05 08:33:02 +01:00
scripts Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security 2016-12-22 10:03:52 -08:00
security Replace <asm/uaccess.h> with <linux/uaccess.h> globally 2016-12-24 11:46:01 -08:00
sound ktime: Cleanup ktime_set() usage 2016-12-25 17:21:22 +01:00
tools perf/urgent fixes and one improvement: 2017-01-05 08:33:02 +01:00
usr initramfs: allow again choice of the embedded initram compression algorithm 2016-12-14 16:04:08 -08:00
virt Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip 2016-12-25 14:30:04 -08:00
.cocciconfig scripts: add Linux .cocciconfig for coccinelle 2016-07-22 12:13:39 +02:00
.get_maintainer.ignore Add hch to .get_maintainer.ignore 2015-08-21 14:30:10 -07:00
.gitattributes .gitattributes: set git diff driver for C source code files 2016-10-07 18:46:30 -07:00
.gitignore Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild 2016-08-02 16:48:52 -04:00
.mailmap Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus 2016-10-15 09:26:12 -07:00
COPYING
CREDITS CREDITS: Remove outdated address information 2016-12-21 15:21:29 -08:00
Kbuild scripts/gdb: provide linux constants 2016-05-23 17:04:14 -07:00
Kconfig
MAINTAINERS Watchdog updates for v4.10 2016-12-24 11:27:45 -08:00
Makefile Linux 4.10-rc2 2017-01-01 14:31:53 -08:00
README README: add a new README file, pointing to the Documentation/ 2016-10-24 08:12:35 -02:00

Linux kernel
============

This file was moved to Documentation/admin-guide/README.rst

Please notice that there are several guides for kernel developers and users.
These guides can be rendered in a number of formats, like HTML and PDF.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.
See Documentation/00-INDEX for a list of what is contained in each file.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.