mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 22:34:18 +08:00
19d608458f
Update the CMT driver to mark "renesas,cmt-48" as deprecated. Instead of documenting a theoretical hardware device based on current software support level, define DT bindings top-down based on available data sheet information and make use of part numbers in the DT compat string. In case of the only in-tree users r8a7740 and sh73a0 the compat strings "renesas,r8a7740-cmt1" and "renesas,sh73a0-cmt1" may be used instead. Signed-off-by: Magnus Damm <damm+renesas@opensource.se> Reviewed-by: Simon Horman <horms+renesas@verge.net.au> Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
1119 lines
28 KiB
C
1119 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SuperH Timer Support - CMT
|
|
*
|
|
* Copyright (C) 2008 Magnus Damm
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_domain.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/sh_timer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
struct sh_cmt_device;
|
|
|
|
/*
|
|
* The CMT comes in 5 different identified flavours, depending not only on the
|
|
* SoC but also on the particular instance. The following table lists the main
|
|
* characteristics of those flavours.
|
|
*
|
|
* 16B 32B 32B-F 48B R-Car Gen2
|
|
* -----------------------------------------------------------------------------
|
|
* Channels 2 1/4 1 6 2/8
|
|
* Control Width 16 16 16 16 32
|
|
* Counter Width 16 32 32 32/48 32/48
|
|
* Shared Start/Stop Y Y Y Y N
|
|
*
|
|
* The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
|
|
* located in the channel registers block. All other versions have a shared
|
|
* start/stop register located in the global space.
|
|
*
|
|
* Channels are indexed from 0 to N-1 in the documentation. The channel index
|
|
* infers the start/stop bit position in the control register and the channel
|
|
* registers block address. Some CMT instances have a subset of channels
|
|
* available, in which case the index in the documentation doesn't match the
|
|
* "real" index as implemented in hardware. This is for instance the case with
|
|
* CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
|
|
* in the documentation but using start/stop bit 5 and having its registers
|
|
* block at 0x60.
|
|
*
|
|
* Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
|
|
* channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
|
|
*/
|
|
|
|
enum sh_cmt_model {
|
|
SH_CMT_16BIT,
|
|
SH_CMT_32BIT,
|
|
SH_CMT_48BIT,
|
|
SH_CMT0_RCAR_GEN2,
|
|
SH_CMT1_RCAR_GEN2,
|
|
};
|
|
|
|
struct sh_cmt_info {
|
|
enum sh_cmt_model model;
|
|
|
|
unsigned int channels_mask;
|
|
|
|
unsigned long width; /* 16 or 32 bit version of hardware block */
|
|
u32 overflow_bit;
|
|
u32 clear_bits;
|
|
|
|
/* callbacks for CMSTR and CMCSR access */
|
|
u32 (*read_control)(void __iomem *base, unsigned long offs);
|
|
void (*write_control)(void __iomem *base, unsigned long offs,
|
|
u32 value);
|
|
|
|
/* callbacks for CMCNT and CMCOR access */
|
|
u32 (*read_count)(void __iomem *base, unsigned long offs);
|
|
void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
|
|
};
|
|
|
|
struct sh_cmt_channel {
|
|
struct sh_cmt_device *cmt;
|
|
|
|
unsigned int index; /* Index in the documentation */
|
|
unsigned int hwidx; /* Real hardware index */
|
|
|
|
void __iomem *iostart;
|
|
void __iomem *ioctrl;
|
|
|
|
unsigned int timer_bit;
|
|
unsigned long flags;
|
|
u32 match_value;
|
|
u32 next_match_value;
|
|
u32 max_match_value;
|
|
raw_spinlock_t lock;
|
|
struct clock_event_device ced;
|
|
struct clocksource cs;
|
|
u64 total_cycles;
|
|
bool cs_enabled;
|
|
};
|
|
|
|
struct sh_cmt_device {
|
|
struct platform_device *pdev;
|
|
|
|
const struct sh_cmt_info *info;
|
|
|
|
void __iomem *mapbase;
|
|
struct clk *clk;
|
|
unsigned long rate;
|
|
|
|
raw_spinlock_t lock; /* Protect the shared start/stop register */
|
|
|
|
struct sh_cmt_channel *channels;
|
|
unsigned int num_channels;
|
|
unsigned int hw_channels;
|
|
|
|
bool has_clockevent;
|
|
bool has_clocksource;
|
|
};
|
|
|
|
#define SH_CMT16_CMCSR_CMF (1 << 7)
|
|
#define SH_CMT16_CMCSR_CMIE (1 << 6)
|
|
#define SH_CMT16_CMCSR_CKS8 (0 << 0)
|
|
#define SH_CMT16_CMCSR_CKS32 (1 << 0)
|
|
#define SH_CMT16_CMCSR_CKS128 (2 << 0)
|
|
#define SH_CMT16_CMCSR_CKS512 (3 << 0)
|
|
#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
|
|
|
|
#define SH_CMT32_CMCSR_CMF (1 << 15)
|
|
#define SH_CMT32_CMCSR_OVF (1 << 14)
|
|
#define SH_CMT32_CMCSR_WRFLG (1 << 13)
|
|
#define SH_CMT32_CMCSR_STTF (1 << 12)
|
|
#define SH_CMT32_CMCSR_STPF (1 << 11)
|
|
#define SH_CMT32_CMCSR_SSIE (1 << 10)
|
|
#define SH_CMT32_CMCSR_CMS (1 << 9)
|
|
#define SH_CMT32_CMCSR_CMM (1 << 8)
|
|
#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
|
|
#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
|
|
#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
|
|
#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
|
|
#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
|
|
#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
|
|
#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
|
|
|
|
static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
|
|
{
|
|
return ioread16(base + (offs << 1));
|
|
}
|
|
|
|
static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
|
|
{
|
|
return ioread32(base + (offs << 2));
|
|
}
|
|
|
|
static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
|
|
{
|
|
iowrite16(value, base + (offs << 1));
|
|
}
|
|
|
|
static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
|
|
{
|
|
iowrite32(value, base + (offs << 2));
|
|
}
|
|
|
|
static const struct sh_cmt_info sh_cmt_info[] = {
|
|
[SH_CMT_16BIT] = {
|
|
.model = SH_CMT_16BIT,
|
|
.width = 16,
|
|
.overflow_bit = SH_CMT16_CMCSR_CMF,
|
|
.clear_bits = ~SH_CMT16_CMCSR_CMF,
|
|
.read_control = sh_cmt_read16,
|
|
.write_control = sh_cmt_write16,
|
|
.read_count = sh_cmt_read16,
|
|
.write_count = sh_cmt_write16,
|
|
},
|
|
[SH_CMT_32BIT] = {
|
|
.model = SH_CMT_32BIT,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read16,
|
|
.write_control = sh_cmt_write16,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
[SH_CMT_48BIT] = {
|
|
.model = SH_CMT_48BIT,
|
|
.channels_mask = 0x3f,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read32,
|
|
.write_control = sh_cmt_write32,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
[SH_CMT0_RCAR_GEN2] = {
|
|
.model = SH_CMT0_RCAR_GEN2,
|
|
.channels_mask = 0x60,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read32,
|
|
.write_control = sh_cmt_write32,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
[SH_CMT1_RCAR_GEN2] = {
|
|
.model = SH_CMT1_RCAR_GEN2,
|
|
.channels_mask = 0xff,
|
|
.width = 32,
|
|
.overflow_bit = SH_CMT32_CMCSR_CMF,
|
|
.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
|
|
.read_control = sh_cmt_read32,
|
|
.write_control = sh_cmt_write32,
|
|
.read_count = sh_cmt_read32,
|
|
.write_count = sh_cmt_write32,
|
|
},
|
|
};
|
|
|
|
#define CMCSR 0 /* channel register */
|
|
#define CMCNT 1 /* channel register */
|
|
#define CMCOR 2 /* channel register */
|
|
|
|
static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
|
|
{
|
|
if (ch->iostart)
|
|
return ch->cmt->info->read_control(ch->iostart, 0);
|
|
else
|
|
return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
if (ch->iostart)
|
|
ch->cmt->info->write_control(ch->iostart, 0, value);
|
|
else
|
|
ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
|
|
}
|
|
|
|
static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
|
|
{
|
|
return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
|
|
}
|
|
|
|
static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
|
|
{
|
|
return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
|
|
}
|
|
|
|
static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
|
|
{
|
|
ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
|
|
}
|
|
|
|
static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
|
|
{
|
|
u32 v1, v2, v3;
|
|
u32 o1, o2;
|
|
|
|
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
|
|
|
|
/* Make sure the timer value is stable. Stolen from acpi_pm.c */
|
|
do {
|
|
o2 = o1;
|
|
v1 = sh_cmt_read_cmcnt(ch);
|
|
v2 = sh_cmt_read_cmcnt(ch);
|
|
v3 = sh_cmt_read_cmcnt(ch);
|
|
o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
|
|
} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
|
|
|| (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
|
|
|
|
*has_wrapped = o1;
|
|
return v2;
|
|
}
|
|
|
|
static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
|
|
{
|
|
unsigned long flags;
|
|
u32 value;
|
|
|
|
/* start stop register shared by multiple timer channels */
|
|
raw_spin_lock_irqsave(&ch->cmt->lock, flags);
|
|
value = sh_cmt_read_cmstr(ch);
|
|
|
|
if (start)
|
|
value |= 1 << ch->timer_bit;
|
|
else
|
|
value &= ~(1 << ch->timer_bit);
|
|
|
|
sh_cmt_write_cmstr(ch, value);
|
|
raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
|
|
}
|
|
|
|
static int sh_cmt_enable(struct sh_cmt_channel *ch)
|
|
{
|
|
int k, ret;
|
|
|
|
pm_runtime_get_sync(&ch->cmt->pdev->dev);
|
|
dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
|
|
|
|
/* enable clock */
|
|
ret = clk_enable(ch->cmt->clk);
|
|
if (ret) {
|
|
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
|
|
ch->index);
|
|
goto err0;
|
|
}
|
|
|
|
/* make sure channel is disabled */
|
|
sh_cmt_start_stop_ch(ch, 0);
|
|
|
|
/* configure channel, periodic mode and maximum timeout */
|
|
if (ch->cmt->info->width == 16) {
|
|
sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
|
|
SH_CMT16_CMCSR_CKS512);
|
|
} else {
|
|
sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
|
|
SH_CMT32_CMCSR_CMTOUT_IE |
|
|
SH_CMT32_CMCSR_CMR_IRQ |
|
|
SH_CMT32_CMCSR_CKS_RCLK8);
|
|
}
|
|
|
|
sh_cmt_write_cmcor(ch, 0xffffffff);
|
|
sh_cmt_write_cmcnt(ch, 0);
|
|
|
|
/*
|
|
* According to the sh73a0 user's manual, as CMCNT can be operated
|
|
* only by the RCLK (Pseudo 32 KHz), there's one restriction on
|
|
* modifying CMCNT register; two RCLK cycles are necessary before
|
|
* this register is either read or any modification of the value
|
|
* it holds is reflected in the LSI's actual operation.
|
|
*
|
|
* While at it, we're supposed to clear out the CMCNT as of this
|
|
* moment, so make sure it's processed properly here. This will
|
|
* take RCLKx2 at maximum.
|
|
*/
|
|
for (k = 0; k < 100; k++) {
|
|
if (!sh_cmt_read_cmcnt(ch))
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (sh_cmt_read_cmcnt(ch)) {
|
|
dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
|
|
ch->index);
|
|
ret = -ETIMEDOUT;
|
|
goto err1;
|
|
}
|
|
|
|
/* enable channel */
|
|
sh_cmt_start_stop_ch(ch, 1);
|
|
return 0;
|
|
err1:
|
|
/* stop clock */
|
|
clk_disable(ch->cmt->clk);
|
|
|
|
err0:
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_disable(struct sh_cmt_channel *ch)
|
|
{
|
|
/* disable channel */
|
|
sh_cmt_start_stop_ch(ch, 0);
|
|
|
|
/* disable interrupts in CMT block */
|
|
sh_cmt_write_cmcsr(ch, 0);
|
|
|
|
/* stop clock */
|
|
clk_disable(ch->cmt->clk);
|
|
|
|
dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
|
|
pm_runtime_put(&ch->cmt->pdev->dev);
|
|
}
|
|
|
|
/* private flags */
|
|
#define FLAG_CLOCKEVENT (1 << 0)
|
|
#define FLAG_CLOCKSOURCE (1 << 1)
|
|
#define FLAG_REPROGRAM (1 << 2)
|
|
#define FLAG_SKIPEVENT (1 << 3)
|
|
#define FLAG_IRQCONTEXT (1 << 4)
|
|
|
|
static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
|
|
int absolute)
|
|
{
|
|
u32 value = ch->next_match_value;
|
|
u32 new_match;
|
|
u32 delay = 0;
|
|
u32 now = 0;
|
|
u32 has_wrapped;
|
|
|
|
now = sh_cmt_get_counter(ch, &has_wrapped);
|
|
ch->flags |= FLAG_REPROGRAM; /* force reprogram */
|
|
|
|
if (has_wrapped) {
|
|
/* we're competing with the interrupt handler.
|
|
* -> let the interrupt handler reprogram the timer.
|
|
* -> interrupt number two handles the event.
|
|
*/
|
|
ch->flags |= FLAG_SKIPEVENT;
|
|
return;
|
|
}
|
|
|
|
if (absolute)
|
|
now = 0;
|
|
|
|
do {
|
|
/* reprogram the timer hardware,
|
|
* but don't save the new match value yet.
|
|
*/
|
|
new_match = now + value + delay;
|
|
if (new_match > ch->max_match_value)
|
|
new_match = ch->max_match_value;
|
|
|
|
sh_cmt_write_cmcor(ch, new_match);
|
|
|
|
now = sh_cmt_get_counter(ch, &has_wrapped);
|
|
if (has_wrapped && (new_match > ch->match_value)) {
|
|
/* we are changing to a greater match value,
|
|
* so this wrap must be caused by the counter
|
|
* matching the old value.
|
|
* -> first interrupt reprograms the timer.
|
|
* -> interrupt number two handles the event.
|
|
*/
|
|
ch->flags |= FLAG_SKIPEVENT;
|
|
break;
|
|
}
|
|
|
|
if (has_wrapped) {
|
|
/* we are changing to a smaller match value,
|
|
* so the wrap must be caused by the counter
|
|
* matching the new value.
|
|
* -> save programmed match value.
|
|
* -> let isr handle the event.
|
|
*/
|
|
ch->match_value = new_match;
|
|
break;
|
|
}
|
|
|
|
/* be safe: verify hardware settings */
|
|
if (now < new_match) {
|
|
/* timer value is below match value, all good.
|
|
* this makes sure we won't miss any match events.
|
|
* -> save programmed match value.
|
|
* -> let isr handle the event.
|
|
*/
|
|
ch->match_value = new_match;
|
|
break;
|
|
}
|
|
|
|
/* the counter has reached a value greater
|
|
* than our new match value. and since the
|
|
* has_wrapped flag isn't set we must have
|
|
* programmed a too close event.
|
|
* -> increase delay and retry.
|
|
*/
|
|
if (delay)
|
|
delay <<= 1;
|
|
else
|
|
delay = 1;
|
|
|
|
if (!delay)
|
|
dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
|
|
ch->index);
|
|
|
|
} while (delay);
|
|
}
|
|
|
|
static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
|
|
{
|
|
if (delta > ch->max_match_value)
|
|
dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
|
|
ch->index);
|
|
|
|
ch->next_match_value = delta;
|
|
sh_cmt_clock_event_program_verify(ch, 0);
|
|
}
|
|
|
|
static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
__sh_cmt_set_next(ch, delta);
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct sh_cmt_channel *ch = dev_id;
|
|
|
|
/* clear flags */
|
|
sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
|
|
ch->cmt->info->clear_bits);
|
|
|
|
/* update clock source counter to begin with if enabled
|
|
* the wrap flag should be cleared by the timer specific
|
|
* isr before we end up here.
|
|
*/
|
|
if (ch->flags & FLAG_CLOCKSOURCE)
|
|
ch->total_cycles += ch->match_value + 1;
|
|
|
|
if (!(ch->flags & FLAG_REPROGRAM))
|
|
ch->next_match_value = ch->max_match_value;
|
|
|
|
ch->flags |= FLAG_IRQCONTEXT;
|
|
|
|
if (ch->flags & FLAG_CLOCKEVENT) {
|
|
if (!(ch->flags & FLAG_SKIPEVENT)) {
|
|
if (clockevent_state_oneshot(&ch->ced)) {
|
|
ch->next_match_value = ch->max_match_value;
|
|
ch->flags |= FLAG_REPROGRAM;
|
|
}
|
|
|
|
ch->ced.event_handler(&ch->ced);
|
|
}
|
|
}
|
|
|
|
ch->flags &= ~FLAG_SKIPEVENT;
|
|
|
|
if (ch->flags & FLAG_REPROGRAM) {
|
|
ch->flags &= ~FLAG_REPROGRAM;
|
|
sh_cmt_clock_event_program_verify(ch, 1);
|
|
|
|
if (ch->flags & FLAG_CLOCKEVENT)
|
|
if ((clockevent_state_shutdown(&ch->ced))
|
|
|| (ch->match_value == ch->next_match_value))
|
|
ch->flags &= ~FLAG_REPROGRAM;
|
|
}
|
|
|
|
ch->flags &= ~FLAG_IRQCONTEXT;
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
|
|
if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
|
|
ret = sh_cmt_enable(ch);
|
|
|
|
if (ret)
|
|
goto out;
|
|
ch->flags |= flag;
|
|
|
|
/* setup timeout if no clockevent */
|
|
if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
|
|
__sh_cmt_set_next(ch, ch->max_match_value);
|
|
out:
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long f;
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
|
|
f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
|
|
ch->flags &= ~flag;
|
|
|
|
if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
|
|
sh_cmt_disable(ch);
|
|
|
|
/* adjust the timeout to maximum if only clocksource left */
|
|
if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
|
|
__sh_cmt_set_next(ch, ch->max_match_value);
|
|
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
}
|
|
|
|
static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
|
|
{
|
|
return container_of(cs, struct sh_cmt_channel, cs);
|
|
}
|
|
|
|
static u64 sh_cmt_clocksource_read(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
unsigned long flags;
|
|
u32 has_wrapped;
|
|
u64 value;
|
|
u32 raw;
|
|
|
|
raw_spin_lock_irqsave(&ch->lock, flags);
|
|
value = ch->total_cycles;
|
|
raw = sh_cmt_get_counter(ch, &has_wrapped);
|
|
|
|
if (unlikely(has_wrapped))
|
|
raw += ch->match_value + 1;
|
|
raw_spin_unlock_irqrestore(&ch->lock, flags);
|
|
|
|
return value + raw;
|
|
}
|
|
|
|
static int sh_cmt_clocksource_enable(struct clocksource *cs)
|
|
{
|
|
int ret;
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
WARN_ON(ch->cs_enabled);
|
|
|
|
ch->total_cycles = 0;
|
|
|
|
ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
|
|
if (!ret)
|
|
ch->cs_enabled = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sh_cmt_clocksource_disable(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
WARN_ON(!ch->cs_enabled);
|
|
|
|
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
|
|
ch->cs_enabled = false;
|
|
}
|
|
|
|
static void sh_cmt_clocksource_suspend(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
if (!ch->cs_enabled)
|
|
return;
|
|
|
|
sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
|
|
pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
|
|
}
|
|
|
|
static void sh_cmt_clocksource_resume(struct clocksource *cs)
|
|
{
|
|
struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
|
|
|
|
if (!ch->cs_enabled)
|
|
return;
|
|
|
|
pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
|
|
sh_cmt_start(ch, FLAG_CLOCKSOURCE);
|
|
}
|
|
|
|
static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
|
|
const char *name)
|
|
{
|
|
struct clocksource *cs = &ch->cs;
|
|
|
|
cs->name = name;
|
|
cs->rating = 125;
|
|
cs->read = sh_cmt_clocksource_read;
|
|
cs->enable = sh_cmt_clocksource_enable;
|
|
cs->disable = sh_cmt_clocksource_disable;
|
|
cs->suspend = sh_cmt_clocksource_suspend;
|
|
cs->resume = sh_cmt_clocksource_resume;
|
|
cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
|
|
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
|
|
|
|
dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
|
|
ch->index);
|
|
|
|
clocksource_register_hz(cs, ch->cmt->rate);
|
|
return 0;
|
|
}
|
|
|
|
static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
|
|
{
|
|
return container_of(ced, struct sh_cmt_channel, ced);
|
|
}
|
|
|
|
static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
|
|
{
|
|
sh_cmt_start(ch, FLAG_CLOCKEVENT);
|
|
|
|
if (periodic)
|
|
sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
|
|
else
|
|
sh_cmt_set_next(ch, ch->max_match_value);
|
|
}
|
|
|
|
static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
|
|
int periodic)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
/* deal with old setting first */
|
|
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
|
|
sh_cmt_stop(ch, FLAG_CLOCKEVENT);
|
|
|
|
dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
|
|
ch->index, periodic ? "periodic" : "oneshot");
|
|
sh_cmt_clock_event_start(ch, periodic);
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
|
|
{
|
|
return sh_cmt_clock_event_set_state(ced, 0);
|
|
}
|
|
|
|
static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
|
|
{
|
|
return sh_cmt_clock_event_set_state(ced, 1);
|
|
}
|
|
|
|
static int sh_cmt_clock_event_next(unsigned long delta,
|
|
struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
BUG_ON(!clockevent_state_oneshot(ced));
|
|
if (likely(ch->flags & FLAG_IRQCONTEXT))
|
|
ch->next_match_value = delta - 1;
|
|
else
|
|
sh_cmt_set_next(ch, delta - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
|
|
clk_unprepare(ch->cmt->clk);
|
|
}
|
|
|
|
static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
|
|
{
|
|
struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
|
|
|
|
clk_prepare(ch->cmt->clk);
|
|
pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
|
|
}
|
|
|
|
static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
|
|
const char *name)
|
|
{
|
|
struct clock_event_device *ced = &ch->ced;
|
|
int irq;
|
|
int ret;
|
|
|
|
irq = platform_get_irq(ch->cmt->pdev, ch->index);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = request_irq(irq, sh_cmt_interrupt,
|
|
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
|
|
dev_name(&ch->cmt->pdev->dev), ch);
|
|
if (ret) {
|
|
dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
|
|
ch->index, irq);
|
|
return ret;
|
|
}
|
|
|
|
ced->name = name;
|
|
ced->features = CLOCK_EVT_FEAT_PERIODIC;
|
|
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
|
|
ced->rating = 125;
|
|
ced->cpumask = cpu_possible_mask;
|
|
ced->set_next_event = sh_cmt_clock_event_next;
|
|
ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
|
|
ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
|
|
ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
|
|
ced->suspend = sh_cmt_clock_event_suspend;
|
|
ced->resume = sh_cmt_clock_event_resume;
|
|
|
|
/* TODO: calculate good shift from rate and counter bit width */
|
|
ced->shift = 32;
|
|
ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
|
|
ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
|
|
ced->max_delta_ticks = ch->max_match_value;
|
|
ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
|
|
ced->min_delta_ticks = 0x1f;
|
|
|
|
dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
|
|
ch->index);
|
|
clockevents_register_device(ced);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
|
|
bool clockevent, bool clocksource)
|
|
{
|
|
int ret;
|
|
|
|
if (clockevent) {
|
|
ch->cmt->has_clockevent = true;
|
|
ret = sh_cmt_register_clockevent(ch, name);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (clocksource) {
|
|
ch->cmt->has_clocksource = true;
|
|
sh_cmt_register_clocksource(ch, name);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
|
|
unsigned int hwidx, bool clockevent,
|
|
bool clocksource, struct sh_cmt_device *cmt)
|
|
{
|
|
int ret;
|
|
|
|
/* Skip unused channels. */
|
|
if (!clockevent && !clocksource)
|
|
return 0;
|
|
|
|
ch->cmt = cmt;
|
|
ch->index = index;
|
|
ch->hwidx = hwidx;
|
|
ch->timer_bit = hwidx;
|
|
|
|
/*
|
|
* Compute the address of the channel control register block. For the
|
|
* timers with a per-channel start/stop register, compute its address
|
|
* as well.
|
|
*/
|
|
switch (cmt->info->model) {
|
|
case SH_CMT_16BIT:
|
|
ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
|
|
break;
|
|
case SH_CMT_32BIT:
|
|
case SH_CMT_48BIT:
|
|
ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
|
|
break;
|
|
case SH_CMT0_RCAR_GEN2:
|
|
case SH_CMT1_RCAR_GEN2:
|
|
ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
|
|
ch->ioctrl = ch->iostart + 0x10;
|
|
ch->timer_bit = 0;
|
|
break;
|
|
}
|
|
|
|
if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
|
|
ch->max_match_value = ~0;
|
|
else
|
|
ch->max_match_value = (1 << cmt->info->width) - 1;
|
|
|
|
ch->match_value = ch->max_match_value;
|
|
raw_spin_lock_init(&ch->lock);
|
|
|
|
ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
|
|
clockevent, clocksource);
|
|
if (ret) {
|
|
dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
|
|
ch->index);
|
|
return ret;
|
|
}
|
|
ch->cs_enabled = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
|
|
{
|
|
struct resource *mem;
|
|
|
|
mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
|
|
if (!mem) {
|
|
dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
|
|
if (cmt->mapbase == NULL) {
|
|
dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct platform_device_id sh_cmt_id_table[] = {
|
|
{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
|
|
{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
|
|
|
|
static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
|
|
{
|
|
/* deprecated, preserved for backward compatibility */
|
|
.compatible = "renesas,cmt-48",
|
|
.data = &sh_cmt_info[SH_CMT_48BIT]
|
|
},
|
|
{
|
|
/* deprecated, preserved for backward compatibility */
|
|
.compatible = "renesas,cmt-48-gen2",
|
|
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,r8a7740-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT_48BIT]
|
|
},
|
|
{
|
|
.compatible = "renesas,sh73a0-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT_48BIT]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen2-cmt0",
|
|
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen2-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen3-cmt0",
|
|
.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
|
|
},
|
|
{
|
|
.compatible = "renesas,rcar-gen3-cmt1",
|
|
.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
|
|
},
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
|
|
|
|
static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
|
|
{
|
|
unsigned int mask;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
cmt->pdev = pdev;
|
|
raw_spin_lock_init(&cmt->lock);
|
|
|
|
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
|
|
cmt->info = of_device_get_match_data(&pdev->dev);
|
|
cmt->hw_channels = cmt->info->channels_mask;
|
|
} else if (pdev->dev.platform_data) {
|
|
struct sh_timer_config *cfg = pdev->dev.platform_data;
|
|
const struct platform_device_id *id = pdev->id_entry;
|
|
|
|
cmt->info = (const struct sh_cmt_info *)id->driver_data;
|
|
cmt->hw_channels = cfg->channels_mask;
|
|
} else {
|
|
dev_err(&cmt->pdev->dev, "missing platform data\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Get hold of clock. */
|
|
cmt->clk = clk_get(&cmt->pdev->dev, "fck");
|
|
if (IS_ERR(cmt->clk)) {
|
|
dev_err(&cmt->pdev->dev, "cannot get clock\n");
|
|
return PTR_ERR(cmt->clk);
|
|
}
|
|
|
|
ret = clk_prepare(cmt->clk);
|
|
if (ret < 0)
|
|
goto err_clk_put;
|
|
|
|
/* Determine clock rate. */
|
|
ret = clk_enable(cmt->clk);
|
|
if (ret < 0)
|
|
goto err_clk_unprepare;
|
|
|
|
if (cmt->info->width == 16)
|
|
cmt->rate = clk_get_rate(cmt->clk) / 512;
|
|
else
|
|
cmt->rate = clk_get_rate(cmt->clk) / 8;
|
|
|
|
clk_disable(cmt->clk);
|
|
|
|
/* Map the memory resource(s). */
|
|
ret = sh_cmt_map_memory(cmt);
|
|
if (ret < 0)
|
|
goto err_clk_unprepare;
|
|
|
|
/* Allocate and setup the channels. */
|
|
cmt->num_channels = hweight8(cmt->hw_channels);
|
|
cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
|
|
GFP_KERNEL);
|
|
if (cmt->channels == NULL) {
|
|
ret = -ENOMEM;
|
|
goto err_unmap;
|
|
}
|
|
|
|
/*
|
|
* Use the first channel as a clock event device and the second channel
|
|
* as a clock source. If only one channel is available use it for both.
|
|
*/
|
|
for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
|
|
unsigned int hwidx = ffs(mask) - 1;
|
|
bool clocksource = i == 1 || cmt->num_channels == 1;
|
|
bool clockevent = i == 0;
|
|
|
|
ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
|
|
clockevent, clocksource, cmt);
|
|
if (ret < 0)
|
|
goto err_unmap;
|
|
|
|
mask &= ~(1 << hwidx);
|
|
}
|
|
|
|
platform_set_drvdata(pdev, cmt);
|
|
|
|
return 0;
|
|
|
|
err_unmap:
|
|
kfree(cmt->channels);
|
|
iounmap(cmt->mapbase);
|
|
err_clk_unprepare:
|
|
clk_unprepare(cmt->clk);
|
|
err_clk_put:
|
|
clk_put(cmt->clk);
|
|
return ret;
|
|
}
|
|
|
|
static int sh_cmt_probe(struct platform_device *pdev)
|
|
{
|
|
struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
|
|
int ret;
|
|
|
|
if (!is_early_platform_device(pdev)) {
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
}
|
|
|
|
if (cmt) {
|
|
dev_info(&pdev->dev, "kept as earlytimer\n");
|
|
goto out;
|
|
}
|
|
|
|
cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
|
|
if (cmt == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = sh_cmt_setup(cmt, pdev);
|
|
if (ret) {
|
|
kfree(cmt);
|
|
pm_runtime_idle(&pdev->dev);
|
|
return ret;
|
|
}
|
|
if (is_early_platform_device(pdev))
|
|
return 0;
|
|
|
|
out:
|
|
if (cmt->has_clockevent || cmt->has_clocksource)
|
|
pm_runtime_irq_safe(&pdev->dev);
|
|
else
|
|
pm_runtime_idle(&pdev->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sh_cmt_remove(struct platform_device *pdev)
|
|
{
|
|
return -EBUSY; /* cannot unregister clockevent and clocksource */
|
|
}
|
|
|
|
static struct platform_driver sh_cmt_device_driver = {
|
|
.probe = sh_cmt_probe,
|
|
.remove = sh_cmt_remove,
|
|
.driver = {
|
|
.name = "sh_cmt",
|
|
.of_match_table = of_match_ptr(sh_cmt_of_table),
|
|
},
|
|
.id_table = sh_cmt_id_table,
|
|
};
|
|
|
|
static int __init sh_cmt_init(void)
|
|
{
|
|
return platform_driver_register(&sh_cmt_device_driver);
|
|
}
|
|
|
|
static void __exit sh_cmt_exit(void)
|
|
{
|
|
platform_driver_unregister(&sh_cmt_device_driver);
|
|
}
|
|
|
|
early_platform_init("earlytimer", &sh_cmt_device_driver);
|
|
subsys_initcall(sh_cmt_init);
|
|
module_exit(sh_cmt_exit);
|
|
|
|
MODULE_AUTHOR("Magnus Damm");
|
|
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
|
|
MODULE_LICENSE("GPL v2");
|