linux/arch/x86/net/bpf_jit_comp.c
Alexei Starovoitov 622582786c net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.

Performance:

1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
  No performance difference is observed for filters that were JIT-able before

Example assembler code for BPF filter "tcpdump port 22"

original BPF -> old JIT:            original BPF -> internal BPF -> new JIT:
   0:   push   %rbp                      0:     push   %rbp
   1:   mov    %rsp,%rbp                 1:     mov    %rsp,%rbp
   4:   sub    $0x60,%rsp                4:     sub    $0x228,%rsp
   8:   mov    %rbx,-0x8(%rbp)           b:     mov    %rbx,-0x228(%rbp) // prologue
                                        12:     mov    %r13,-0x220(%rbp)
                                        19:     mov    %r14,-0x218(%rbp)
                                        20:     mov    %r15,-0x210(%rbp)
                                        27:     xor    %eax,%eax         // clear A
   c:   xor    %ebx,%ebx                29:     xor    %r13,%r13         // clear X
   e:   mov    0x68(%rdi),%r9d          2c:     mov    0x68(%rdi),%r9d
  12:   sub    0x6c(%rdi),%r9d          30:     sub    0x6c(%rdi),%r9d
  16:   mov    0xd8(%rdi),%r8           34:     mov    0xd8(%rdi),%r10
                                        3b:     mov    %rdi,%rbx
  1d:   mov    $0xc,%esi                3e:     mov    $0xc,%esi
  22:   callq  0xffffffffe1021e15       43:     callq  0xffffffffe102bd75
  27:   cmp    $0x86dd,%eax             48:     cmp    $0x86dd,%rax
  2c:   jne    0x0000000000000069       4f:     jne    0x000000000000009a
  2e:   mov    $0x14,%esi               51:     mov    $0x14,%esi
  33:   callq  0xffffffffe1021e31       56:     callq  0xffffffffe102bd91
  38:   cmp    $0x84,%eax               5b:     cmp    $0x84,%rax
  3d:   je     0x0000000000000049       62:     je     0x0000000000000074
  3f:   cmp    $0x6,%eax                64:     cmp    $0x6,%rax
  42:   je     0x0000000000000049       68:     je     0x0000000000000074
  44:   cmp    $0x11,%eax               6a:     cmp    $0x11,%rax
  47:   jne    0x00000000000000c6       6e:     jne    0x0000000000000117
  49:   mov    $0x36,%esi               74:     mov    $0x36,%esi
  4e:   callq  0xffffffffe1021e15       79:     callq  0xffffffffe102bd75
  53:   cmp    $0x16,%eax               7e:     cmp    $0x16,%rax
  56:   je     0x00000000000000bf       82:     je     0x0000000000000110
  58:   mov    $0x38,%esi               88:     mov    $0x38,%esi
  5d:   callq  0xffffffffe1021e15       8d:     callq  0xffffffffe102bd75
  62:   cmp    $0x16,%eax               92:     cmp    $0x16,%rax
  65:   je     0x00000000000000bf       96:     je     0x0000000000000110
  67:   jmp    0x00000000000000c6       98:     jmp    0x0000000000000117
  69:   cmp    $0x800,%eax              9a:     cmp    $0x800,%rax
  6e:   jne    0x00000000000000c6       a1:     jne    0x0000000000000117
  70:   mov    $0x17,%esi               a3:     mov    $0x17,%esi
  75:   callq  0xffffffffe1021e31       a8:     callq  0xffffffffe102bd91
  7a:   cmp    $0x84,%eax               ad:     cmp    $0x84,%rax
  7f:   je     0x000000000000008b       b4:     je     0x00000000000000c2
  81:   cmp    $0x6,%eax                b6:     cmp    $0x6,%rax
  84:   je     0x000000000000008b       ba:     je     0x00000000000000c2
  86:   cmp    $0x11,%eax               bc:     cmp    $0x11,%rax
  89:   jne    0x00000000000000c6       c0:     jne    0x0000000000000117
  8b:   mov    $0x14,%esi               c2:     mov    $0x14,%esi
  90:   callq  0xffffffffe1021e15       c7:     callq  0xffffffffe102bd75
  95:   test   $0x1fff,%ax              cc:     test   $0x1fff,%rax
  99:   jne    0x00000000000000c6       d3:     jne    0x0000000000000117
                                        d5:     mov    %rax,%r14
  9b:   mov    $0xe,%esi                d8:     mov    $0xe,%esi
  a0:   callq  0xffffffffe1021e44       dd:     callq  0xffffffffe102bd91 // MSH
                                        e2:     and    $0xf,%eax
                                        e5:     shl    $0x2,%eax
                                        e8:     mov    %rax,%r13
                                        eb:     mov    %r14,%rax
                                        ee:     mov    %r13,%rsi
  a5:   lea    0xe(%rbx),%esi           f1:     add    $0xe,%esi
  a8:   callq  0xffffffffe1021e0d       f4:     callq  0xffffffffe102bd6d
  ad:   cmp    $0x16,%eax               f9:     cmp    $0x16,%rax
  b0:   je     0x00000000000000bf       fd:     je     0x0000000000000110
                                        ff:     mov    %r13,%rsi
  b2:   lea    0x10(%rbx),%esi         102:     add    $0x10,%esi
  b5:   callq  0xffffffffe1021e0d      105:     callq  0xffffffffe102bd6d
  ba:   cmp    $0x16,%eax              10a:     cmp    $0x16,%rax
  bd:   jne    0x00000000000000c6      10e:     jne    0x0000000000000117
  bf:   mov    $0xffff,%eax            110:     mov    $0xffff,%eax
  c4:   jmp    0x00000000000000c8      115:     jmp    0x000000000000011c
  c6:   xor    %eax,%eax               117:     mov    $0x0,%eax
  c8:   mov    -0x8(%rbp),%rbx         11c:     mov    -0x228(%rbp),%rbx // epilogue
  cc:   leaveq                         123:     mov    -0x220(%rbp),%r13
  cd:   retq                           12a:     mov    -0x218(%rbp),%r14
                                       131:     mov    -0x210(%rbp),%r15
                                       138:     leaveq
                                       139:     retq

On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.

The difference in generated assembler is due to the following:

Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.

New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.

Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.

2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
  extensions. New JIT supports all BPF extensions.
  Performance of such filters improves 2-4 times depending on a filter.
  The longer the filter the higher performance gain.
  Synthetic benchmarks with many ancillary loads see 20x speedup
  which seems to be the maximum gain from JIT

Notes:

. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
  and can be used to see generated assembler

. there are two jit_compile() functions and code flow for classic filters is:
  sk_attach_filter() - load classic BPF
  bpf_jit_compile() - try to JIT from classic BPF
  sk_convert_filter() - convert classic to internal
  bpf_int_jit_compile() - JIT from internal BPF

  seccomp and tracing filters will just call bpf_int_jit_compile()

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-15 16:31:30 -04:00

953 lines
24 KiB
C

/* bpf_jit_comp.c : BPF JIT compiler
*
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
* Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <linux/random.h>
int bpf_jit_enable __read_mostly;
/*
* assembly code in arch/x86/net/bpf_jit.S
*/
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
extern u8 sk_load_byte_positive_offset[];
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
extern u8 sk_load_byte_negative_offset[];
static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
{
if (len == 1)
*ptr = bytes;
else if (len == 2)
*(u16 *)ptr = bytes;
else {
*(u32 *)ptr = bytes;
barrier();
}
return ptr + len;
}
#define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
#define EMIT1(b1) EMIT(b1, 1)
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
#define EMIT1_off32(b1, off) \
do {EMIT1(b1); EMIT(off, 4); } while (0)
#define EMIT2_off32(b1, b2, off) \
do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
#define EMIT3_off32(b1, b2, b3, off) \
do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
#define EMIT4_off32(b1, b2, b3, b4, off) \
do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
static inline bool is_imm8(int value)
{
return value <= 127 && value >= -128;
}
static inline bool is_simm32(s64 value)
{
return value == (s64) (s32) value;
}
/* mov A, X */
#define EMIT_mov(A, X) \
do {if (A != X) \
EMIT3(add_2mod(0x48, A, X), 0x89, add_2reg(0xC0, A, X)); \
} while (0)
static int bpf_size_to_x86_bytes(int bpf_size)
{
if (bpf_size == BPF_W)
return 4;
else if (bpf_size == BPF_H)
return 2;
else if (bpf_size == BPF_B)
return 1;
else if (bpf_size == BPF_DW)
return 4; /* imm32 */
else
return 0;
}
/* list of x86 cond jumps opcodes (. + s8)
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
*/
#define X86_JB 0x72
#define X86_JAE 0x73
#define X86_JE 0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA 0x77
#define X86_JGE 0x7D
#define X86_JG 0x7F
static inline void bpf_flush_icache(void *start, void *end)
{
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
smp_wmb();
flush_icache_range((unsigned long)start, (unsigned long)end);
set_fs(old_fs);
}
#define CHOOSE_LOAD_FUNC(K, func) \
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
struct bpf_binary_header {
unsigned int pages;
/* Note : for security reasons, bpf code will follow a randomly
* sized amount of int3 instructions
*/
u8 image[];
};
static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
u8 **image_ptr)
{
unsigned int sz, hole;
struct bpf_binary_header *header;
/* Most of BPF filters are really small,
* but if some of them fill a page, allow at least
* 128 extra bytes to insert a random section of int3
*/
sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
header = module_alloc(sz);
if (!header)
return NULL;
memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
header->pages = sz / PAGE_SIZE;
hole = sz - (proglen + sizeof(*header));
/* insert a random number of int3 instructions before BPF code */
*image_ptr = &header->image[prandom_u32() % hole];
return header;
}
/* pick a register outside of BPF range for JIT internal work */
#define AUX_REG (MAX_BPF_REG + 1)
/* the following table maps BPF registers to x64 registers.
* x64 register r12 is unused, since if used as base address register
* in load/store instructions, it always needs an extra byte of encoding
*/
static const int reg2hex[] = {
[BPF_REG_0] = 0, /* rax */
[BPF_REG_1] = 7, /* rdi */
[BPF_REG_2] = 6, /* rsi */
[BPF_REG_3] = 2, /* rdx */
[BPF_REG_4] = 1, /* rcx */
[BPF_REG_5] = 0, /* r8 */
[BPF_REG_6] = 3, /* rbx callee saved */
[BPF_REG_7] = 5, /* r13 callee saved */
[BPF_REG_8] = 6, /* r14 callee saved */
[BPF_REG_9] = 7, /* r15 callee saved */
[BPF_REG_FP] = 5, /* rbp readonly */
[AUX_REG] = 3, /* r11 temp register */
};
/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
* which need extra byte of encoding.
* rax,rcx,...,rbp have simpler encoding
*/
static inline bool is_ereg(u32 reg)
{
if (reg == BPF_REG_5 || reg == AUX_REG ||
(reg >= BPF_REG_7 && reg <= BPF_REG_9))
return true;
else
return false;
}
/* add modifiers if 'reg' maps to x64 registers r8..r15 */
static inline u8 add_1mod(u8 byte, u32 reg)
{
if (is_ereg(reg))
byte |= 1;
return byte;
}
static inline u8 add_2mod(u8 byte, u32 r1, u32 r2)
{
if (is_ereg(r1))
byte |= 1;
if (is_ereg(r2))
byte |= 4;
return byte;
}
/* encode dest register 'a_reg' into x64 opcode 'byte' */
static inline u8 add_1reg(u8 byte, u32 a_reg)
{
return byte + reg2hex[a_reg];
}
/* encode dest 'a_reg' and src 'x_reg' registers into x64 opcode 'byte' */
static inline u8 add_2reg(u8 byte, u32 a_reg, u32 x_reg)
{
return byte + reg2hex[a_reg] + (reg2hex[x_reg] << 3);
}
struct jit_context {
unsigned int cleanup_addr; /* epilogue code offset */
bool seen_ld_abs;
};
static int do_jit(struct sk_filter *bpf_prog, int *addrs, u8 *image,
int oldproglen, struct jit_context *ctx)
{
struct sock_filter_int *insn = bpf_prog->insnsi;
int insn_cnt = bpf_prog->len;
u8 temp[64];
int i;
int proglen = 0;
u8 *prog = temp;
int stacksize = MAX_BPF_STACK +
32 /* space for rbx, r13, r14, r15 */ +
8 /* space for skb_copy_bits() buffer */;
EMIT1(0x55); /* push rbp */
EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
/* sub rsp, stacksize */
EMIT3_off32(0x48, 0x81, 0xEC, stacksize);
/* all classic BPF filters use R6(rbx) save it */
/* mov qword ptr [rbp-X],rbx */
EMIT3_off32(0x48, 0x89, 0x9D, -stacksize);
/* sk_convert_filter() maps classic BPF register X to R7 and uses R8
* as temporary, so all tcpdump filters need to spill/fill R7(r13) and
* R8(r14). R9(r15) spill could be made conditional, but there is only
* one 'bpf_error' return path out of helper functions inside bpf_jit.S
* The overhead of extra spill is negligible for any filter other
* than synthetic ones. Therefore not worth adding complexity.
*/
/* mov qword ptr [rbp-X],r13 */
EMIT3_off32(0x4C, 0x89, 0xAD, -stacksize + 8);
/* mov qword ptr [rbp-X],r14 */
EMIT3_off32(0x4C, 0x89, 0xB5, -stacksize + 16);
/* mov qword ptr [rbp-X],r15 */
EMIT3_off32(0x4C, 0x89, 0xBD, -stacksize + 24);
/* clear A and X registers */
EMIT2(0x31, 0xc0); /* xor eax, eax */
EMIT3(0x4D, 0x31, 0xED); /* xor r13, r13 */
if (ctx->seen_ld_abs) {
/* r9d : skb->len - skb->data_len (headlen)
* r10 : skb->data
*/
if (is_imm8(offsetof(struct sk_buff, len)))
/* mov %r9d, off8(%rdi) */
EMIT4(0x44, 0x8b, 0x4f,
offsetof(struct sk_buff, len));
else
/* mov %r9d, off32(%rdi) */
EMIT3_off32(0x44, 0x8b, 0x8f,
offsetof(struct sk_buff, len));
if (is_imm8(offsetof(struct sk_buff, data_len)))
/* sub %r9d, off8(%rdi) */
EMIT4(0x44, 0x2b, 0x4f,
offsetof(struct sk_buff, data_len));
else
EMIT3_off32(0x44, 0x2b, 0x8f,
offsetof(struct sk_buff, data_len));
if (is_imm8(offsetof(struct sk_buff, data)))
/* mov %r10, off8(%rdi) */
EMIT4(0x4c, 0x8b, 0x57,
offsetof(struct sk_buff, data));
else
/* mov %r10, off32(%rdi) */
EMIT3_off32(0x4c, 0x8b, 0x97,
offsetof(struct sk_buff, data));
}
for (i = 0; i < insn_cnt; i++, insn++) {
const s32 K = insn->imm;
u32 a_reg = insn->a_reg;
u32 x_reg = insn->x_reg;
u8 b1 = 0, b2 = 0, b3 = 0;
s64 jmp_offset;
u8 jmp_cond;
int ilen;
u8 *func;
switch (insn->code) {
/* ALU */
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
switch (BPF_OP(insn->code)) {
case BPF_ADD: b2 = 0x01; break;
case BPF_SUB: b2 = 0x29; break;
case BPF_AND: b2 = 0x21; break;
case BPF_OR: b2 = 0x09; break;
case BPF_XOR: b2 = 0x31; break;
}
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_2mod(0x48, a_reg, x_reg));
else if (is_ereg(a_reg) || is_ereg(x_reg))
EMIT1(add_2mod(0x40, a_reg, x_reg));
EMIT2(b2, add_2reg(0xC0, a_reg, x_reg));
break;
/* mov A, X */
case BPF_ALU64 | BPF_MOV | BPF_X:
EMIT_mov(a_reg, x_reg);
break;
/* mov32 A, X */
case BPF_ALU | BPF_MOV | BPF_X:
if (is_ereg(a_reg) || is_ereg(x_reg))
EMIT1(add_2mod(0x40, a_reg, x_reg));
EMIT2(0x89, add_2reg(0xC0, a_reg, x_reg));
break;
/* neg A */
case BPF_ALU | BPF_NEG:
case BPF_ALU64 | BPF_NEG:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, a_reg));
else if (is_ereg(a_reg))
EMIT1(add_1mod(0x40, a_reg));
EMIT2(0xF7, add_1reg(0xD8, a_reg));
break;
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, a_reg));
else if (is_ereg(a_reg))
EMIT1(add_1mod(0x40, a_reg));
switch (BPF_OP(insn->code)) {
case BPF_ADD: b3 = 0xC0; break;
case BPF_SUB: b3 = 0xE8; break;
case BPF_AND: b3 = 0xE0; break;
case BPF_OR: b3 = 0xC8; break;
case BPF_XOR: b3 = 0xF0; break;
}
if (is_imm8(K))
EMIT3(0x83, add_1reg(b3, a_reg), K);
else
EMIT2_off32(0x81, add_1reg(b3, a_reg), K);
break;
case BPF_ALU64 | BPF_MOV | BPF_K:
/* optimization: if imm32 is positive,
* use 'mov eax, imm32' (which zero-extends imm32)
* to save 2 bytes
*/
if (K < 0) {
/* 'mov rax, imm32' sign extends imm32 */
b1 = add_1mod(0x48, a_reg);
b2 = 0xC7;
b3 = 0xC0;
EMIT3_off32(b1, b2, add_1reg(b3, a_reg), K);
break;
}
case BPF_ALU | BPF_MOV | BPF_K:
/* mov %eax, imm32 */
if (is_ereg(a_reg))
EMIT1(add_1mod(0x40, a_reg));
EMIT1_off32(add_1reg(0xB8, a_reg), K);
break;
/* A %= X, A /= X, A %= K, A /= K */
case BPF_ALU | BPF_MOD | BPF_X:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_X:
case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_K:
EMIT1(0x50); /* push rax */
EMIT1(0x52); /* push rdx */
if (BPF_SRC(insn->code) == BPF_X)
/* mov r11, X */
EMIT_mov(AUX_REG, x_reg);
else
/* mov r11, K */
EMIT3_off32(0x49, 0xC7, 0xC3, K);
/* mov rax, A */
EMIT_mov(BPF_REG_0, a_reg);
/* xor edx, edx
* equivalent to 'xor rdx, rdx', but one byte less
*/
EMIT2(0x31, 0xd2);
if (BPF_SRC(insn->code) == BPF_X) {
/* if (X == 0) return 0 */
/* cmp r11, 0 */
EMIT4(0x49, 0x83, 0xFB, 0x00);
/* jne .+9 (skip over pop, pop, xor and jmp) */
EMIT2(X86_JNE, 1 + 1 + 2 + 5);
EMIT1(0x5A); /* pop rdx */
EMIT1(0x58); /* pop rax */
EMIT2(0x31, 0xc0); /* xor eax, eax */
/* jmp cleanup_addr
* addrs[i] - 11, because there are 11 bytes
* after this insn: div, mov, pop, pop, mov
*/
jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
EMIT1_off32(0xE9, jmp_offset);
}
if (BPF_CLASS(insn->code) == BPF_ALU64)
/* div r11 */
EMIT3(0x49, 0xF7, 0xF3);
else
/* div r11d */
EMIT3(0x41, 0xF7, 0xF3);
if (BPF_OP(insn->code) == BPF_MOD)
/* mov r11, rdx */
EMIT3(0x49, 0x89, 0xD3);
else
/* mov r11, rax */
EMIT3(0x49, 0x89, 0xC3);
EMIT1(0x5A); /* pop rdx */
EMIT1(0x58); /* pop rax */
/* mov A, r11 */
EMIT_mov(a_reg, AUX_REG);
break;
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_MUL | BPF_X:
EMIT1(0x50); /* push rax */
EMIT1(0x52); /* push rdx */
/* mov r11, A */
EMIT_mov(AUX_REG, a_reg);
if (BPF_SRC(insn->code) == BPF_X)
/* mov rax, X */
EMIT_mov(BPF_REG_0, x_reg);
else
/* mov rax, K */
EMIT3_off32(0x48, 0xC7, 0xC0, K);
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, AUX_REG));
else if (is_ereg(AUX_REG))
EMIT1(add_1mod(0x40, AUX_REG));
/* mul(q) r11 */
EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
/* mov r11, rax */
EMIT_mov(AUX_REG, BPF_REG_0);
EMIT1(0x5A); /* pop rdx */
EMIT1(0x58); /* pop rax */
/* mov A, r11 */
EMIT_mov(a_reg, AUX_REG);
break;
/* shifts */
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, a_reg));
else if (is_ereg(a_reg))
EMIT1(add_1mod(0x40, a_reg));
switch (BPF_OP(insn->code)) {
case BPF_LSH: b3 = 0xE0; break;
case BPF_RSH: b3 = 0xE8; break;
case BPF_ARSH: b3 = 0xF8; break;
}
EMIT3(0xC1, add_1reg(b3, a_reg), K);
break;
case BPF_ALU | BPF_END | BPF_FROM_BE:
switch (K) {
case 16:
/* emit 'ror %ax, 8' to swap lower 2 bytes */
EMIT1(0x66);
if (is_ereg(a_reg))
EMIT1(0x41);
EMIT3(0xC1, add_1reg(0xC8, a_reg), 8);
break;
case 32:
/* emit 'bswap eax' to swap lower 4 bytes */
if (is_ereg(a_reg))
EMIT2(0x41, 0x0F);
else
EMIT1(0x0F);
EMIT1(add_1reg(0xC8, a_reg));
break;
case 64:
/* emit 'bswap rax' to swap 8 bytes */
EMIT3(add_1mod(0x48, a_reg), 0x0F,
add_1reg(0xC8, a_reg));
break;
}
break;
case BPF_ALU | BPF_END | BPF_FROM_LE:
break;
/* ST: *(u8*)(a_reg + off) = imm */
case BPF_ST | BPF_MEM | BPF_B:
if (is_ereg(a_reg))
EMIT2(0x41, 0xC6);
else
EMIT1(0xC6);
goto st;
case BPF_ST | BPF_MEM | BPF_H:
if (is_ereg(a_reg))
EMIT3(0x66, 0x41, 0xC7);
else
EMIT2(0x66, 0xC7);
goto st;
case BPF_ST | BPF_MEM | BPF_W:
if (is_ereg(a_reg))
EMIT2(0x41, 0xC7);
else
EMIT1(0xC7);
goto st;
case BPF_ST | BPF_MEM | BPF_DW:
EMIT2(add_1mod(0x48, a_reg), 0xC7);
st: if (is_imm8(insn->off))
EMIT2(add_1reg(0x40, a_reg), insn->off);
else
EMIT1_off32(add_1reg(0x80, a_reg), insn->off);
EMIT(K, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
break;
/* STX: *(u8*)(a_reg + off) = x_reg */
case BPF_STX | BPF_MEM | BPF_B:
/* emit 'mov byte ptr [rax + off], al' */
if (is_ereg(a_reg) || is_ereg(x_reg) ||
/* have to add extra byte for x86 SIL, DIL regs */
x_reg == BPF_REG_1 || x_reg == BPF_REG_2)
EMIT2(add_2mod(0x40, a_reg, x_reg), 0x88);
else
EMIT1(0x88);
goto stx;
case BPF_STX | BPF_MEM | BPF_H:
if (is_ereg(a_reg) || is_ereg(x_reg))
EMIT3(0x66, add_2mod(0x40, a_reg, x_reg), 0x89);
else
EMIT2(0x66, 0x89);
goto stx;
case BPF_STX | BPF_MEM | BPF_W:
if (is_ereg(a_reg) || is_ereg(x_reg))
EMIT2(add_2mod(0x40, a_reg, x_reg), 0x89);
else
EMIT1(0x89);
goto stx;
case BPF_STX | BPF_MEM | BPF_DW:
EMIT2(add_2mod(0x48, a_reg, x_reg), 0x89);
stx: if (is_imm8(insn->off))
EMIT2(add_2reg(0x40, a_reg, x_reg), insn->off);
else
EMIT1_off32(add_2reg(0x80, a_reg, x_reg),
insn->off);
break;
/* LDX: a_reg = *(u8*)(x_reg + off) */
case BPF_LDX | BPF_MEM | BPF_B:
/* emit 'movzx rax, byte ptr [rax + off]' */
EMIT3(add_2mod(0x48, x_reg, a_reg), 0x0F, 0xB6);
goto ldx;
case BPF_LDX | BPF_MEM | BPF_H:
/* emit 'movzx rax, word ptr [rax + off]' */
EMIT3(add_2mod(0x48, x_reg, a_reg), 0x0F, 0xB7);
goto ldx;
case BPF_LDX | BPF_MEM | BPF_W:
/* emit 'mov eax, dword ptr [rax+0x14]' */
if (is_ereg(a_reg) || is_ereg(x_reg))
EMIT2(add_2mod(0x40, x_reg, a_reg), 0x8B);
else
EMIT1(0x8B);
goto ldx;
case BPF_LDX | BPF_MEM | BPF_DW:
/* emit 'mov rax, qword ptr [rax+0x14]' */
EMIT2(add_2mod(0x48, x_reg, a_reg), 0x8B);
ldx: /* if insn->off == 0 we can save one extra byte, but
* special case of x86 r13 which always needs an offset
* is not worth the hassle
*/
if (is_imm8(insn->off))
EMIT2(add_2reg(0x40, x_reg, a_reg), insn->off);
else
EMIT1_off32(add_2reg(0x80, x_reg, a_reg),
insn->off);
break;
/* STX XADD: lock *(u32*)(a_reg + off) += x_reg */
case BPF_STX | BPF_XADD | BPF_W:
/* emit 'lock add dword ptr [rax + off], eax' */
if (is_ereg(a_reg) || is_ereg(x_reg))
EMIT3(0xF0, add_2mod(0x40, a_reg, x_reg), 0x01);
else
EMIT2(0xF0, 0x01);
goto xadd;
case BPF_STX | BPF_XADD | BPF_DW:
EMIT3(0xF0, add_2mod(0x48, a_reg, x_reg), 0x01);
xadd: if (is_imm8(insn->off))
EMIT2(add_2reg(0x40, a_reg, x_reg), insn->off);
else
EMIT1_off32(add_2reg(0x80, a_reg, x_reg),
insn->off);
break;
/* call */
case BPF_JMP | BPF_CALL:
func = (u8 *) __bpf_call_base + K;
jmp_offset = func - (image + addrs[i]);
if (ctx->seen_ld_abs) {
EMIT2(0x41, 0x52); /* push %r10 */
EMIT2(0x41, 0x51); /* push %r9 */
/* need to adjust jmp offset, since
* pop %r9, pop %r10 take 4 bytes after call insn
*/
jmp_offset += 4;
}
if (!K || !is_simm32(jmp_offset)) {
pr_err("unsupported bpf func %d addr %p image %p\n",
K, func, image);
return -EINVAL;
}
EMIT1_off32(0xE8, jmp_offset);
if (ctx->seen_ld_abs) {
EMIT2(0x41, 0x59); /* pop %r9 */
EMIT2(0x41, 0x5A); /* pop %r10 */
}
break;
/* cond jump */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
/* cmp a_reg, x_reg */
EMIT3(add_2mod(0x48, a_reg, x_reg), 0x39,
add_2reg(0xC0, a_reg, x_reg));
goto emit_cond_jmp;
case BPF_JMP | BPF_JSET | BPF_X:
/* test a_reg, x_reg */
EMIT3(add_2mod(0x48, a_reg, x_reg), 0x85,
add_2reg(0xC0, a_reg, x_reg));
goto emit_cond_jmp;
case BPF_JMP | BPF_JSET | BPF_K:
/* test a_reg, imm32 */
EMIT1(add_1mod(0x48, a_reg));
EMIT2_off32(0xF7, add_1reg(0xC0, a_reg), K);
goto emit_cond_jmp;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
/* cmp a_reg, imm8/32 */
EMIT1(add_1mod(0x48, a_reg));
if (is_imm8(K))
EMIT3(0x83, add_1reg(0xF8, a_reg), K);
else
EMIT2_off32(0x81, add_1reg(0xF8, a_reg), K);
emit_cond_jmp: /* convert BPF opcode to x86 */
switch (BPF_OP(insn->code)) {
case BPF_JEQ:
jmp_cond = X86_JE;
break;
case BPF_JSET:
case BPF_JNE:
jmp_cond = X86_JNE;
break;
case BPF_JGT:
/* GT is unsigned '>', JA in x86 */
jmp_cond = X86_JA;
break;
case BPF_JGE:
/* GE is unsigned '>=', JAE in x86 */
jmp_cond = X86_JAE;
break;
case BPF_JSGT:
/* signed '>', GT in x86 */
jmp_cond = X86_JG;
break;
case BPF_JSGE:
/* signed '>=', GE in x86 */
jmp_cond = X86_JGE;
break;
default: /* to silence gcc warning */
return -EFAULT;
}
jmp_offset = addrs[i + insn->off] - addrs[i];
if (is_imm8(jmp_offset)) {
EMIT2(jmp_cond, jmp_offset);
} else if (is_simm32(jmp_offset)) {
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
} else {
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
return -EFAULT;
}
break;
case BPF_JMP | BPF_JA:
jmp_offset = addrs[i + insn->off] - addrs[i];
if (!jmp_offset)
/* optimize out nop jumps */
break;
emit_jmp:
if (is_imm8(jmp_offset)) {
EMIT2(0xEB, jmp_offset);
} else if (is_simm32(jmp_offset)) {
EMIT1_off32(0xE9, jmp_offset);
} else {
pr_err("jmp gen bug %llx\n", jmp_offset);
return -EFAULT;
}
break;
case BPF_LD | BPF_IND | BPF_W:
func = sk_load_word;
goto common_load;
case BPF_LD | BPF_ABS | BPF_W:
func = CHOOSE_LOAD_FUNC(K, sk_load_word);
common_load: ctx->seen_ld_abs = true;
jmp_offset = func - (image + addrs[i]);
if (!func || !is_simm32(jmp_offset)) {
pr_err("unsupported bpf func %d addr %p image %p\n",
K, func, image);
return -EINVAL;
}
if (BPF_MODE(insn->code) == BPF_ABS) {
/* mov %esi, imm32 */
EMIT1_off32(0xBE, K);
} else {
/* mov %rsi, x_reg */
EMIT_mov(BPF_REG_2, x_reg);
if (K) {
if (is_imm8(K))
/* add %esi, imm8 */
EMIT3(0x83, 0xC6, K);
else
/* add %esi, imm32 */
EMIT2_off32(0x81, 0xC6, K);
}
}
/* skb pointer is in R6 (%rbx), it will be copied into
* %rdi if skb_copy_bits() call is necessary.
* sk_load_* helpers also use %r10 and %r9d.
* See bpf_jit.S
*/
EMIT1_off32(0xE8, jmp_offset); /* call */
break;
case BPF_LD | BPF_IND | BPF_H:
func = sk_load_half;
goto common_load;
case BPF_LD | BPF_ABS | BPF_H:
func = CHOOSE_LOAD_FUNC(K, sk_load_half);
goto common_load;
case BPF_LD | BPF_IND | BPF_B:
func = sk_load_byte;
goto common_load;
case BPF_LD | BPF_ABS | BPF_B:
func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
goto common_load;
case BPF_JMP | BPF_EXIT:
if (i != insn_cnt - 1) {
jmp_offset = ctx->cleanup_addr - addrs[i];
goto emit_jmp;
}
/* update cleanup_addr */
ctx->cleanup_addr = proglen;
/* mov rbx, qword ptr [rbp-X] */
EMIT3_off32(0x48, 0x8B, 0x9D, -stacksize);
/* mov r13, qword ptr [rbp-X] */
EMIT3_off32(0x4C, 0x8B, 0xAD, -stacksize + 8);
/* mov r14, qword ptr [rbp-X] */
EMIT3_off32(0x4C, 0x8B, 0xB5, -stacksize + 16);
/* mov r15, qword ptr [rbp-X] */
EMIT3_off32(0x4C, 0x8B, 0xBD, -stacksize + 24);
EMIT1(0xC9); /* leave */
EMIT1(0xC3); /* ret */
break;
default:
/* By design x64 JIT should support all BPF instructions
* This error will be seen if new instruction was added
* to interpreter, but not to JIT
* or if there is junk in sk_filter
*/
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
return -EINVAL;
}
ilen = prog - temp;
if (image) {
if (unlikely(proglen + ilen > oldproglen)) {
pr_err("bpf_jit_compile fatal error\n");
return -EFAULT;
}
memcpy(image + proglen, temp, ilen);
}
proglen += ilen;
addrs[i] = proglen;
prog = temp;
}
return proglen;
}
void bpf_jit_compile(struct sk_filter *prog)
{
}
void bpf_int_jit_compile(struct sk_filter *prog)
{
struct bpf_binary_header *header = NULL;
int proglen, oldproglen = 0;
struct jit_context ctx = {};
u8 *image = NULL;
int *addrs;
int pass;
int i;
if (!bpf_jit_enable)
return;
if (!prog || !prog->len)
return;
addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
if (!addrs)
return;
/* Before first pass, make a rough estimation of addrs[]
* each bpf instruction is translated to less than 64 bytes
*/
for (proglen = 0, i = 0; i < prog->len; i++) {
proglen += 64;
addrs[i] = proglen;
}
ctx.cleanup_addr = proglen;
for (pass = 0; pass < 10; pass++) {
proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
if (proglen <= 0) {
image = NULL;
if (header)
module_free(NULL, header);
goto out;
}
if (image) {
if (proglen != oldproglen)
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
proglen, oldproglen);
break;
}
if (proglen == oldproglen) {
header = bpf_alloc_binary(proglen, &image);
if (!header)
goto out;
}
oldproglen = proglen;
}
if (bpf_jit_enable > 1)
bpf_jit_dump(prog->len, proglen, 0, image);
if (image) {
bpf_flush_icache(header, image + proglen);
set_memory_ro((unsigned long)header, header->pages);
prog->bpf_func = (void *)image;
prog->jited = 1;
}
out:
kfree(addrs);
}
static void bpf_jit_free_deferred(struct work_struct *work)
{
struct sk_filter *fp = container_of(work, struct sk_filter, work);
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
struct bpf_binary_header *header = (void *)addr;
set_memory_rw(addr, header->pages);
module_free(NULL, header);
kfree(fp);
}
void bpf_jit_free(struct sk_filter *fp)
{
if (fp->jited) {
INIT_WORK(&fp->work, bpf_jit_free_deferred);
schedule_work(&fp->work);
} else {
kfree(fp);
}
}