linux/arch/arm/crypto/Kconfig
Ard Biesheuvel 61c581a46a crypto: move gf128mul library into lib/crypto
The gf128mul library does not depend on the crypto API at all, so it can
be moved into lib/crypto. This will allow us to use it in other library
code in a subsequent patch without having to depend on CONFIG_CRYPTO.

While at it, change the Kconfig symbol name to align with other crypto
library implementations. However, the source file name is retained, as
it is reflected in the module .ko filename, and changing this might
break things for users.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-11-11 18:14:59 +08:00

244 lines
6.9 KiB
Plaintext

# SPDX-License-Identifier: GPL-2.0
menu "Accelerated Cryptographic Algorithms for CPU (arm)"
config CRYPTO_CURVE25519_NEON
tristate "Public key crypto: Curve25519 (NEON)"
depends on KERNEL_MODE_NEON
select CRYPTO_LIB_CURVE25519_GENERIC
select CRYPTO_ARCH_HAVE_LIB_CURVE25519
help
Curve25519 algorithm
Architecture: arm with
- NEON (Advanced SIMD) extensions
config CRYPTO_GHASH_ARM_CE
tristate "Hash functions: GHASH (PMULL/NEON/ARMv8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_CRYPTD
select CRYPTO_LIB_GF128MUL
help
GCM GHASH function (NIST SP800-38D)
Architecture: arm using
- PMULL (Polynomial Multiply Long) instructions
- NEON (Advanced SIMD) extensions
- ARMv8 Crypto Extensions
Use an implementation of GHASH (used by the GCM AEAD chaining mode)
that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64)
that is part of the ARMv8 Crypto Extensions, or a slower variant that
uses the vmull.p8 instruction that is part of the basic NEON ISA.
config CRYPTO_NHPOLY1305_NEON
tristate "Hash functions: NHPoly1305 (NEON)"
depends on KERNEL_MODE_NEON
select CRYPTO_NHPOLY1305
help
NHPoly1305 hash function (Adiantum)
Architecture: arm using:
- NEON (Advanced SIMD) extensions
config CRYPTO_POLY1305_ARM
tristate "Hash functions: Poly1305 (NEON)"
select CRYPTO_HASH
select CRYPTO_ARCH_HAVE_LIB_POLY1305
help
Poly1305 authenticator algorithm (RFC7539)
Architecture: arm optionally using
- NEON (Advanced SIMD) extensions
config CRYPTO_BLAKE2S_ARM
bool "Hash functions: BLAKE2s"
select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
help
BLAKE2s cryptographic hash function (RFC 7693)
Architecture: arm
This is faster than the generic implementations of BLAKE2s and
BLAKE2b, but slower than the NEON implementation of BLAKE2b.
There is no NEON implementation of BLAKE2s, since NEON doesn't
really help with it.
config CRYPTO_BLAKE2B_NEON
tristate "Hash functions: BLAKE2b (NEON)"
depends on KERNEL_MODE_NEON
select CRYPTO_BLAKE2B
help
BLAKE2b cryptographic hash function (RFC 7693)
Architecture: arm using
- NEON (Advanced SIMD) extensions
BLAKE2b digest algorithm optimized with ARM NEON instructions.
On ARM processors that have NEON support but not the ARMv8
Crypto Extensions, typically this BLAKE2b implementation is
much faster than the SHA-2 family and slightly faster than
SHA-1.
config CRYPTO_SHA1_ARM
tristate "Hash functions: SHA-1"
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash algorithm (FIPS 180)
Architecture: arm
config CRYPTO_SHA1_ARM_NEON
tristate "Hash functions: SHA-1 (NEON)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA1_ARM
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash algorithm (FIPS 180)
Architecture: arm using
- NEON (Advanced SIMD) extensions
config CRYPTO_SHA1_ARM_CE
tristate "Hash functions: SHA-1 (ARMv8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA1_ARM
select CRYPTO_HASH
help
SHA-1 secure hash algorithm (FIPS 180)
Architecture: arm using ARMv8 Crypto Extensions
config CRYPTO_SHA2_ARM_CE
tristate "Hash functions: SHA-224 and SHA-256 (ARMv8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_SHA256_ARM
select CRYPTO_HASH
help
SHA-224 and SHA-256 secure hash algorithms (FIPS 180)
Architecture: arm using
- ARMv8 Crypto Extensions
config CRYPTO_SHA256_ARM
tristate "Hash functions: SHA-224 and SHA-256 (NEON)"
select CRYPTO_HASH
depends on !CPU_V7M
help
SHA-224 and SHA-256 secure hash algorithms (FIPS 180)
Architecture: arm using
- NEON (Advanced SIMD) extensions
config CRYPTO_SHA512_ARM
tristate "Hash functions: SHA-384 and SHA-512 (NEON)"
select CRYPTO_HASH
depends on !CPU_V7M
help
SHA-384 and SHA-512 secure hash algorithms (FIPS 180)
Architecture: arm using
- NEON (Advanced SIMD) extensions
config CRYPTO_AES_ARM
tristate "Ciphers: AES"
select CRYPTO_ALGAPI
select CRYPTO_AES
help
Block ciphers: AES cipher algorithms (FIPS-197)
Architecture: arm
On ARM processors without the Crypto Extensions, this is the
fastest AES implementation for single blocks. For multiple
blocks, the NEON bit-sliced implementation is usually faster.
This implementation may be vulnerable to cache timing attacks,
since it uses lookup tables. However, as countermeasures it
disables IRQs and preloads the tables; it is hoped this makes
such attacks very difficult.
config CRYPTO_AES_ARM_BS
tristate "Ciphers: AES, modes: ECB/CBC/CTR/XTS (bit-sliced NEON)"
depends on KERNEL_MODE_NEON
select CRYPTO_SKCIPHER
select CRYPTO_LIB_AES
select CRYPTO_AES
select CRYPTO_CBC
select CRYPTO_SIMD
help
Length-preserving ciphers: AES cipher algorithms (FIPS-197)
with block cipher modes:
- ECB (Electronic Codebook) mode (NIST SP800-38A)
- CBC (Cipher Block Chaining) mode (NIST SP800-38A)
- CTR (Counter) mode (NIST SP800-38A)
- XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
and IEEE 1619)
Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
and for XTS mode encryption, CBC and XTS mode decryption speedup is
around 25%. (CBC encryption speed is not affected by this driver.)
This implementation does not rely on any lookup tables so it is
believed to be invulnerable to cache timing attacks.
config CRYPTO_AES_ARM_CE
tristate "Ciphers: AES, modes: ECB/CBC/CTS/CTR/XTS (ARMv8 Crypto Extensions)"
depends on KERNEL_MODE_NEON
select CRYPTO_SKCIPHER
select CRYPTO_LIB_AES
select CRYPTO_SIMD
help
Length-preserving ciphers: AES cipher algorithms (FIPS-197)
with block cipher modes:
- ECB (Electronic Codebook) mode (NIST SP800-38A)
- CBC (Cipher Block Chaining) mode (NIST SP800-38A)
- CTR (Counter) mode (NIST SP800-38A)
- CTS (Cipher Text Stealing) mode (NIST SP800-38A)
- XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
and IEEE 1619)
Architecture: arm using:
- ARMv8 Crypto Extensions
config CRYPTO_CHACHA20_NEON
tristate "Ciphers: ChaCha20, XChaCha20, XChaCha12 (NEON)"
select CRYPTO_SKCIPHER
select CRYPTO_ARCH_HAVE_LIB_CHACHA
help
Length-preserving ciphers: ChaCha20, XChaCha20, and XChaCha12
stream cipher algorithms
Architecture: arm using:
- NEON (Advanced SIMD) extensions
config CRYPTO_CRC32_ARM_CE
tristate "CRC32C and CRC32"
depends on KERNEL_MODE_NEON
depends on CRC32
select CRYPTO_HASH
help
CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
and CRC32 CRC algorithm (IEEE 802.3)
Architecture: arm using:
- CRC and/or PMULL instructions
Drivers: crc32-arm-ce and crc32c-arm-ce
config CRYPTO_CRCT10DIF_ARM_CE
tristate "CRCT10DIF"
depends on KERNEL_MODE_NEON
depends on CRC_T10DIF
select CRYPTO_HASH
help
CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
Architecture: arm using:
- PMULL (Polynomial Multiply Long) instructions
endmenu