linux/drivers/md/dm-kcopyd.c
Nikos Tsironis c663e04097 dm kcopyd: Increase default sub-job size to 512KB
Currently, kcopyd has a sub-job size of 64KB and a maximum number of 8
sub-jobs. As a result, for any kcopyd job, we have a maximum of 512KB of
I/O in flight.

This upper limit to the amount of in-flight I/O under-utilizes fast
devices and results in decreased throughput, e.g., when writing to a
snapshotted thin LV with I/O size less than the pool's block size (so
COW is performed using kcopyd).

Increase kcopyd's default sub-job size to 512KB, so we have a maximum of
4MB of I/O in flight for each kcopyd job. This results in an up to 96%
improvement of bandwidth when writing to a snapshotted thin LV, with I/O
sizes less than the pool's block size.

Also, add dm_mod.kcopyd_subjob_size_kb module parameter to allow users
to fine tune the sub-job size of kcopyd. The default value of this
parameter is 512KB and the maximum allowed value is 1024KB.

We evaluate the performance impact of the change by running the
snap_breaking_throughput benchmark, from the device mapper test suite
[1].

The benchmark:

  1. Creates a 1G thin LV
  2. Provisions the thin LV
  3. Takes a snapshot of the thin LV
  4. Writes to the thin LV with:

      dd if=/dev/zero of=/dev/vg/thin_lv oflag=direct bs=<I/O size>

Running this benchmark with various thin pool block sizes and dd I/O
sizes (all combinations triggering the use of kcopyd) we get the
following results:

+-----------------+-------------+------------------+-----------------+
| Pool block size | dd I/O size | BW before (MB/s) | BW after (MB/s) |
+-----------------+-------------+------------------+-----------------+
|       1 MB      |      256 KB |       242        |       280       |
|       1 MB      |      512 KB |       238        |       295       |
|                 |             |                  |                 |
|       2 MB      |      256 KB |       238        |       354       |
|       2 MB      |      512 KB |       241        |       380       |
|       2 MB      |        1 MB |       245        |       394       |
|                 |             |                  |                 |
|       4 MB      |      256 KB |       248        |       412       |
|       4 MB      |      512 KB |       234        |       432       |
|       4 MB      |        1 MB |       251        |       474       |
|       4 MB      |        2 MB |       257        |       504       |
|                 |             |                  |                 |
|       8 MB      |      256 KB |       239        |       420       |
|       8 MB      |      512 KB |       256        |       431       |
|       8 MB      |        1 MB |       264        |       467       |
|       8 MB      |        2 MB |       264        |       502       |
|       8 MB      |        4 MB |       281        |       537       |
+-----------------+-------------+------------------+-----------------+

[1] https://github.com/jthornber/device-mapper-test-suite

Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2019-07-17 11:24:16 -04:00

983 lines
21 KiB
C

/*
* Copyright (C) 2002 Sistina Software (UK) Limited.
* Copyright (C) 2006 Red Hat GmbH
*
* This file is released under the GPL.
*
* Kcopyd provides a simple interface for copying an area of one
* block-device to one or more other block-devices, with an asynchronous
* completion notification.
*/
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/device-mapper.h>
#include <linux/dm-kcopyd.h>
#include "dm-core.h"
#define SPLIT_COUNT 8
#define MIN_JOBS 8
#define DEFAULT_SUB_JOB_SIZE_KB 512
#define MAX_SUB_JOB_SIZE_KB 1024
static unsigned kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
module_param(kcopyd_subjob_size_kb, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
static unsigned dm_get_kcopyd_subjob_size(void)
{
unsigned sub_job_size_kb;
sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
DEFAULT_SUB_JOB_SIZE_KB,
MAX_SUB_JOB_SIZE_KB);
return sub_job_size_kb << 1;
}
/*-----------------------------------------------------------------
* Each kcopyd client has its own little pool of preallocated
* pages for kcopyd io.
*---------------------------------------------------------------*/
struct dm_kcopyd_client {
struct page_list *pages;
unsigned nr_reserved_pages;
unsigned nr_free_pages;
unsigned sub_job_size;
struct dm_io_client *io_client;
wait_queue_head_t destroyq;
mempool_t job_pool;
struct workqueue_struct *kcopyd_wq;
struct work_struct kcopyd_work;
struct dm_kcopyd_throttle *throttle;
atomic_t nr_jobs;
/*
* We maintain four lists of jobs:
*
* i) jobs waiting for pages
* ii) jobs that have pages, and are waiting for the io to be issued.
* iii) jobs that don't need to do any IO and just run a callback
* iv) jobs that have completed.
*
* All four of these are protected by job_lock.
*/
spinlock_t job_lock;
struct list_head callback_jobs;
struct list_head complete_jobs;
struct list_head io_jobs;
struct list_head pages_jobs;
};
static struct page_list zero_page_list;
static DEFINE_SPINLOCK(throttle_spinlock);
/*
* IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
* When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
* by 2.
*/
#define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
/*
* Sleep this number of milliseconds.
*
* The value was decided experimentally.
* Smaller values seem to cause an increased copy rate above the limit.
* The reason for this is unknown but possibly due to jiffies rounding errors
* or read/write cache inside the disk.
*/
#define SLEEP_MSEC 100
/*
* Maximum number of sleep events. There is a theoretical livelock if more
* kcopyd clients do work simultaneously which this limit avoids.
*/
#define MAX_SLEEPS 10
static void io_job_start(struct dm_kcopyd_throttle *t)
{
unsigned throttle, now, difference;
int slept = 0, skew;
if (unlikely(!t))
return;
try_again:
spin_lock_irq(&throttle_spinlock);
throttle = READ_ONCE(t->throttle);
if (likely(throttle >= 100))
goto skip_limit;
now = jiffies;
difference = now - t->last_jiffies;
t->last_jiffies = now;
if (t->num_io_jobs)
t->io_period += difference;
t->total_period += difference;
/*
* Maintain sane values if we got a temporary overflow.
*/
if (unlikely(t->io_period > t->total_period))
t->io_period = t->total_period;
if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
t->total_period >>= shift;
t->io_period >>= shift;
}
skew = t->io_period - throttle * t->total_period / 100;
if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
slept++;
spin_unlock_irq(&throttle_spinlock);
msleep(SLEEP_MSEC);
goto try_again;
}
skip_limit:
t->num_io_jobs++;
spin_unlock_irq(&throttle_spinlock);
}
static void io_job_finish(struct dm_kcopyd_throttle *t)
{
unsigned long flags;
if (unlikely(!t))
return;
spin_lock_irqsave(&throttle_spinlock, flags);
t->num_io_jobs--;
if (likely(READ_ONCE(t->throttle) >= 100))
goto skip_limit;
if (!t->num_io_jobs) {
unsigned now, difference;
now = jiffies;
difference = now - t->last_jiffies;
t->last_jiffies = now;
t->io_period += difference;
t->total_period += difference;
/*
* Maintain sane values if we got a temporary overflow.
*/
if (unlikely(t->io_period > t->total_period))
t->io_period = t->total_period;
}
skip_limit:
spin_unlock_irqrestore(&throttle_spinlock, flags);
}
static void wake(struct dm_kcopyd_client *kc)
{
queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
}
/*
* Obtain one page for the use of kcopyd.
*/
static struct page_list *alloc_pl(gfp_t gfp)
{
struct page_list *pl;
pl = kmalloc(sizeof(*pl), gfp);
if (!pl)
return NULL;
pl->page = alloc_page(gfp);
if (!pl->page) {
kfree(pl);
return NULL;
}
return pl;
}
static void free_pl(struct page_list *pl)
{
__free_page(pl->page);
kfree(pl);
}
/*
* Add the provided pages to a client's free page list, releasing
* back to the system any beyond the reserved_pages limit.
*/
static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
{
struct page_list *next;
do {
next = pl->next;
if (kc->nr_free_pages >= kc->nr_reserved_pages)
free_pl(pl);
else {
pl->next = kc->pages;
kc->pages = pl;
kc->nr_free_pages++;
}
pl = next;
} while (pl);
}
static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
unsigned int nr, struct page_list **pages)
{
struct page_list *pl;
*pages = NULL;
do {
pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
if (unlikely(!pl)) {
/* Use reserved pages */
pl = kc->pages;
if (unlikely(!pl))
goto out_of_memory;
kc->pages = pl->next;
kc->nr_free_pages--;
}
pl->next = *pages;
*pages = pl;
} while (--nr);
return 0;
out_of_memory:
if (*pages)
kcopyd_put_pages(kc, *pages);
return -ENOMEM;
}
/*
* These three functions resize the page pool.
*/
static void drop_pages(struct page_list *pl)
{
struct page_list *next;
while (pl) {
next = pl->next;
free_pl(pl);
pl = next;
}
}
/*
* Allocate and reserve nr_pages for the use of a specific client.
*/
static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
{
unsigned i;
struct page_list *pl = NULL, *next;
for (i = 0; i < nr_pages; i++) {
next = alloc_pl(GFP_KERNEL);
if (!next) {
if (pl)
drop_pages(pl);
return -ENOMEM;
}
next->next = pl;
pl = next;
}
kc->nr_reserved_pages += nr_pages;
kcopyd_put_pages(kc, pl);
return 0;
}
static void client_free_pages(struct dm_kcopyd_client *kc)
{
BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
drop_pages(kc->pages);
kc->pages = NULL;
kc->nr_free_pages = kc->nr_reserved_pages = 0;
}
/*-----------------------------------------------------------------
* kcopyd_jobs need to be allocated by the *clients* of kcopyd,
* for this reason we use a mempool to prevent the client from
* ever having to do io (which could cause a deadlock).
*---------------------------------------------------------------*/
struct kcopyd_job {
struct dm_kcopyd_client *kc;
struct list_head list;
unsigned long flags;
/*
* Error state of the job.
*/
int read_err;
unsigned long write_err;
/*
* Either READ or WRITE
*/
int rw;
struct dm_io_region source;
/*
* The destinations for the transfer.
*/
unsigned int num_dests;
struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
struct page_list *pages;
/*
* Set this to ensure you are notified when the job has
* completed. 'context' is for callback to use.
*/
dm_kcopyd_notify_fn fn;
void *context;
/*
* These fields are only used if the job has been split
* into more manageable parts.
*/
struct mutex lock;
atomic_t sub_jobs;
sector_t progress;
sector_t write_offset;
struct kcopyd_job *master_job;
};
static struct kmem_cache *_job_cache;
int __init dm_kcopyd_init(void)
{
_job_cache = kmem_cache_create("kcopyd_job",
sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
__alignof__(struct kcopyd_job), 0, NULL);
if (!_job_cache)
return -ENOMEM;
zero_page_list.next = &zero_page_list;
zero_page_list.page = ZERO_PAGE(0);
return 0;
}
void dm_kcopyd_exit(void)
{
kmem_cache_destroy(_job_cache);
_job_cache = NULL;
}
/*
* Functions to push and pop a job onto the head of a given job
* list.
*/
static struct kcopyd_job *pop_io_job(struct list_head *jobs,
struct dm_kcopyd_client *kc)
{
struct kcopyd_job *job;
/*
* For I/O jobs, pop any read, any write without sequential write
* constraint and sequential writes that are at the right position.
*/
list_for_each_entry(job, jobs, list) {
if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
list_del(&job->list);
return job;
}
if (job->write_offset == job->master_job->write_offset) {
job->master_job->write_offset += job->source.count;
list_del(&job->list);
return job;
}
}
return NULL;
}
static struct kcopyd_job *pop(struct list_head *jobs,
struct dm_kcopyd_client *kc)
{
struct kcopyd_job *job = NULL;
unsigned long flags;
spin_lock_irqsave(&kc->job_lock, flags);
if (!list_empty(jobs)) {
if (jobs == &kc->io_jobs)
job = pop_io_job(jobs, kc);
else {
job = list_entry(jobs->next, struct kcopyd_job, list);
list_del(&job->list);
}
}
spin_unlock_irqrestore(&kc->job_lock, flags);
return job;
}
static void push(struct list_head *jobs, struct kcopyd_job *job)
{
unsigned long flags;
struct dm_kcopyd_client *kc = job->kc;
spin_lock_irqsave(&kc->job_lock, flags);
list_add_tail(&job->list, jobs);
spin_unlock_irqrestore(&kc->job_lock, flags);
}
static void push_head(struct list_head *jobs, struct kcopyd_job *job)
{
unsigned long flags;
struct dm_kcopyd_client *kc = job->kc;
spin_lock_irqsave(&kc->job_lock, flags);
list_add(&job->list, jobs);
spin_unlock_irqrestore(&kc->job_lock, flags);
}
/*
* These three functions process 1 item from the corresponding
* job list.
*
* They return:
* < 0: error
* 0: success
* > 0: can't process yet.
*/
static int run_complete_job(struct kcopyd_job *job)
{
void *context = job->context;
int read_err = job->read_err;
unsigned long write_err = job->write_err;
dm_kcopyd_notify_fn fn = job->fn;
struct dm_kcopyd_client *kc = job->kc;
if (job->pages && job->pages != &zero_page_list)
kcopyd_put_pages(kc, job->pages);
/*
* If this is the master job, the sub jobs have already
* completed so we can free everything.
*/
if (job->master_job == job) {
mutex_destroy(&job->lock);
mempool_free(job, &kc->job_pool);
}
fn(read_err, write_err, context);
if (atomic_dec_and_test(&kc->nr_jobs))
wake_up(&kc->destroyq);
cond_resched();
return 0;
}
static void complete_io(unsigned long error, void *context)
{
struct kcopyd_job *job = (struct kcopyd_job *) context;
struct dm_kcopyd_client *kc = job->kc;
io_job_finish(kc->throttle);
if (error) {
if (op_is_write(job->rw))
job->write_err |= error;
else
job->read_err = 1;
if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
push(&kc->complete_jobs, job);
wake(kc);
return;
}
}
if (op_is_write(job->rw))
push(&kc->complete_jobs, job);
else {
job->rw = WRITE;
push(&kc->io_jobs, job);
}
wake(kc);
}
/*
* Request io on as many buffer heads as we can currently get for
* a particular job.
*/
static int run_io_job(struct kcopyd_job *job)
{
int r;
struct dm_io_request io_req = {
.bi_op = job->rw,
.bi_op_flags = 0,
.mem.type = DM_IO_PAGE_LIST,
.mem.ptr.pl = job->pages,
.mem.offset = 0,
.notify.fn = complete_io,
.notify.context = job,
.client = job->kc->io_client,
};
/*
* If we need to write sequentially and some reads or writes failed,
* no point in continuing.
*/
if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
job->master_job->write_err)
return -EIO;
io_job_start(job->kc->throttle);
if (job->rw == READ)
r = dm_io(&io_req, 1, &job->source, NULL);
else
r = dm_io(&io_req, job->num_dests, job->dests, NULL);
return r;
}
static int run_pages_job(struct kcopyd_job *job)
{
int r;
unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
if (!r) {
/* this job is ready for io */
push(&job->kc->io_jobs, job);
return 0;
}
if (r == -ENOMEM)
/* can't complete now */
return 1;
return r;
}
/*
* Run through a list for as long as possible. Returns the count
* of successful jobs.
*/
static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
int (*fn) (struct kcopyd_job *))
{
struct kcopyd_job *job;
int r, count = 0;
while ((job = pop(jobs, kc))) {
r = fn(job);
if (r < 0) {
/* error this rogue job */
if (op_is_write(job->rw))
job->write_err = (unsigned long) -1L;
else
job->read_err = 1;
push(&kc->complete_jobs, job);
break;
}
if (r > 0) {
/*
* We couldn't service this job ATM, so
* push this job back onto the list.
*/
push_head(jobs, job);
break;
}
count++;
}
return count;
}
/*
* kcopyd does this every time it's woken up.
*/
static void do_work(struct work_struct *work)
{
struct dm_kcopyd_client *kc = container_of(work,
struct dm_kcopyd_client, kcopyd_work);
struct blk_plug plug;
unsigned long flags;
/*
* The order that these are called is *very* important.
* complete jobs can free some pages for pages jobs.
* Pages jobs when successful will jump onto the io jobs
* list. io jobs call wake when they complete and it all
* starts again.
*/
spin_lock_irqsave(&kc->job_lock, flags);
list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
spin_unlock_irqrestore(&kc->job_lock, flags);
blk_start_plug(&plug);
process_jobs(&kc->complete_jobs, kc, run_complete_job);
process_jobs(&kc->pages_jobs, kc, run_pages_job);
process_jobs(&kc->io_jobs, kc, run_io_job);
blk_finish_plug(&plug);
}
/*
* If we are copying a small region we just dispatch a single job
* to do the copy, otherwise the io has to be split up into many
* jobs.
*/
static void dispatch_job(struct kcopyd_job *job)
{
struct dm_kcopyd_client *kc = job->kc;
atomic_inc(&kc->nr_jobs);
if (unlikely(!job->source.count))
push(&kc->callback_jobs, job);
else if (job->pages == &zero_page_list)
push(&kc->io_jobs, job);
else
push(&kc->pages_jobs, job);
wake(kc);
}
static void segment_complete(int read_err, unsigned long write_err,
void *context)
{
/* FIXME: tidy this function */
sector_t progress = 0;
sector_t count = 0;
struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
struct kcopyd_job *job = sub_job->master_job;
struct dm_kcopyd_client *kc = job->kc;
mutex_lock(&job->lock);
/* update the error */
if (read_err)
job->read_err = 1;
if (write_err)
job->write_err |= write_err;
/*
* Only dispatch more work if there hasn't been an error.
*/
if ((!job->read_err && !job->write_err) ||
test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
/* get the next chunk of work */
progress = job->progress;
count = job->source.count - progress;
if (count) {
if (count > kc->sub_job_size)
count = kc->sub_job_size;
job->progress += count;
}
}
mutex_unlock(&job->lock);
if (count) {
int i;
*sub_job = *job;
sub_job->write_offset = progress;
sub_job->source.sector += progress;
sub_job->source.count = count;
for (i = 0; i < job->num_dests; i++) {
sub_job->dests[i].sector += progress;
sub_job->dests[i].count = count;
}
sub_job->fn = segment_complete;
sub_job->context = sub_job;
dispatch_job(sub_job);
} else if (atomic_dec_and_test(&job->sub_jobs)) {
/*
* Queue the completion callback to the kcopyd thread.
*
* Some callers assume that all the completions are called
* from a single thread and don't race with each other.
*
* We must not call the callback directly here because this
* code may not be executing in the thread.
*/
push(&kc->complete_jobs, job);
wake(kc);
}
}
/*
* Create some sub jobs to share the work between them.
*/
static void split_job(struct kcopyd_job *master_job)
{
int i;
atomic_inc(&master_job->kc->nr_jobs);
atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
for (i = 0; i < SPLIT_COUNT; i++) {
master_job[i + 1].master_job = master_job;
segment_complete(0, 0u, &master_job[i + 1]);
}
}
void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
unsigned int num_dests, struct dm_io_region *dests,
unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
{
struct kcopyd_job *job;
int i;
/*
* Allocate an array of jobs consisting of one master job
* followed by SPLIT_COUNT sub jobs.
*/
job = mempool_alloc(&kc->job_pool, GFP_NOIO);
mutex_init(&job->lock);
/*
* set up for the read.
*/
job->kc = kc;
job->flags = flags;
job->read_err = 0;
job->write_err = 0;
job->num_dests = num_dests;
memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
/*
* If one of the destination is a host-managed zoned block device,
* we need to write sequentially. If one of the destination is a
* host-aware device, then leave it to the caller to choose what to do.
*/
if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
for (i = 0; i < job->num_dests; i++) {
if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
break;
}
}
}
/*
* If we need to write sequentially, errors cannot be ignored.
*/
if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
if (from) {
job->source = *from;
job->pages = NULL;
job->rw = READ;
} else {
memset(&job->source, 0, sizeof job->source);
job->source.count = job->dests[0].count;
job->pages = &zero_page_list;
/*
* Use WRITE ZEROES to optimize zeroing if all dests support it.
*/
job->rw = REQ_OP_WRITE_ZEROES;
for (i = 0; i < job->num_dests; i++)
if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
job->rw = WRITE;
break;
}
}
job->fn = fn;
job->context = context;
job->master_job = job;
job->write_offset = 0;
if (job->source.count <= kc->sub_job_size)
dispatch_job(job);
else {
job->progress = 0;
split_job(job);
}
}
EXPORT_SYMBOL(dm_kcopyd_copy);
void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
unsigned num_dests, struct dm_io_region *dests,
unsigned flags, dm_kcopyd_notify_fn fn, void *context)
{
dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
}
EXPORT_SYMBOL(dm_kcopyd_zero);
void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
dm_kcopyd_notify_fn fn, void *context)
{
struct kcopyd_job *job;
job = mempool_alloc(&kc->job_pool, GFP_NOIO);
memset(job, 0, sizeof(struct kcopyd_job));
job->kc = kc;
job->fn = fn;
job->context = context;
job->master_job = job;
atomic_inc(&kc->nr_jobs);
return job;
}
EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
{
struct kcopyd_job *job = j;
struct dm_kcopyd_client *kc = job->kc;
job->read_err = read_err;
job->write_err = write_err;
push(&kc->callback_jobs, job);
wake(kc);
}
EXPORT_SYMBOL(dm_kcopyd_do_callback);
/*
* Cancels a kcopyd job, eg. someone might be deactivating a
* mirror.
*/
#if 0
int kcopyd_cancel(struct kcopyd_job *job, int block)
{
/* FIXME: finish */
return -1;
}
#endif /* 0 */
/*-----------------------------------------------------------------
* Client setup
*---------------------------------------------------------------*/
struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
{
int r;
unsigned reserve_pages;
struct dm_kcopyd_client *kc;
kc = kzalloc(sizeof(*kc), GFP_KERNEL);
if (!kc)
return ERR_PTR(-ENOMEM);
spin_lock_init(&kc->job_lock);
INIT_LIST_HEAD(&kc->callback_jobs);
INIT_LIST_HEAD(&kc->complete_jobs);
INIT_LIST_HEAD(&kc->io_jobs);
INIT_LIST_HEAD(&kc->pages_jobs);
kc->throttle = throttle;
r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
if (r)
goto bad_slab;
INIT_WORK(&kc->kcopyd_work, do_work);
kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
if (!kc->kcopyd_wq) {
r = -ENOMEM;
goto bad_workqueue;
}
kc->sub_job_size = dm_get_kcopyd_subjob_size();
reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
kc->pages = NULL;
kc->nr_reserved_pages = kc->nr_free_pages = 0;
r = client_reserve_pages(kc, reserve_pages);
if (r)
goto bad_client_pages;
kc->io_client = dm_io_client_create();
if (IS_ERR(kc->io_client)) {
r = PTR_ERR(kc->io_client);
goto bad_io_client;
}
init_waitqueue_head(&kc->destroyq);
atomic_set(&kc->nr_jobs, 0);
return kc;
bad_io_client:
client_free_pages(kc);
bad_client_pages:
destroy_workqueue(kc->kcopyd_wq);
bad_workqueue:
mempool_exit(&kc->job_pool);
bad_slab:
kfree(kc);
return ERR_PTR(r);
}
EXPORT_SYMBOL(dm_kcopyd_client_create);
void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
{
/* Wait for completion of all jobs submitted by this client. */
wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
BUG_ON(!list_empty(&kc->callback_jobs));
BUG_ON(!list_empty(&kc->complete_jobs));
BUG_ON(!list_empty(&kc->io_jobs));
BUG_ON(!list_empty(&kc->pages_jobs));
destroy_workqueue(kc->kcopyd_wq);
dm_io_client_destroy(kc->io_client);
client_free_pages(kc);
mempool_exit(&kc->job_pool);
kfree(kc);
}
EXPORT_SYMBOL(dm_kcopyd_client_destroy);