mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-11 21:14:07 +08:00
47e8eec832
- Add support for the ARMv8.6 WFxT extension - Guard pages for the EL2 stacks - Trap and emulate AArch32 ID registers to hide unsupported features - Ability to select and save/restore the set of hypercalls exposed to the guest - Support for PSCI-initiated suspend in collaboration with userspace - GICv3 register-based LPI invalidation support - Move host PMU event merging into the vcpu data structure - GICv3 ITS save/restore fixes - The usual set of small-scale cleanups and fixes -----BEGIN PGP SIGNATURE----- iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU 7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI 1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU 8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s aTwPZAQ7 =mh7W -----END PGP SIGNATURE----- Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 5.19 - Add support for the ARMv8.6 WFxT extension - Guard pages for the EL2 stacks - Trap and emulate AArch32 ID registers to hide unsupported features - Ability to select and save/restore the set of hypercalls exposed to the guest - Support for PSCI-initiated suspend in collaboration with userspace - GICv3 register-based LPI invalidation support - Move host PMU event merging into the vcpu data structure - GICv3 ITS save/restore fixes - The usual set of small-scale cleanups and fixes [Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated from 4 to 6. - Paolo]
1458 lines
40 KiB
C
1458 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
* cpuid support routines
|
|
*
|
|
* derived from arch/x86/kvm/x86.c
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
|
|
* Copyright IBM Corporation, 2008
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/export.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/stat.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/user.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <asm/sgx.h>
|
|
#include <asm/cpuid.h>
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "mmu.h"
|
|
#include "trace.h"
|
|
#include "pmu.h"
|
|
|
|
/*
|
|
* Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
|
|
* aligned to sizeof(unsigned long) because it's not accessed via bitops.
|
|
*/
|
|
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
|
|
EXPORT_SYMBOL_GPL(kvm_cpu_caps);
|
|
|
|
u32 xstate_required_size(u64 xstate_bv, bool compacted)
|
|
{
|
|
int feature_bit = 0;
|
|
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
|
|
xstate_bv &= XFEATURE_MASK_EXTEND;
|
|
while (xstate_bv) {
|
|
if (xstate_bv & 0x1) {
|
|
u32 eax, ebx, ecx, edx, offset;
|
|
cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
|
|
/* ECX[1]: 64B alignment in compacted form */
|
|
if (compacted)
|
|
offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
|
|
else
|
|
offset = ebx;
|
|
ret = max(ret, offset + eax);
|
|
}
|
|
|
|
xstate_bv >>= 1;
|
|
feature_bit++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This one is tied to SSB in the user API, and not
|
|
* visible in /proc/cpuinfo.
|
|
*/
|
|
#define KVM_X86_FEATURE_PSFD (13*32+28) /* Predictive Store Forwarding Disable */
|
|
|
|
#define F feature_bit
|
|
#define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
|
|
|
|
|
|
static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
|
|
struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *e;
|
|
int i;
|
|
|
|
for (i = 0; i < nent; i++) {
|
|
e = &entries[i];
|
|
|
|
if (e->function == function &&
|
|
(!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
|
|
return e;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid_entry2 *entries,
|
|
int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
u64 xfeatures;
|
|
|
|
/*
|
|
* The existing code assumes virtual address is 48-bit or 57-bit in the
|
|
* canonical address checks; exit if it is ever changed.
|
|
*/
|
|
best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
|
|
if (best) {
|
|
int vaddr_bits = (best->eax & 0xff00) >> 8;
|
|
|
|
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Exposing dynamic xfeatures to the guest requires additional
|
|
* enabling in the FPU, e.g. to expand the guest XSAVE state size.
|
|
*/
|
|
best = cpuid_entry2_find(entries, nent, 0xd, 0);
|
|
if (!best)
|
|
return 0;
|
|
|
|
xfeatures = best->eax | ((u64)best->edx << 32);
|
|
xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
|
|
if (!xfeatures)
|
|
return 0;
|
|
|
|
return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
|
|
}
|
|
|
|
/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
|
|
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
|
|
int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *orig;
|
|
int i;
|
|
|
|
if (nent != vcpu->arch.cpuid_nent)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < nent; i++) {
|
|
orig = &vcpu->arch.cpuid_entries[i];
|
|
if (e2[i].function != orig->function ||
|
|
e2[i].index != orig->index ||
|
|
e2[i].flags != orig->flags ||
|
|
e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
|
|
e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 function;
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
vcpu->arch.kvm_cpuid_base = 0;
|
|
|
|
for_each_possible_hypervisor_cpuid_base(function) {
|
|
entry = kvm_find_cpuid_entry(vcpu, function, 0);
|
|
|
|
if (entry) {
|
|
u32 signature[3];
|
|
|
|
signature[0] = entry->ebx;
|
|
signature[1] = entry->ecx;
|
|
signature[2] = entry->edx;
|
|
|
|
BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
|
|
if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
|
|
vcpu->arch.kvm_cpuid_base = function;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid_entry2 *entries, int nent)
|
|
{
|
|
u32 base = vcpu->arch.kvm_cpuid_base;
|
|
|
|
if (!base)
|
|
return NULL;
|
|
|
|
return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES, 0);
|
|
}
|
|
|
|
static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
|
|
{
|
|
return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent);
|
|
}
|
|
|
|
void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
|
|
|
|
/*
|
|
* save the feature bitmap to avoid cpuid lookup for every PV
|
|
* operation
|
|
*/
|
|
if (best)
|
|
vcpu->arch.pv_cpuid.features = best->eax;
|
|
}
|
|
|
|
/*
|
|
* Calculate guest's supported XCR0 taking into account guest CPUID data and
|
|
* supported_xcr0 (comprised of host configuration and KVM_SUPPORTED_XCR0).
|
|
*/
|
|
static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = cpuid_entry2_find(entries, nent, 0xd, 0);
|
|
if (!best)
|
|
return 0;
|
|
|
|
return (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
|
|
}
|
|
|
|
static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
|
|
int nent)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
|
|
|
|
best = cpuid_entry2_find(entries, nent, 1, 0);
|
|
if (best) {
|
|
/* Update OSXSAVE bit */
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE))
|
|
cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
|
|
kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
|
|
|
|
cpuid_entry_change(best, X86_FEATURE_APIC,
|
|
vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
|
|
}
|
|
|
|
best = cpuid_entry2_find(entries, nent, 7, 0);
|
|
if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
|
|
cpuid_entry_change(best, X86_FEATURE_OSPKE,
|
|
kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
|
|
|
|
best = cpuid_entry2_find(entries, nent, 0xD, 0);
|
|
if (best)
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
|
|
|
|
best = cpuid_entry2_find(entries, nent, 0xD, 1);
|
|
if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
|
|
cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
|
|
|
|
best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
|
|
if (kvm_hlt_in_guest(vcpu->kvm) && best &&
|
|
(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
|
|
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
|
|
|
|
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
|
|
best = cpuid_entry2_find(entries, nent, 0x1, 0);
|
|
if (best)
|
|
cpuid_entry_change(best, X86_FEATURE_MWAIT,
|
|
vcpu->arch.ia32_misc_enable_msr &
|
|
MSR_IA32_MISC_ENABLE_MWAIT);
|
|
}
|
|
|
|
/*
|
|
* Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
|
|
* the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
|
|
* requested XCR0 value. The enclave's XFRM must be a subset of XCRO
|
|
* at the time of EENTER, thus adjust the allowed XFRM by the guest's
|
|
* supported XCR0. Similar to XCR0 handling, FP and SSE are forced to
|
|
* '1' even on CPUs that don't support XSAVE.
|
|
*/
|
|
best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
|
|
if (best) {
|
|
best->ecx &= guest_supported_xcr0 & 0xffffffff;
|
|
best->edx &= guest_supported_xcr0 >> 32;
|
|
best->ecx |= XFEATURE_MASK_FPSSE;
|
|
}
|
|
}
|
|
|
|
void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
|
|
{
|
|
__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
|
|
|
|
static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
struct kvm_cpuid_entry2 *best;
|
|
u64 guest_supported_xcr0;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1, 0);
|
|
if (best && apic) {
|
|
if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
|
|
apic->lapic_timer.timer_mode_mask = 3 << 17;
|
|
else
|
|
apic->lapic_timer.timer_mode_mask = 1 << 17;
|
|
|
|
kvm_apic_set_version(vcpu);
|
|
}
|
|
|
|
guest_supported_xcr0 =
|
|
cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
|
|
|
|
vcpu->arch.guest_fpu.fpstate->user_xfeatures = guest_supported_xcr0;
|
|
|
|
kvm_update_pv_runtime(vcpu);
|
|
|
|
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
|
|
vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
|
|
|
|
kvm_pmu_refresh(vcpu);
|
|
vcpu->arch.cr4_guest_rsvd_bits =
|
|
__cr4_reserved_bits(guest_cpuid_has, vcpu);
|
|
|
|
kvm_hv_set_cpuid(vcpu);
|
|
|
|
/* Invoke the vendor callback only after the above state is updated. */
|
|
static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
|
|
|
|
/*
|
|
* Except for the MMU, which needs to do its thing any vendor specific
|
|
* adjustments to the reserved GPA bits.
|
|
*/
|
|
kvm_mmu_after_set_cpuid(vcpu);
|
|
}
|
|
|
|
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
|
|
if (!best || best->eax < 0x80000008)
|
|
goto not_found;
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
|
|
if (best)
|
|
return best->eax & 0xff;
|
|
not_found:
|
|
return 36;
|
|
}
|
|
|
|
/*
|
|
* This "raw" version returns the reserved GPA bits without any adjustments for
|
|
* encryption technologies that usurp bits. The raw mask should be used if and
|
|
* only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
|
|
*/
|
|
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
|
|
{
|
|
return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
|
|
}
|
|
|
|
static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
|
|
int nent)
|
|
{
|
|
int r;
|
|
|
|
__kvm_update_cpuid_runtime(vcpu, e2, nent);
|
|
|
|
/*
|
|
* KVM does not correctly handle changing guest CPUID after KVM_RUN, as
|
|
* MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
|
|
* tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
|
|
* faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
|
|
* the core vCPU model on the fly. It would've been better to forbid any
|
|
* KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
|
|
* some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
|
|
* KVM_SET_CPUID{,2} again. To support this legacy behavior, check
|
|
* whether the supplied CPUID data is equal to what's already set.
|
|
*/
|
|
if (vcpu->arch.last_vmentry_cpu != -1) {
|
|
r = kvm_cpuid_check_equal(vcpu, e2, nent);
|
|
if (r)
|
|
return r;
|
|
|
|
kvfree(e2);
|
|
return 0;
|
|
}
|
|
|
|
r = kvm_check_cpuid(vcpu, e2, nent);
|
|
if (r)
|
|
return r;
|
|
|
|
kvfree(vcpu->arch.cpuid_entries);
|
|
vcpu->arch.cpuid_entries = e2;
|
|
vcpu->arch.cpuid_nent = nent;
|
|
|
|
kvm_update_kvm_cpuid_base(vcpu);
|
|
kvm_vcpu_after_set_cpuid(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* when an old userspace process fills a new kernel module */
|
|
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid *cpuid,
|
|
struct kvm_cpuid_entry __user *entries)
|
|
{
|
|
int r, i;
|
|
struct kvm_cpuid_entry *e = NULL;
|
|
struct kvm_cpuid_entry2 *e2 = NULL;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
return -E2BIG;
|
|
|
|
if (cpuid->nent) {
|
|
e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
|
|
if (IS_ERR(e))
|
|
return PTR_ERR(e);
|
|
|
|
e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
|
|
if (!e2) {
|
|
r = -ENOMEM;
|
|
goto out_free_cpuid;
|
|
}
|
|
}
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
e2[i].function = e[i].function;
|
|
e2[i].eax = e[i].eax;
|
|
e2[i].ebx = e[i].ebx;
|
|
e2[i].ecx = e[i].ecx;
|
|
e2[i].edx = e[i].edx;
|
|
e2[i].index = 0;
|
|
e2[i].flags = 0;
|
|
e2[i].padding[0] = 0;
|
|
e2[i].padding[1] = 0;
|
|
e2[i].padding[2] = 0;
|
|
}
|
|
|
|
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
|
|
if (r)
|
|
kvfree(e2);
|
|
|
|
out_free_cpuid:
|
|
kvfree(e);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
struct kvm_cpuid_entry2 *e2 = NULL;
|
|
int r;
|
|
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
return -E2BIG;
|
|
|
|
if (cpuid->nent) {
|
|
e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
|
|
if (IS_ERR(e2))
|
|
return PTR_ERR(e2);
|
|
}
|
|
|
|
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
|
|
if (r)
|
|
kvfree(e2);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent < vcpu->arch.cpuid_nent)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(entries, vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out;
|
|
return 0;
|
|
|
|
out:
|
|
cpuid->nent = vcpu->arch.cpuid_nent;
|
|
return r;
|
|
}
|
|
|
|
/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
|
|
static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
|
|
{
|
|
const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
|
|
struct kvm_cpuid_entry2 entry;
|
|
|
|
reverse_cpuid_check(leaf);
|
|
|
|
cpuid_count(cpuid.function, cpuid.index,
|
|
&entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
|
|
|
|
kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
|
|
}
|
|
|
|
static __always_inline
|
|
void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
|
|
{
|
|
/* Use kvm_cpu_cap_mask for non-scattered leafs. */
|
|
BUILD_BUG_ON(leaf < NCAPINTS);
|
|
|
|
kvm_cpu_caps[leaf] = mask;
|
|
|
|
__kvm_cpu_cap_mask(leaf);
|
|
}
|
|
|
|
static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
|
|
{
|
|
/* Use kvm_cpu_cap_init_scattered for scattered leafs. */
|
|
BUILD_BUG_ON(leaf >= NCAPINTS);
|
|
|
|
kvm_cpu_caps[leaf] &= mask;
|
|
|
|
__kvm_cpu_cap_mask(leaf);
|
|
}
|
|
|
|
void kvm_set_cpu_caps(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
unsigned int f_gbpages = F(GBPAGES);
|
|
unsigned int f_lm = F(LM);
|
|
unsigned int f_xfd = F(XFD);
|
|
#else
|
|
unsigned int f_gbpages = 0;
|
|
unsigned int f_lm = 0;
|
|
unsigned int f_xfd = 0;
|
|
#endif
|
|
memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
|
|
|
|
BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
|
|
sizeof(boot_cpu_data.x86_capability));
|
|
|
|
memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
|
|
sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
|
|
|
|
kvm_cpu_cap_mask(CPUID_1_ECX,
|
|
/*
|
|
* NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
|
|
* advertised to guests via CPUID!
|
|
*/
|
|
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
|
|
0 /* DS-CPL, VMX, SMX, EST */ |
|
|
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
|
|
F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
|
|
F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
|
|
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
|
|
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
|
|
F(F16C) | F(RDRAND)
|
|
);
|
|
/* KVM emulates x2apic in software irrespective of host support. */
|
|
kvm_cpu_cap_set(X86_FEATURE_X2APIC);
|
|
|
|
kvm_cpu_cap_mask(CPUID_1_EDX,
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
|
|
0 /* Reserved, DS, ACPI */ | F(MMX) |
|
|
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
|
|
0 /* HTT, TM, Reserved, PBE */
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_0_EBX,
|
|
F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
|
|
F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
|
|
F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
|
|
F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
|
|
F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
|
|
F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
|
|
F(AVX512VL));
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_ECX,
|
|
F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
|
|
F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
|
|
F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
|
|
F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
|
|
F(SGX_LC) | F(BUS_LOCK_DETECT)
|
|
);
|
|
/* Set LA57 based on hardware capability. */
|
|
if (cpuid_ecx(7) & F(LA57))
|
|
kvm_cpu_cap_set(X86_FEATURE_LA57);
|
|
|
|
/*
|
|
* PKU not yet implemented for shadow paging and requires OSPKE
|
|
* to be set on the host. Clear it if that is not the case
|
|
*/
|
|
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
|
|
kvm_cpu_cap_clear(X86_FEATURE_PKU);
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_EDX,
|
|
F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
|
|
F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
|
|
F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
|
|
F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
|
|
F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
|
|
);
|
|
|
|
/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
|
|
kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
|
|
kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
|
|
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
|
|
|
|
kvm_cpu_cap_mask(CPUID_7_1_EAX,
|
|
F(AVX_VNNI) | F(AVX512_BF16)
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_D_1_EAX,
|
|
F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
|
|
);
|
|
|
|
kvm_cpu_cap_init_scattered(CPUID_12_EAX,
|
|
SF(SGX1) | SF(SGX2)
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
|
|
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
|
|
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
|
|
F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
|
|
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
|
|
F(TOPOEXT) | 0 /* PERFCTR_CORE */
|
|
);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* Reserved */ |
|
|
F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
|
|
F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
|
|
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
|
|
);
|
|
|
|
if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
|
|
kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
|
|
F(CLZERO) | F(XSAVEERPTR) |
|
|
F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
|
|
F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
|
|
__feature_bit(KVM_X86_FEATURE_PSFD)
|
|
);
|
|
|
|
/*
|
|
* AMD has separate bits for each SPEC_CTRL bit.
|
|
* arch/x86/kernel/cpu/bugs.c is kind enough to
|
|
* record that in cpufeatures so use them.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_IBPB))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
|
|
if (boot_cpu_has(X86_FEATURE_IBRS))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
|
|
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
|
|
kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
|
|
/*
|
|
* The preference is to use SPEC CTRL MSR instead of the
|
|
* VIRT_SPEC MSR.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
|
|
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
|
|
|
|
/*
|
|
* Hide all SVM features by default, SVM will set the cap bits for
|
|
* features it emulates and/or exposes for L1.
|
|
*/
|
|
kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
|
|
|
|
kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
|
|
0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
|
|
F(SME_COHERENT));
|
|
|
|
kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
|
|
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
|
|
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
|
|
F(PMM) | F(PMM_EN)
|
|
);
|
|
|
|
/*
|
|
* Hide RDTSCP and RDPID if either feature is reported as supported but
|
|
* probing MSR_TSC_AUX failed. This is purely a sanity check and
|
|
* should never happen, but the guest will likely crash if RDTSCP or
|
|
* RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
|
|
* the past. For example, the sanity check may fire if this instance of
|
|
* KVM is running as L1 on top of an older, broken KVM.
|
|
*/
|
|
if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
|
|
kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
|
|
!kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
|
|
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
|
|
|
|
struct kvm_cpuid_array {
|
|
struct kvm_cpuid_entry2 *entries;
|
|
int maxnent;
|
|
int nent;
|
|
};
|
|
|
|
static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
|
|
u32 function, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
if (array->nent >= array->maxnent)
|
|
return NULL;
|
|
|
|
entry = &array->entries[array->nent++];
|
|
|
|
memset(entry, 0, sizeof(*entry));
|
|
entry->function = function;
|
|
entry->index = index;
|
|
switch (function & 0xC0000000) {
|
|
case 0x40000000:
|
|
/* Hypervisor leaves are always synthesized by __do_cpuid_func. */
|
|
return entry;
|
|
|
|
case 0x80000000:
|
|
/*
|
|
* 0x80000021 is sometimes synthesized by __do_cpuid_func, which
|
|
* would result in out-of-bounds calls to do_host_cpuid.
|
|
*/
|
|
{
|
|
static int max_cpuid_80000000;
|
|
if (!READ_ONCE(max_cpuid_80000000))
|
|
WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
|
|
if (function > READ_ONCE(max_cpuid_80000000))
|
|
return entry;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cpuid_count(entry->function, entry->index,
|
|
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
|
|
|
|
if (cpuid_function_is_indexed(function))
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
|
|
return entry;
|
|
}
|
|
|
|
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
|
|
if (array->nent >= array->maxnent)
|
|
return -E2BIG;
|
|
|
|
entry = &array->entries[array->nent];
|
|
entry->function = func;
|
|
entry->index = 0;
|
|
entry->flags = 0;
|
|
|
|
switch (func) {
|
|
case 0:
|
|
entry->eax = 7;
|
|
++array->nent;
|
|
break;
|
|
case 1:
|
|
entry->ecx = F(MOVBE);
|
|
++array->nent;
|
|
break;
|
|
case 7:
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
entry->eax = 0;
|
|
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
|
|
entry->ecx = F(RDPID);
|
|
++array->nent;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
|
|
{
|
|
struct kvm_cpuid_entry2 *entry;
|
|
int r, i, max_idx;
|
|
|
|
/* all calls to cpuid_count() should be made on the same cpu */
|
|
get_cpu();
|
|
|
|
r = -E2BIG;
|
|
|
|
entry = do_host_cpuid(array, function, 0);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
switch (function) {
|
|
case 0:
|
|
/* Limited to the highest leaf implemented in KVM. */
|
|
entry->eax = min(entry->eax, 0x1fU);
|
|
break;
|
|
case 1:
|
|
cpuid_entry_override(entry, CPUID_1_EDX);
|
|
cpuid_entry_override(entry, CPUID_1_ECX);
|
|
break;
|
|
case 2:
|
|
/*
|
|
* On ancient CPUs, function 2 entries are STATEFUL. That is,
|
|
* CPUID(function=2, index=0) may return different results each
|
|
* time, with the least-significant byte in EAX enumerating the
|
|
* number of times software should do CPUID(2, 0).
|
|
*
|
|
* Modern CPUs, i.e. every CPU KVM has *ever* run on are less
|
|
* idiotic. Intel's SDM states that EAX & 0xff "will always
|
|
* return 01H. Software should ignore this value and not
|
|
* interpret it as an informational descriptor", while AMD's
|
|
* APM states that CPUID(2) is reserved.
|
|
*
|
|
* WARN if a frankenstein CPU that supports virtualization and
|
|
* a stateful CPUID.0x2 is encountered.
|
|
*/
|
|
WARN_ON_ONCE((entry->eax & 0xff) > 1);
|
|
break;
|
|
/* functions 4 and 0x8000001d have additional index. */
|
|
case 4:
|
|
case 0x8000001d:
|
|
/*
|
|
* Read entries until the cache type in the previous entry is
|
|
* zero, i.e. indicates an invalid entry.
|
|
*/
|
|
for (i = 1; entry->eax & 0x1f; ++i) {
|
|
entry = do_host_cpuid(array, function, i);
|
|
if (!entry)
|
|
goto out;
|
|
}
|
|
break;
|
|
case 6: /* Thermal management */
|
|
entry->eax = 0x4; /* allow ARAT */
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
/* function 7 has additional index. */
|
|
case 7:
|
|
entry->eax = min(entry->eax, 1u);
|
|
cpuid_entry_override(entry, CPUID_7_0_EBX);
|
|
cpuid_entry_override(entry, CPUID_7_ECX);
|
|
cpuid_entry_override(entry, CPUID_7_EDX);
|
|
|
|
/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
|
|
if (entry->eax == 1) {
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_7_1_EAX);
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
}
|
|
break;
|
|
case 9:
|
|
break;
|
|
case 0xa: { /* Architectural Performance Monitoring */
|
|
struct x86_pmu_capability cap;
|
|
union cpuid10_eax eax;
|
|
union cpuid10_edx edx;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
perf_get_x86_pmu_capability(&cap);
|
|
|
|
/*
|
|
* The guest architecture pmu is only supported if the architecture
|
|
* pmu exists on the host and the module parameters allow it.
|
|
*/
|
|
if (!cap.version || !enable_pmu)
|
|
memset(&cap, 0, sizeof(cap));
|
|
|
|
eax.split.version_id = min(cap.version, 2);
|
|
eax.split.num_counters = cap.num_counters_gp;
|
|
eax.split.bit_width = cap.bit_width_gp;
|
|
eax.split.mask_length = cap.events_mask_len;
|
|
|
|
edx.split.num_counters_fixed =
|
|
min(cap.num_counters_fixed, KVM_PMC_MAX_FIXED);
|
|
edx.split.bit_width_fixed = cap.bit_width_fixed;
|
|
if (cap.version)
|
|
edx.split.anythread_deprecated = 1;
|
|
edx.split.reserved1 = 0;
|
|
edx.split.reserved2 = 0;
|
|
|
|
entry->eax = eax.full;
|
|
entry->ebx = cap.events_mask;
|
|
entry->ecx = 0;
|
|
entry->edx = edx.full;
|
|
break;
|
|
}
|
|
/*
|
|
* Per Intel's SDM, the 0x1f is a superset of 0xb,
|
|
* thus they can be handled by common code.
|
|
*/
|
|
case 0x1f:
|
|
case 0xb:
|
|
/*
|
|
* Populate entries until the level type (ECX[15:8]) of the
|
|
* previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is
|
|
* the starting entry, filled by the primary do_host_cpuid().
|
|
*/
|
|
for (i = 1; entry->ecx & 0xff00; ++i) {
|
|
entry = do_host_cpuid(array, function, i);
|
|
if (!entry)
|
|
goto out;
|
|
}
|
|
break;
|
|
case 0xd: {
|
|
u64 permitted_xcr0 = supported_xcr0 & xstate_get_guest_group_perm();
|
|
u64 permitted_xss = supported_xss;
|
|
|
|
entry->eax &= permitted_xcr0;
|
|
entry->ebx = xstate_required_size(permitted_xcr0, false);
|
|
entry->ecx = entry->ebx;
|
|
entry->edx &= permitted_xcr0 >> 32;
|
|
if (!permitted_xcr0)
|
|
break;
|
|
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
cpuid_entry_override(entry, CPUID_D_1_EAX);
|
|
if (entry->eax & (F(XSAVES)|F(XSAVEC)))
|
|
entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
|
|
true);
|
|
else {
|
|
WARN_ON_ONCE(permitted_xss != 0);
|
|
entry->ebx = 0;
|
|
}
|
|
entry->ecx &= permitted_xss;
|
|
entry->edx &= permitted_xss >> 32;
|
|
|
|
for (i = 2; i < 64; ++i) {
|
|
bool s_state;
|
|
if (permitted_xcr0 & BIT_ULL(i))
|
|
s_state = false;
|
|
else if (permitted_xss & BIT_ULL(i))
|
|
s_state = true;
|
|
else
|
|
continue;
|
|
|
|
entry = do_host_cpuid(array, function, i);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
/*
|
|
* The supported check above should have filtered out
|
|
* invalid sub-leafs. Only valid sub-leafs should
|
|
* reach this point, and they should have a non-zero
|
|
* save state size. Furthermore, check whether the
|
|
* processor agrees with permitted_xcr0/permitted_xss
|
|
* on whether this is an XCR0- or IA32_XSS-managed area.
|
|
*/
|
|
if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
|
|
--array->nent;
|
|
continue;
|
|
}
|
|
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
|
|
entry->ecx &= ~BIT_ULL(2);
|
|
entry->edx = 0;
|
|
}
|
|
break;
|
|
}
|
|
case 0x12:
|
|
/* Intel SGX */
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Index 0: Sub-features, MISCSELECT (a.k.a extended features)
|
|
* and max enclave sizes. The SGX sub-features and MISCSELECT
|
|
* are restricted by kernel and KVM capabilities (like most
|
|
* feature flags), while enclave size is unrestricted.
|
|
*/
|
|
cpuid_entry_override(entry, CPUID_12_EAX);
|
|
entry->ebx &= SGX_MISC_EXINFO;
|
|
|
|
entry = do_host_cpuid(array, function, 1);
|
|
if (!entry)
|
|
goto out;
|
|
|
|
/*
|
|
* Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
|
|
* feature flags. Advertise all supported flags, including
|
|
* privileged attributes that require explicit opt-in from
|
|
* userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
|
|
* expected to derive it from supported XCR0.
|
|
*/
|
|
entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
|
|
SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
|
|
SGX_ATTR_KSS;
|
|
entry->ebx &= 0;
|
|
break;
|
|
/* Intel PT */
|
|
case 0x14:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
|
|
if (!do_host_cpuid(array, function, i))
|
|
goto out;
|
|
}
|
|
break;
|
|
/* Intel AMX TILE */
|
|
case 0x1d:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
|
|
if (!do_host_cpuid(array, function, i))
|
|
goto out;
|
|
}
|
|
break;
|
|
case 0x1e: /* TMUL information */
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
break;
|
|
case KVM_CPUID_SIGNATURE: {
|
|
const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
|
|
entry->eax = KVM_CPUID_FEATURES;
|
|
entry->ebx = sigptr[0];
|
|
entry->ecx = sigptr[1];
|
|
entry->edx = sigptr[2];
|
|
break;
|
|
}
|
|
case KVM_CPUID_FEATURES:
|
|
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
|
|
(1 << KVM_FEATURE_NOP_IO_DELAY) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE2) |
|
|
(1 << KVM_FEATURE_ASYNC_PF) |
|
|
(1 << KVM_FEATURE_PV_EOI) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
|
|
(1 << KVM_FEATURE_PV_UNHALT) |
|
|
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
|
|
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
|
|
(1 << KVM_FEATURE_PV_SEND_IPI) |
|
|
(1 << KVM_FEATURE_POLL_CONTROL) |
|
|
(1 << KVM_FEATURE_PV_SCHED_YIELD) |
|
|
(1 << KVM_FEATURE_ASYNC_PF_INT);
|
|
|
|
if (sched_info_on())
|
|
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
|
|
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
case 0x80000000:
|
|
entry->eax = min(entry->eax, 0x80000021);
|
|
/*
|
|
* Serializing LFENCE is reported in a multitude of ways, and
|
|
* NullSegClearsBase is not reported in CPUID on Zen2; help
|
|
* userspace by providing the CPUID leaf ourselves.
|
|
*
|
|
* However, only do it if the host has CPUID leaf 0x8000001d.
|
|
* QEMU thinks that it can query the host blindly for that
|
|
* CPUID leaf if KVM reports that it supports 0x8000001d or
|
|
* above. The processor merrily returns values from the
|
|
* highest Intel leaf which QEMU tries to use as the guest's
|
|
* 0x8000001d. Even worse, this can result in an infinite
|
|
* loop if said highest leaf has no subleaves indexed by ECX.
|
|
*/
|
|
if (entry->eax >= 0x8000001d &&
|
|
(static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
|
|
|| !static_cpu_has_bug(X86_BUG_NULL_SEG)))
|
|
entry->eax = max(entry->eax, 0x80000021);
|
|
break;
|
|
case 0x80000001:
|
|
cpuid_entry_override(entry, CPUID_8000_0001_EDX);
|
|
cpuid_entry_override(entry, CPUID_8000_0001_ECX);
|
|
break;
|
|
case 0x80000006:
|
|
/* L2 cache and TLB: pass through host info. */
|
|
break;
|
|
case 0x80000007: /* Advanced power management */
|
|
/* invariant TSC is CPUID.80000007H:EDX[8] */
|
|
entry->edx &= (1 << 8);
|
|
/* mask against host */
|
|
entry->edx &= boot_cpu_data.x86_power;
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
break;
|
|
case 0x80000008: {
|
|
unsigned g_phys_as = (entry->eax >> 16) & 0xff;
|
|
unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
|
|
unsigned phys_as = entry->eax & 0xff;
|
|
|
|
/*
|
|
* If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
|
|
* the guest operates in the same PA space as the host, i.e.
|
|
* reductions in MAXPHYADDR for memory encryption affect shadow
|
|
* paging, too.
|
|
*
|
|
* If TDP is enabled but an explicit guest MAXPHYADDR is not
|
|
* provided, use the raw bare metal MAXPHYADDR as reductions to
|
|
* the HPAs do not affect GPAs.
|
|
*/
|
|
if (!tdp_enabled)
|
|
g_phys_as = boot_cpu_data.x86_phys_bits;
|
|
else if (!g_phys_as)
|
|
g_phys_as = phys_as;
|
|
|
|
entry->eax = g_phys_as | (virt_as << 8);
|
|
entry->edx = 0;
|
|
cpuid_entry_override(entry, CPUID_8000_0008_EBX);
|
|
break;
|
|
}
|
|
case 0x8000000A:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
entry->eax = 1; /* SVM revision 1 */
|
|
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
|
|
ASID emulation to nested SVM */
|
|
entry->ecx = 0; /* Reserved */
|
|
cpuid_entry_override(entry, CPUID_8000_000A_EDX);
|
|
break;
|
|
case 0x80000019:
|
|
entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x8000001a:
|
|
case 0x8000001e:
|
|
break;
|
|
case 0x8000001F:
|
|
if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
} else {
|
|
cpuid_entry_override(entry, CPUID_8000_001F_EAX);
|
|
|
|
/*
|
|
* Enumerate '0' for "PA bits reduction", the adjusted
|
|
* MAXPHYADDR is enumerated directly (see 0x80000008).
|
|
*/
|
|
entry->ebx &= ~GENMASK(11, 6);
|
|
}
|
|
break;
|
|
case 0x80000020:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x80000021:
|
|
entry->ebx = entry->ecx = entry->edx = 0;
|
|
/*
|
|
* Pass down these bits:
|
|
* EAX 0 NNDBP, Processor ignores nested data breakpoints
|
|
* EAX 2 LAS, LFENCE always serializing
|
|
* EAX 6 NSCB, Null selector clear base
|
|
*
|
|
* Other defined bits are for MSRs that KVM does not expose:
|
|
* EAX 3 SPCL, SMM page configuration lock
|
|
* EAX 13 PCMSR, Prefetch control MSR
|
|
*/
|
|
entry->eax &= BIT(0) | BIT(2) | BIT(6);
|
|
if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
|
|
entry->eax |= BIT(2);
|
|
if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
|
|
entry->eax |= BIT(6);
|
|
break;
|
|
/*Add support for Centaur's CPUID instruction*/
|
|
case 0xC0000000:
|
|
/*Just support up to 0xC0000004 now*/
|
|
entry->eax = min(entry->eax, 0xC0000004);
|
|
break;
|
|
case 0xC0000001:
|
|
cpuid_entry_override(entry, CPUID_C000_0001_EDX);
|
|
break;
|
|
case 3: /* Processor serial number */
|
|
case 5: /* MONITOR/MWAIT */
|
|
case 0xC0000002:
|
|
case 0xC0000003:
|
|
case 0xC0000004:
|
|
default:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
return r;
|
|
}
|
|
|
|
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
|
|
unsigned int type)
|
|
{
|
|
if (type == KVM_GET_EMULATED_CPUID)
|
|
return __do_cpuid_func_emulated(array, func);
|
|
|
|
return __do_cpuid_func(array, func);
|
|
}
|
|
|
|
#define CENTAUR_CPUID_SIGNATURE 0xC0000000
|
|
|
|
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
|
|
unsigned int type)
|
|
{
|
|
u32 limit;
|
|
int r;
|
|
|
|
if (func == CENTAUR_CPUID_SIGNATURE &&
|
|
boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
|
|
return 0;
|
|
|
|
r = do_cpuid_func(array, func, type);
|
|
if (r)
|
|
return r;
|
|
|
|
limit = array->entries[array->nent - 1].eax;
|
|
for (func = func + 1; func <= limit; ++func) {
|
|
r = do_cpuid_func(array, func, type);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
|
|
__u32 num_entries, unsigned int ioctl_type)
|
|
{
|
|
int i;
|
|
__u32 pad[3];
|
|
|
|
if (ioctl_type != KVM_GET_EMULATED_CPUID)
|
|
return false;
|
|
|
|
/*
|
|
* We want to make sure that ->padding is being passed clean from
|
|
* userspace in case we want to use it for something in the future.
|
|
*
|
|
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
|
|
* have to give ourselves satisfied only with the emulated side. /me
|
|
* sheds a tear.
|
|
*/
|
|
for (i = 0; i < num_entries; i++) {
|
|
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
|
|
return true;
|
|
|
|
if (pad[0] || pad[1] || pad[2])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries,
|
|
unsigned int type)
|
|
{
|
|
static const u32 funcs[] = {
|
|
0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
|
|
};
|
|
|
|
struct kvm_cpuid_array array = {
|
|
.nent = 0,
|
|
};
|
|
int r, i;
|
|
|
|
if (cpuid->nent < 1)
|
|
return -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
|
|
|
|
if (sanity_check_entries(entries, cpuid->nent, type))
|
|
return -EINVAL;
|
|
|
|
array.entries = kvcalloc(sizeof(struct kvm_cpuid_entry2), cpuid->nent, GFP_KERNEL);
|
|
if (!array.entries)
|
|
return -ENOMEM;
|
|
|
|
array.maxnent = cpuid->nent;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(funcs); i++) {
|
|
r = get_cpuid_func(&array, funcs[i], type);
|
|
if (r)
|
|
goto out_free;
|
|
}
|
|
cpuid->nent = array.nent;
|
|
|
|
if (copy_to_user(entries, array.entries,
|
|
array.nent * sizeof(struct kvm_cpuid_entry2)))
|
|
r = -EFAULT;
|
|
|
|
out_free:
|
|
kvfree(array.entries);
|
|
return r;
|
|
}
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
|
|
u32 function, u32 index)
|
|
{
|
|
return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
|
|
function, index);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
|
|
|
|
/*
|
|
* Intel CPUID semantics treats any query for an out-of-range leaf as if the
|
|
* highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
|
|
* returns all zeroes for any undefined leaf, whether or not the leaf is in
|
|
* range. Centaur/VIA follows Intel semantics.
|
|
*
|
|
* A leaf is considered out-of-range if its function is higher than the maximum
|
|
* supported leaf of its associated class or if its associated class does not
|
|
* exist.
|
|
*
|
|
* There are three primary classes to be considered, with their respective
|
|
* ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
|
|
* class exists if a guest CPUID entry for its <base> leaf exists. For a given
|
|
* class, CPUID.<base>.EAX contains the max supported leaf for the class.
|
|
*
|
|
* - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
|
|
* - Hypervisor: 0x40000000 - 0x4fffffff
|
|
* - Extended: 0x80000000 - 0xbfffffff
|
|
* - Centaur: 0xc0000000 - 0xcfffffff
|
|
*
|
|
* The Hypervisor class is further subdivided into sub-classes that each act as
|
|
* their own independent class associated with a 0x100 byte range. E.g. if Qemu
|
|
* is advertising support for both HyperV and KVM, the resulting Hypervisor
|
|
* CPUID sub-classes are:
|
|
*
|
|
* - HyperV: 0x40000000 - 0x400000ff
|
|
* - KVM: 0x40000100 - 0x400001ff
|
|
*/
|
|
static struct kvm_cpuid_entry2 *
|
|
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
|
|
{
|
|
struct kvm_cpuid_entry2 *basic, *class;
|
|
u32 function = *fn_ptr;
|
|
|
|
basic = kvm_find_cpuid_entry(vcpu, 0, 0);
|
|
if (!basic)
|
|
return NULL;
|
|
|
|
if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
|
|
is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
|
|
return NULL;
|
|
|
|
if (function >= 0x40000000 && function <= 0x4fffffff)
|
|
class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
|
|
else if (function >= 0xc0000000)
|
|
class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
|
|
else
|
|
class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
|
|
|
|
if (class && function <= class->eax)
|
|
return NULL;
|
|
|
|
/*
|
|
* Leaf specific adjustments are also applied when redirecting to the
|
|
* max basic entry, e.g. if the max basic leaf is 0xb but there is no
|
|
* entry for CPUID.0xb.index (see below), then the output value for EDX
|
|
* needs to be pulled from CPUID.0xb.1.
|
|
*/
|
|
*fn_ptr = basic->eax;
|
|
|
|
/*
|
|
* The class does not exist or the requested function is out of range;
|
|
* the effective CPUID entry is the max basic leaf. Note, the index of
|
|
* the original requested leaf is observed!
|
|
*/
|
|
return kvm_find_cpuid_entry(vcpu, basic->eax, index);
|
|
}
|
|
|
|
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
|
|
u32 *ecx, u32 *edx, bool exact_only)
|
|
{
|
|
u32 orig_function = *eax, function = *eax, index = *ecx;
|
|
struct kvm_cpuid_entry2 *entry;
|
|
bool exact, used_max_basic = false;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, function, index);
|
|
exact = !!entry;
|
|
|
|
if (!entry && !exact_only) {
|
|
entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
|
|
used_max_basic = !!entry;
|
|
}
|
|
|
|
if (entry) {
|
|
*eax = entry->eax;
|
|
*ebx = entry->ebx;
|
|
*ecx = entry->ecx;
|
|
*edx = entry->edx;
|
|
if (function == 7 && index == 0) {
|
|
u64 data;
|
|
if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
|
|
(data & TSX_CTRL_CPUID_CLEAR))
|
|
*ebx &= ~(F(RTM) | F(HLE));
|
|
}
|
|
} else {
|
|
*eax = *ebx = *ecx = *edx = 0;
|
|
/*
|
|
* When leaf 0BH or 1FH is defined, CL is pass-through
|
|
* and EDX is always the x2APIC ID, even for undefined
|
|
* subleaves. Index 1 will exist iff the leaf is
|
|
* implemented, so we pass through CL iff leaf 1
|
|
* exists. EDX can be copied from any existing index.
|
|
*/
|
|
if (function == 0xb || function == 0x1f) {
|
|
entry = kvm_find_cpuid_entry(vcpu, function, 1);
|
|
if (entry) {
|
|
*ecx = index & 0xff;
|
|
*edx = entry->edx;
|
|
}
|
|
}
|
|
}
|
|
trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
|
|
used_max_basic);
|
|
return exact;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_cpuid);
|
|
|
|
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
|
|
return 1;
|
|
|
|
eax = kvm_rax_read(vcpu);
|
|
ecx = kvm_rcx_read(vcpu);
|
|
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
|
|
kvm_rax_write(vcpu, eax);
|
|
kvm_rbx_write(vcpu, ebx);
|
|
kvm_rcx_write(vcpu, ecx);
|
|
kvm_rdx_write(vcpu, edx);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|