linux/mm/sparse.c
Qian Cai 9b7ea46a82 mm/hotplug: fix offline undo_isolate_page_range()
Commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online") introduced move_pfn_range_to_zone() which
calls memmap_init_zone() during onlining a memory block.
memmap_init_zone() will reset pagetype flags and makes migrate type to
be MOVABLE.

However, in __offline_pages(), it also call undo_isolate_page_range()
after offline_isolated_pages() to do the same thing.  Due to commit
2ce13640b3 ("mm: __first_valid_page skip over offline pages") changed
__first_valid_page() to skip offline pages, undo_isolate_page_range()
here just waste CPU cycles looping around the offlining PFN range while
doing nothing, because __first_valid_page() will return NULL as
offline_isolated_pages() has already marked all memory sections within
the pfn range as offline via offline_mem_sections().

Also, after calling the "useless" undo_isolate_page_range() here, it
reaches the point of no returning by notifying MEM_OFFLINE.  Those pages
will be marked as MIGRATE_MOVABLE again once onlining.  The only thing
left to do is to decrease the number of isolated pageblocks zone counter
which would make some paths of the page allocation slower that the above
commit introduced.

Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages
on ppc64, an "int" should still be enough to represent the number of
pageblocks there.  Fix an incorrect comment along the way.

[cai@lca.pw: v4]
  Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw
Fixes: 2ce13640b3 ("mm: __first_valid_page skip over offline pages")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 10:01:37 -07:00

820 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sparse memory mappings.
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/highmem.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include "internal.h"
#include <asm/dma.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
/*
* Permanent SPARSEMEM data:
*
* 1) mem_section - memory sections, mem_map's for valid memory
*/
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section **mem_section;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
* If we did not store the node number in the page then we have to
* do a lookup in the section_to_node_table in order to find which
* node the page belongs to.
*/
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif
int page_to_nid(const struct page *page)
{
return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
static void set_section_nid(unsigned long section_nr, int nid)
{
section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
sizeof(struct mem_section);
if (slab_is_available()) {
section = kzalloc_node(array_size, GFP_KERNEL, nid);
} else {
section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
nid);
if (!section)
panic("%s: Failed to allocate %lu bytes nid=%d\n",
__func__, array_size, nid);
}
return section;
}
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
struct mem_section *section;
if (mem_section[root])
return -EEXIST;
section = sparse_index_alloc(nid);
if (!section)
return -ENOMEM;
mem_section[root] = section;
return 0;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
return 0;
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
int __section_nr(struct mem_section* ms)
{
unsigned long root_nr;
struct mem_section *root = NULL;
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
if (!root)
continue;
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
break;
}
VM_BUG_ON(!root);
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}
#else
int __section_nr(struct mem_section* ms)
{
return (int)(ms - mem_section[0]);
}
#endif
/*
* During early boot, before section_mem_map is used for an actual
* mem_map, we use section_mem_map to store the section's NUMA
* node. This keeps us from having to use another data structure. The
* node information is cleared just before we store the real mem_map.
*/
static inline unsigned long sparse_encode_early_nid(int nid)
{
return (nid << SECTION_NID_SHIFT);
}
static inline int sparse_early_nid(struct mem_section *section)
{
return (section->section_mem_map >> SECTION_NID_SHIFT);
}
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn)
{
unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
/*
* Sanity checks - do not allow an architecture to pass
* in larger pfns than the maximum scope of sparsemem:
*/
if (*start_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*start_pfn = max_sparsemem_pfn;
*end_pfn = max_sparsemem_pfn;
} else if (*end_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*end_pfn = max_sparsemem_pfn;
}
}
/*
* There are a number of times that we loop over NR_MEM_SECTIONS,
* looking for section_present() on each. But, when we have very
* large physical address spaces, NR_MEM_SECTIONS can also be
* very large which makes the loops quite long.
*
* Keeping track of this gives us an easy way to break out of
* those loops early.
*/
int __highest_present_section_nr;
static void section_mark_present(struct mem_section *ms)
{
int section_nr = __section_nr(ms);
if (section_nr > __highest_present_section_nr)
__highest_present_section_nr = section_nr;
ms->section_mem_map |= SECTION_MARKED_PRESENT;
}
static inline int next_present_section_nr(int section_nr)
{
do {
section_nr++;
if (present_section_nr(section_nr))
return section_nr;
} while ((section_nr <= __highest_present_section_nr));
return -1;
}
#define for_each_present_section_nr(start, section_nr) \
for (section_nr = next_present_section_nr(start-1); \
((section_nr != -1) && \
(section_nr <= __highest_present_section_nr)); \
section_nr = next_present_section_nr(section_nr))
static inline unsigned long first_present_section_nr(void)
{
return next_present_section_nr(-1);
}
/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
#ifdef CONFIG_SPARSEMEM_EXTREME
if (unlikely(!mem_section)) {
unsigned long size, align;
size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
align = 1 << (INTERNODE_CACHE_SHIFT);
mem_section = memblock_alloc(size, align);
if (!mem_section)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, size, align);
}
#endif
start &= PAGE_SECTION_MASK;
mminit_validate_memmodel_limits(&start, &end);
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
unsigned long section = pfn_to_section_nr(pfn);
struct mem_section *ms;
sparse_index_init(section, nid);
set_section_nid(section, nid);
ms = __nr_to_section(section);
if (!ms->section_mem_map) {
ms->section_mem_map = sparse_encode_early_nid(nid) |
SECTION_IS_ONLINE;
section_mark_present(ms);
}
}
}
/*
* Mark all memblocks as present using memory_present(). This is a
* convienence function that is useful for a number of arches
* to mark all of the systems memory as present during initialization.
*/
void __init memblocks_present(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg) {
memory_present(memblock_get_region_node(reg),
memblock_region_memory_base_pfn(reg),
memblock_region_memory_end_pfn(reg));
}
}
/*
* Subtle, we encode the real pfn into the mem_map such that
* the identity pfn - section_mem_map will return the actual
* physical page frame number.
*/
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
unsigned long coded_mem_map =
(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
return coded_mem_map;
}
/*
* Decode mem_map from the coded memmap
*/
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
/* mask off the extra low bits of information */
coded_mem_map &= SECTION_MAP_MASK;
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
static void __meminit sparse_init_one_section(struct mem_section *ms,
unsigned long pnum, struct page *mem_map,
unsigned long *pageblock_bitmap)
{
ms->section_mem_map &= ~SECTION_MAP_MASK;
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
SECTION_HAS_MEM_MAP;
ms->pageblock_flags = pageblock_bitmap;
}
unsigned long usemap_size(void)
{
return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */
#ifdef CONFIG_MEMORY_HOTREMOVE
static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
unsigned long goal, limit;
unsigned long *p;
int nid;
/*
* A page may contain usemaps for other sections preventing the
* page being freed and making a section unremovable while
* other sections referencing the usemap remain active. Similarly,
* a pgdat can prevent a section being removed. If section A
* contains a pgdat and section B contains the usemap, both
* sections become inter-dependent. This allocates usemaps
* from the same section as the pgdat where possible to avoid
* this problem.
*/
goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
limit = goal + (1UL << PA_SECTION_SHIFT);
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
p = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
if (!p && limit) {
limit = 0;
goto again;
}
return p;
}
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
unsigned long usemap_snr, pgdat_snr;
static unsigned long old_usemap_snr;
static unsigned long old_pgdat_snr;
struct pglist_data *pgdat = NODE_DATA(nid);
int usemap_nid;
/* First call */
if (!old_usemap_snr) {
old_usemap_snr = NR_MEM_SECTIONS;
old_pgdat_snr = NR_MEM_SECTIONS;
}
usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
if (usemap_snr == pgdat_snr)
return;
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
/* skip redundant message */
return;
old_usemap_snr = usemap_snr;
old_pgdat_snr = pgdat_snr;
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
if (usemap_nid != nid) {
pr_info("node %d must be removed before remove section %ld\n",
nid, usemap_snr);
return;
}
/*
* There is a circular dependency.
* Some platforms allow un-removable section because they will just
* gather other removable sections for dynamic partitioning.
* Just notify un-removable section's number here.
*/
pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
usemap_snr, pgdat_snr, nid);
}
#else
static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
}
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static unsigned long __init section_map_size(void)
{
return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
}
#else
static unsigned long __init section_map_size(void)
{
return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
}
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
struct vmem_altmap *altmap)
{
unsigned long size = section_map_size();
struct page *map = sparse_buffer_alloc(size);
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
if (map)
return map;
map = memblock_alloc_try_nid(size,
PAGE_SIZE, addr,
MEMBLOCK_ALLOC_ACCESSIBLE, nid);
if (!map)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
__func__, size, PAGE_SIZE, nid, &addr);
return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
static void *sparsemap_buf __meminitdata;
static void *sparsemap_buf_end __meminitdata;
static void __init sparse_buffer_init(unsigned long size, int nid)
{
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
sparsemap_buf =
memblock_alloc_try_nid_raw(size, PAGE_SIZE,
addr,
MEMBLOCK_ALLOC_ACCESSIBLE, nid);
sparsemap_buf_end = sparsemap_buf + size;
}
static void __init sparse_buffer_fini(void)
{
unsigned long size = sparsemap_buf_end - sparsemap_buf;
if (sparsemap_buf && size > 0)
memblock_free_early(__pa(sparsemap_buf), size);
sparsemap_buf = NULL;
}
void * __meminit sparse_buffer_alloc(unsigned long size)
{
void *ptr = NULL;
if (sparsemap_buf) {
ptr = PTR_ALIGN(sparsemap_buf, size);
if (ptr + size > sparsemap_buf_end)
ptr = NULL;
else
sparsemap_buf = ptr + size;
}
return ptr;
}
void __weak __meminit vmemmap_populate_print_last(void)
{
}
/*
* Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
* And number of present sections in this node is map_count.
*/
static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long map_count)
{
unsigned long pnum, usemap_longs, *usemap;
struct page *map;
usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS);
usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
usemap_size() *
map_count);
if (!usemap) {
pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
goto failed;
}
sparse_buffer_init(map_count * section_map_size(), nid);
for_each_present_section_nr(pnum_begin, pnum) {
if (pnum >= pnum_end)
break;
map = sparse_mem_map_populate(pnum, nid, NULL);
if (!map) {
pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
__func__, nid);
pnum_begin = pnum;
goto failed;
}
check_usemap_section_nr(nid, usemap);
sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap);
usemap += usemap_longs;
}
sparse_buffer_fini();
return;
failed:
/* We failed to allocate, mark all the following pnums as not present */
for_each_present_section_nr(pnum_begin, pnum) {
struct mem_section *ms;
if (pnum >= pnum_end)
break;
ms = __nr_to_section(pnum);
ms->section_mem_map = 0;
}
}
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
*/
void __init sparse_init(void)
{
unsigned long pnum_begin = first_present_section_nr();
int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
unsigned long pnum_end, map_count = 1;
/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
set_pageblock_order();
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
int nid = sparse_early_nid(__nr_to_section(pnum_end));
if (nid == nid_begin) {
map_count++;
continue;
}
/* Init node with sections in range [pnum_begin, pnum_end) */
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
nid_begin = nid;
pnum_begin = pnum_end;
map_count = 1;
}
/* cover the last node */
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
vmemmap_populate_print_last();
}
#ifdef CONFIG_MEMORY_HOTPLUG
/* Mark all memory sections within the pfn range as online */
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
/* onlining code should never touch invalid ranges */
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map |= SECTION_IS_ONLINE;
}
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/* Mark all memory sections within the pfn range as offline */
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
/*
* TODO this needs some double checking. Offlining code makes
* sure to check pfn_valid but those checks might be just bogus
*/
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map &= ~SECTION_IS_ONLINE;
}
}
#endif
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
struct vmem_altmap *altmap)
{
/* This will make the necessary allocations eventually. */
return sparse_mem_map_populate(pnum, nid, altmap);
}
static void __kfree_section_memmap(struct page *memmap,
struct vmem_altmap *altmap)
{
unsigned long start = (unsigned long)memmap;
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end, altmap);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static void free_map_bootmem(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end, NULL);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#else
static struct page *__kmalloc_section_memmap(void)
{
struct page *page, *ret;
unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
if (page)
goto got_map_page;
ret = vmalloc(memmap_size);
if (ret)
goto got_map_ptr;
return NULL;
got_map_page:
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
return ret;
}
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
struct vmem_altmap *altmap)
{
return __kmalloc_section_memmap();
}
static void __kfree_section_memmap(struct page *memmap,
struct vmem_altmap *altmap)
{
if (is_vmalloc_addr(memmap))
vfree(memmap);
else
free_pages((unsigned long)memmap,
get_order(sizeof(struct page) * PAGES_PER_SECTION));
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static void free_map_bootmem(struct page *memmap)
{
unsigned long maps_section_nr, removing_section_nr, i;
unsigned long magic, nr_pages;
struct page *page = virt_to_page(memmap);
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
>> PAGE_SHIFT;
for (i = 0; i < nr_pages; i++, page++) {
magic = (unsigned long) page->freelist;
BUG_ON(magic == NODE_INFO);
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
removing_section_nr = page_private(page);
/*
* When this function is called, the removing section is
* logical offlined state. This means all pages are isolated
* from page allocator. If removing section's memmap is placed
* on the same section, it must not be freed.
* If it is freed, page allocator may allocate it which will
* be removed physically soon.
*/
if (maps_section_nr != removing_section_nr)
put_page_bootmem(page);
}
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* returns the number of sections whose mem_maps were properly
* set. If this is <=0, then that means that the passed-in
* map was not consumed and must be freed.
*/
int __meminit sparse_add_one_section(int nid, unsigned long start_pfn,
struct vmem_altmap *altmap)
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct mem_section *ms;
struct page *memmap;
unsigned long *usemap;
int ret;
/*
* no locking for this, because it does its own
* plus, it does a kmalloc
*/
ret = sparse_index_init(section_nr, nid);
if (ret < 0 && ret != -EEXIST)
return ret;
ret = 0;
memmap = kmalloc_section_memmap(section_nr, nid, altmap);
if (!memmap)
return -ENOMEM;
usemap = __kmalloc_section_usemap();
if (!usemap) {
__kfree_section_memmap(memmap, altmap);
return -ENOMEM;
}
ms = __pfn_to_section(start_pfn);
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
ret = -EEXIST;
goto out;
}
/*
* Poison uninitialized struct pages in order to catch invalid flags
* combinations.
*/
page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION);
section_mark_present(ms);
sparse_init_one_section(ms, section_nr, memmap, usemap);
out:
if (ret < 0) {
kfree(usemap);
__kfree_section_memmap(memmap, altmap);
}
return ret;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
#ifdef CONFIG_MEMORY_FAILURE
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
int i;
if (!memmap)
return;
/*
* A further optimization is to have per section refcounted
* num_poisoned_pages. But that would need more space per memmap, so
* for now just do a quick global check to speed up this routine in the
* absence of bad pages.
*/
if (atomic_long_read(&num_poisoned_pages) == 0)
return;
for (i = 0; i < nr_pages; i++) {
if (PageHWPoison(&memmap[i])) {
atomic_long_sub(1, &num_poisoned_pages);
ClearPageHWPoison(&memmap[i]);
}
}
}
#else
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
}
#endif
static void free_section_usemap(struct page *memmap, unsigned long *usemap,
struct vmem_altmap *altmap)
{
struct page *usemap_page;
if (!usemap)
return;
usemap_page = virt_to_page(usemap);
/*
* Check to see if allocation came from hot-plug-add
*/
if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
kfree(usemap);
if (memmap)
__kfree_section_memmap(memmap, altmap);
return;
}
/*
* The usemap came from bootmem. This is packed with other usemaps
* on the section which has pgdat at boot time. Just keep it as is now.
*/
if (memmap)
free_map_bootmem(memmap);
}
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
unsigned long map_offset, struct vmem_altmap *altmap)
{
struct page *memmap = NULL;
unsigned long *usemap = NULL;
if (ms->section_mem_map) {
usemap = ms->pageblock_flags;
memmap = sparse_decode_mem_map(ms->section_mem_map,
__section_nr(ms));
ms->section_mem_map = 0;
ms->pageblock_flags = NULL;
}
clear_hwpoisoned_pages(memmap + map_offset,
PAGES_PER_SECTION - map_offset);
free_section_usemap(memmap, usemap, altmap);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#endif /* CONFIG_MEMORY_HOTPLUG */