linux/fs/f2fs/checkpoint.c
Jaegeuk Kim 5ec4e49f9b f2fs: change GC bitmaps to apply the section granularity
This patch removes a bitmap for victim segments selected by foreground GC, and
modifies the other bitmap for victim segments selected by background GC.

1) foreground GC bitmap
 : We don't need to manage this, since we just only one previous victim section
   number instead of the whole victim history.
   The f2fs uses the victim section number in order not to allocate currently
   GC'ed section to current active logs.

2) background GC bitmap
 : This bitmap is used to avoid selecting victims repeatedly by background GCs.
   In addition, the victims are able to be selected by foreground GCs, since
   there is no need to read victim blocks during foreground GCs.

   By the fact that the foreground GC reclaims segments in a section unit, it'd
   be better to manage this bitmap based on the section granularity.

Reviewed-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-04-03 17:27:49 +09:00

785 lines
20 KiB
C

/*
* fs/f2fs/checkpoint.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
static struct kmem_cache *orphan_entry_slab;
static struct kmem_cache *inode_entry_slab;
/*
* We guarantee no failure on the returned page.
*/
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
struct page *page = NULL;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
/* We wait writeback only inside grab_meta_page() */
wait_on_page_writeback(page);
SetPageUptodate(page);
return page;
}
/*
* We guarantee no failure on the returned page.
*/
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
struct page *page;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
if (PageUptodate(page))
goto out;
if (f2fs_readpage(sbi, page, index, READ_SYNC))
goto repeat;
lock_page(page);
out:
mark_page_accessed(page);
return page;
}
static int f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
/* Should not write any meta pages, if any IO error was occurred */
if (wbc->for_reclaim ||
is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
dec_page_count(sbi, F2FS_DIRTY_META);
wbc->pages_skipped++;
set_page_dirty(page);
return AOP_WRITEPAGE_ACTIVATE;
}
wait_on_page_writeback(page);
write_meta_page(sbi, page);
dec_page_count(sbi, F2FS_DIRTY_META);
unlock_page(page);
return 0;
}
static int f2fs_write_meta_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
struct block_device *bdev = sbi->sb->s_bdev;
long written;
if (wbc->for_kupdate)
return 0;
if (get_pages(sbi, F2FS_DIRTY_META) == 0)
return 0;
/* if mounting is failed, skip writing node pages */
mutex_lock(&sbi->cp_mutex);
written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
mutex_unlock(&sbi->cp_mutex);
wbc->nr_to_write -= written;
return 0;
}
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
pgoff_t index = 0, end = LONG_MAX;
struct pagevec pvec;
long nwritten = 0;
struct writeback_control wbc = {
.for_reclaim = 0,
};
pagevec_init(&pvec, 0);
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
lock_page(page);
BUG_ON(page->mapping != mapping);
BUG_ON(!PageDirty(page));
clear_page_dirty_for_io(page);
if (f2fs_write_meta_page(page, &wbc)) {
unlock_page(page);
break;
}
if (nwritten++ >= nr_to_write)
break;
}
pagevec_release(&pvec);
cond_resched();
}
if (nwritten)
f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
return nwritten;
}
static int f2fs_set_meta_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
SetPageUptodate(page);
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
inc_page_count(sbi, F2FS_DIRTY_META);
return 1;
}
return 0;
}
const struct address_space_operations f2fs_meta_aops = {
.writepage = f2fs_write_meta_page,
.writepages = f2fs_write_meta_pages,
.set_page_dirty = f2fs_set_meta_page_dirty,
};
int check_orphan_space(struct f2fs_sb_info *sbi)
{
unsigned int max_orphans;
int err = 0;
/*
* considering 512 blocks in a segment 5 blocks are needed for cp
* and log segment summaries. Remaining blocks are used to keep
* orphan entries with the limitation one reserved segment
* for cp pack we can have max 1020*507 orphan entries
*/
max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
mutex_lock(&sbi->orphan_inode_mutex);
if (sbi->n_orphans >= max_orphans)
err = -ENOSPC;
mutex_unlock(&sbi->orphan_inode_mutex);
return err;
}
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *head, *this;
struct orphan_inode_entry *new = NULL, *orphan = NULL;
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
list_for_each(this, head) {
orphan = list_entry(this, struct orphan_inode_entry, list);
if (orphan->ino == ino)
goto out;
if (orphan->ino > ino)
break;
orphan = NULL;
}
retry:
new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
if (!new) {
cond_resched();
goto retry;
}
new->ino = ino;
/* add new_oentry into list which is sorted by inode number */
if (orphan)
list_add(&new->list, this->prev);
else
list_add_tail(&new->list, head);
sbi->n_orphans++;
out:
mutex_unlock(&sbi->orphan_inode_mutex);
}
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *this, *next, *head;
struct orphan_inode_entry *orphan;
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
list_for_each_safe(this, next, head) {
orphan = list_entry(this, struct orphan_inode_entry, list);
if (orphan->ino == ino) {
list_del(&orphan->list);
kmem_cache_free(orphan_entry_slab, orphan);
sbi->n_orphans--;
break;
}
}
mutex_unlock(&sbi->orphan_inode_mutex);
}
static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode = f2fs_iget(sbi->sb, ino);
BUG_ON(IS_ERR(inode));
clear_nlink(inode);
/* truncate all the data during iput */
iput(inode);
}
int recover_orphan_inodes(struct f2fs_sb_info *sbi)
{
block_t start_blk, orphan_blkaddr, i, j;
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
return 0;
sbi->por_doing = 1;
start_blk = __start_cp_addr(sbi) + 1;
orphan_blkaddr = __start_sum_addr(sbi) - 1;
for (i = 0; i < orphan_blkaddr; i++) {
struct page *page = get_meta_page(sbi, start_blk + i);
struct f2fs_orphan_block *orphan_blk;
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
recover_orphan_inode(sbi, ino);
}
f2fs_put_page(page, 1);
}
/* clear Orphan Flag */
clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
sbi->por_doing = 0;
return 0;
}
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
{
struct list_head *head, *this, *next;
struct f2fs_orphan_block *orphan_blk = NULL;
struct page *page = NULL;
unsigned int nentries = 0;
unsigned short index = 1;
unsigned short orphan_blocks;
orphan_blocks = (unsigned short)((sbi->n_orphans +
(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
/* loop for each orphan inode entry and write them in Jornal block */
list_for_each_safe(this, next, head) {
struct orphan_inode_entry *orphan;
orphan = list_entry(this, struct orphan_inode_entry, list);
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
/*
* an orphan block is full of 1020 entries,
* then we need to flush current orphan blocks
* and bring another one in memory
*/
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
index++;
start_blk++;
nentries = 0;
page = NULL;
}
if (page)
goto page_exist;
page = grab_meta_page(sbi, start_blk);
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
memset(orphan_blk, 0, sizeof(*orphan_blk));
page_exist:
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
}
if (!page)
goto end;
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
end:
mutex_unlock(&sbi->orphan_inode_mutex);
}
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
block_t cp_addr, unsigned long long *version)
{
struct page *cp_page_1, *cp_page_2 = NULL;
unsigned long blk_size = sbi->blocksize;
struct f2fs_checkpoint *cp_block;
unsigned long long cur_version = 0, pre_version = 0;
unsigned int crc = 0;
size_t crc_offset;
/* Read the 1st cp block in this CP pack */
cp_page_1 = get_meta_page(sbi, cp_addr);
/* get the version number */
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp1;
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
pre_version = le64_to_cpu(cp_block->checkpoint_ver);
/* Read the 2nd cp block in this CP pack */
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
cp_page_2 = get_meta_page(sbi, cp_addr);
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp2;
crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp2;
cur_version = le64_to_cpu(cp_block->checkpoint_ver);
if (cur_version == pre_version) {
*version = cur_version;
f2fs_put_page(cp_page_2, 1);
return cp_page_1;
}
invalid_cp2:
f2fs_put_page(cp_page_2, 1);
invalid_cp1:
f2fs_put_page(cp_page_1, 1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_super_block *fsb = sbi->raw_super;
struct page *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
goto fail_no_cp;
}
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
memcpy(sbi->ckpt, cp_block, blk_size);
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
return 0;
fail_no_cp:
kfree(sbi->ckpt);
return -EINVAL;
}
void set_dirty_dir_page(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct list_head *head = &sbi->dir_inode_list;
struct dir_inode_entry *new;
struct list_head *this;
if (!S_ISDIR(inode->i_mode))
return;
retry:
new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
if (!new) {
cond_resched();
goto retry;
}
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
list_for_each(this, head) {
struct dir_inode_entry *entry;
entry = list_entry(this, struct dir_inode_entry, list);
if (entry->inode == inode) {
kmem_cache_free(inode_entry_slab, new);
goto out;
}
}
list_add_tail(&new->list, head);
sbi->n_dirty_dirs++;
BUG_ON(!S_ISDIR(inode->i_mode));
out:
inc_page_count(sbi, F2FS_DIRTY_DENTS);
inode_inc_dirty_dents(inode);
SetPagePrivate(page);
spin_unlock(&sbi->dir_inode_lock);
}
void remove_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct list_head *head = &sbi->dir_inode_list;
struct list_head *this;
if (!S_ISDIR(inode->i_mode))
return;
spin_lock(&sbi->dir_inode_lock);
if (atomic_read(&F2FS_I(inode)->dirty_dents))
goto out;
list_for_each(this, head) {
struct dir_inode_entry *entry;
entry = list_entry(this, struct dir_inode_entry, list);
if (entry->inode == inode) {
list_del(&entry->list);
kmem_cache_free(inode_entry_slab, entry);
sbi->n_dirty_dirs--;
break;
}
}
out:
spin_unlock(&sbi->dir_inode_lock);
}
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
{
struct list_head *head = &sbi->dir_inode_list;
struct dir_inode_entry *entry;
struct inode *inode;
retry:
spin_lock(&sbi->dir_inode_lock);
if (list_empty(head)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
entry = list_entry(head->next, struct dir_inode_entry, list);
inode = igrab(entry->inode);
spin_unlock(&sbi->dir_inode_lock);
if (inode) {
filemap_flush(inode->i_mapping);
iput(inode);
} else {
/*
* We should submit bio, since it exists several
* wribacking dentry pages in the freeing inode.
*/
f2fs_submit_bio(sbi, DATA, true);
}
goto retry;
}
/*
* Freeze all the FS-operations for checkpoint.
*/
static void block_operations(struct f2fs_sb_info *sbi)
{
int t;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
/* Stop renaming operation */
mutex_lock_op(sbi, RENAME);
mutex_lock_op(sbi, DENTRY_OPS);
retry_dents:
/* write all the dirty dentry pages */
sync_dirty_dir_inodes(sbi);
mutex_lock_op(sbi, DATA_WRITE);
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
mutex_unlock_op(sbi, DATA_WRITE);
goto retry_dents;
}
/* block all the operations */
for (t = DATA_NEW; t <= NODE_TRUNC; t++)
mutex_lock_op(sbi, t);
mutex_lock(&sbi->write_inode);
/*
* POR: we should ensure that there is no dirty node pages
* until finishing nat/sit flush.
*/
retry:
sync_node_pages(sbi, 0, &wbc);
mutex_lock_op(sbi, NODE_WRITE);
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
mutex_unlock_op(sbi, NODE_WRITE);
goto retry;
}
mutex_unlock(&sbi->write_inode);
}
static void unblock_operations(struct f2fs_sb_info *sbi)
{
int t;
for (t = NODE_WRITE; t >= RENAME; t--)
mutex_unlock_op(sbi, t);
}
static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
nid_t last_nid = 0;
block_t start_blk;
struct page *cp_page;
unsigned int data_sum_blocks, orphan_blocks;
unsigned int crc32 = 0;
void *kaddr;
int i;
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META))
sync_meta_pages(sbi, META, LONG_MAX);
next_free_nid(sbi, &last_nid);
/*
* modify checkpoint
* version number is already updated
*/
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
for (i = 0; i < 3; i++) {
ckpt->cur_node_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
ckpt->cur_node_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
}
for (i = 0; i < 3; i++) {
ckpt->cur_data_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
ckpt->cur_data_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
}
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
ckpt->next_free_nid = cpu_to_le32(last_nid);
/* 2 cp + n data seg summary + orphan inode blocks */
data_sum_blocks = npages_for_summary_flush(sbi);
if (data_sum_blocks < 3)
set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
else
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
/ F2FS_ORPHANS_PER_BLOCK;
ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
if (is_umount) {
set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
} else {
clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
data_sum_blocks + orphan_blocks);
}
if (sbi->n_orphans)
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
else
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
/* update SIT/NAT bitmap */
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
*(__le32 *)((unsigned char *)ckpt +
le32_to_cpu(ckpt->checksum_offset))
= cpu_to_le32(crc32);
start_blk = __start_cp_addr(sbi);
/* write out checkpoint buffer at block 0 */
cp_page = grab_meta_page(sbi, start_blk++);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
if (sbi->n_orphans) {
write_orphan_inodes(sbi, start_blk);
start_blk += orphan_blocks;
}
write_data_summaries(sbi, start_blk);
start_blk += data_sum_blocks;
if (is_umount) {
write_node_summaries(sbi, start_blk);
start_blk += NR_CURSEG_NODE_TYPE;
}
/* writeout checkpoint block */
cp_page = grab_meta_page(sbi, start_blk);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
/* wait for previous submitted node/meta pages writeback */
while (get_pages(sbi, F2FS_WRITEBACK))
congestion_wait(BLK_RW_ASYNC, HZ / 50);
filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
/* update user_block_counts */
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
/* Here, we only have one bio having CP pack */
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
clear_prefree_segments(sbi);
F2FS_RESET_SB_DIRT(sbi);
}
}
/*
* We guarantee that this checkpoint procedure should not fail.
*/
void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_ver;
mutex_lock(&sbi->cp_mutex);
block_operations(sbi);
f2fs_submit_bio(sbi, DATA, true);
f2fs_submit_bio(sbi, NODE, true);
f2fs_submit_bio(sbi, META, true);
/*
* update checkpoint pack index
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
flush_nat_entries(sbi);
flush_sit_entries(sbi);
/* unlock all the fs_lock[] in do_checkpoint() */
do_checkpoint(sbi, is_umount);
unblock_operations(sbi);
mutex_unlock(&sbi->cp_mutex);
}
void init_orphan_info(struct f2fs_sb_info *sbi)
{
mutex_init(&sbi->orphan_inode_mutex);
INIT_LIST_HEAD(&sbi->orphan_inode_list);
sbi->n_orphans = 0;
}
int __init create_checkpoint_caches(void)
{
orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
sizeof(struct orphan_inode_entry), NULL);
if (unlikely(!orphan_entry_slab))
return -ENOMEM;
inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
sizeof(struct dir_inode_entry), NULL);
if (unlikely(!inode_entry_slab)) {
kmem_cache_destroy(orphan_entry_slab);
return -ENOMEM;
}
return 0;
}
void destroy_checkpoint_caches(void)
{
kmem_cache_destroy(orphan_entry_slab);
kmem_cache_destroy(inode_entry_slab);
}