mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-25 05:04:09 +08:00
fd3ddd4355
To eventually get rid of all legacy drivers convert this driver to the modern world implementing .apply(). This just pushed a variant of pwm_apply_legacy() into the driver that was slightly simplified because the driver doesn't provide a .set_polarity() callback. Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
435 lines
11 KiB
C
435 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
/*
|
||
* drivers/pwm/pwm-tegra.c
|
||
*
|
||
* Tegra pulse-width-modulation controller driver
|
||
*
|
||
* Copyright (c) 2010-2020, NVIDIA Corporation.
|
||
* Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
|
||
*
|
||
* Overview of Tegra Pulse Width Modulator Register:
|
||
* 1. 13-bit: Frequency division (SCALE)
|
||
* 2. 8-bit : Pulse division (DUTY)
|
||
* 3. 1-bit : Enable bit
|
||
*
|
||
* The PWM clock frequency is divided by 256 before subdividing it based
|
||
* on the programmable frequency division value to generate the required
|
||
* frequency for PWM output. The maximum output frequency that can be
|
||
* achieved is (max rate of source clock) / 256.
|
||
* e.g. if source clock rate is 408 MHz, maximum output frequency can be:
|
||
* 408 MHz/256 = 1.6 MHz.
|
||
* This 1.6 MHz frequency can further be divided using SCALE value in PWM.
|
||
*
|
||
* PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
|
||
* To achieve 100% duty cycle, program Bit [24] of this register to
|
||
* 1’b1. In which case the other bits [23:16] are set to don't care.
|
||
*
|
||
* Limitations:
|
||
* - When PWM is disabled, the output is driven to inactive.
|
||
* - It does not allow the current PWM period to complete and
|
||
* stops abruptly.
|
||
*
|
||
* - If the register is reconfigured while PWM is running,
|
||
* it does not complete the currently running period.
|
||
*
|
||
* - If the user input duty is beyond acceptible limits,
|
||
* -EINVAL is returned.
|
||
*/
|
||
|
||
#include <linux/clk.h>
|
||
#include <linux/err.h>
|
||
#include <linux/io.h>
|
||
#include <linux/module.h>
|
||
#include <linux/of.h>
|
||
#include <linux/of_device.h>
|
||
#include <linux/pm_opp.h>
|
||
#include <linux/pwm.h>
|
||
#include <linux/platform_device.h>
|
||
#include <linux/pinctrl/consumer.h>
|
||
#include <linux/pm_runtime.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/reset.h>
|
||
|
||
#include <soc/tegra/common.h>
|
||
|
||
#define PWM_ENABLE (1 << 31)
|
||
#define PWM_DUTY_WIDTH 8
|
||
#define PWM_DUTY_SHIFT 16
|
||
#define PWM_SCALE_WIDTH 13
|
||
#define PWM_SCALE_SHIFT 0
|
||
|
||
struct tegra_pwm_soc {
|
||
unsigned int num_channels;
|
||
|
||
/* Maximum IP frequency for given SoCs */
|
||
unsigned long max_frequency;
|
||
};
|
||
|
||
struct tegra_pwm_chip {
|
||
struct pwm_chip chip;
|
||
struct device *dev;
|
||
|
||
struct clk *clk;
|
||
struct reset_control*rst;
|
||
|
||
unsigned long clk_rate;
|
||
unsigned long min_period_ns;
|
||
|
||
void __iomem *regs;
|
||
|
||
const struct tegra_pwm_soc *soc;
|
||
};
|
||
|
||
static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
|
||
{
|
||
return container_of(chip, struct tegra_pwm_chip, chip);
|
||
}
|
||
|
||
static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
|
||
{
|
||
return readl(pc->regs + (offset << 4));
|
||
}
|
||
|
||
static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
|
||
{
|
||
writel(value, pc->regs + (offset << 4));
|
||
}
|
||
|
||
static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
|
||
int duty_ns, int period_ns)
|
||
{
|
||
struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
|
||
unsigned long long c = duty_ns;
|
||
unsigned long rate, required_clk_rate;
|
||
u32 val = 0;
|
||
int err;
|
||
|
||
/*
|
||
* Convert from duty_ns / period_ns to a fixed number of duty ticks
|
||
* per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
|
||
* nearest integer during division.
|
||
*/
|
||
c *= (1 << PWM_DUTY_WIDTH);
|
||
c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
|
||
|
||
val = (u32)c << PWM_DUTY_SHIFT;
|
||
|
||
/*
|
||
* min period = max clock limit >> PWM_DUTY_WIDTH
|
||
*/
|
||
if (period_ns < pc->min_period_ns)
|
||
return -EINVAL;
|
||
|
||
/*
|
||
* Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
|
||
* cycles at the PWM clock rate will take period_ns nanoseconds.
|
||
*
|
||
* num_channels: If single instance of PWM controller has multiple
|
||
* channels (e.g. Tegra210 or older) then it is not possible to
|
||
* configure separate clock rates to each of the channels, in such
|
||
* case the value stored during probe will be referred.
|
||
*
|
||
* If every PWM controller instance has one channel respectively, i.e.
|
||
* nums_channels == 1 then only the clock rate can be modified
|
||
* dynamically (e.g. Tegra186 or Tegra194).
|
||
*/
|
||
if (pc->soc->num_channels == 1) {
|
||
/*
|
||
* Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
|
||
* with the maximum possible rate that the controller can
|
||
* provide. Any further lower value can be derived by setting
|
||
* PFM bits[0:12].
|
||
*
|
||
* required_clk_rate is a reference rate for source clock and
|
||
* it is derived based on user requested period. By setting the
|
||
* source clock rate as required_clk_rate, PWM controller will
|
||
* be able to configure the requested period.
|
||
*/
|
||
required_clk_rate =
|
||
(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
|
||
|
||
err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
|
||
if (err < 0)
|
||
return -EINVAL;
|
||
|
||
/* Store the new rate for further references */
|
||
pc->clk_rate = clk_get_rate(pc->clk);
|
||
}
|
||
|
||
/* Consider precision in PWM_SCALE_WIDTH rate calculation */
|
||
rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
|
||
(u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);
|
||
|
||
/*
|
||
* Since the actual PWM divider is the register's frequency divider
|
||
* field plus 1, we need to decrement to get the correct value to
|
||
* write to the register.
|
||
*/
|
||
if (rate > 0)
|
||
rate--;
|
||
else
|
||
return -EINVAL;
|
||
|
||
/*
|
||
* Make sure that the rate will fit in the register's frequency
|
||
* divider field.
|
||
*/
|
||
if (rate >> PWM_SCALE_WIDTH)
|
||
return -EINVAL;
|
||
|
||
val |= rate << PWM_SCALE_SHIFT;
|
||
|
||
/*
|
||
* If the PWM channel is disabled, make sure to turn on the clock
|
||
* before writing the register. Otherwise, keep it enabled.
|
||
*/
|
||
if (!pwm_is_enabled(pwm)) {
|
||
err = pm_runtime_resume_and_get(pc->dev);
|
||
if (err)
|
||
return err;
|
||
} else
|
||
val |= PWM_ENABLE;
|
||
|
||
pwm_writel(pc, pwm->hwpwm, val);
|
||
|
||
/*
|
||
* If the PWM is not enabled, turn the clock off again to save power.
|
||
*/
|
||
if (!pwm_is_enabled(pwm))
|
||
pm_runtime_put(pc->dev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
|
||
{
|
||
struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
|
||
int rc = 0;
|
||
u32 val;
|
||
|
||
rc = pm_runtime_resume_and_get(pc->dev);
|
||
if (rc)
|
||
return rc;
|
||
|
||
val = pwm_readl(pc, pwm->hwpwm);
|
||
val |= PWM_ENABLE;
|
||
pwm_writel(pc, pwm->hwpwm, val);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
|
||
{
|
||
struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
|
||
u32 val;
|
||
|
||
val = pwm_readl(pc, pwm->hwpwm);
|
||
val &= ~PWM_ENABLE;
|
||
pwm_writel(pc, pwm->hwpwm, val);
|
||
|
||
pm_runtime_put_sync(pc->dev);
|
||
}
|
||
|
||
static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
|
||
const struct pwm_state *state)
|
||
{
|
||
int err;
|
||
bool enabled = pwm->state.enabled;
|
||
|
||
if (state->polarity != PWM_POLARITY_NORMAL)
|
||
return -EINVAL;
|
||
|
||
if (!state->enabled) {
|
||
if (enabled)
|
||
tegra_pwm_disable(chip, pwm);
|
||
|
||
return 0;
|
||
}
|
||
|
||
err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
|
||
if (err)
|
||
return err;
|
||
|
||
if (!enabled)
|
||
err = tegra_pwm_enable(chip, pwm);
|
||
|
||
return err;
|
||
}
|
||
|
||
static const struct pwm_ops tegra_pwm_ops = {
|
||
.apply = tegra_pwm_apply,
|
||
.owner = THIS_MODULE,
|
||
};
|
||
|
||
static int tegra_pwm_probe(struct platform_device *pdev)
|
||
{
|
||
struct tegra_pwm_chip *pc;
|
||
int ret;
|
||
|
||
pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
|
||
if (!pc)
|
||
return -ENOMEM;
|
||
|
||
pc->soc = of_device_get_match_data(&pdev->dev);
|
||
pc->dev = &pdev->dev;
|
||
|
||
pc->regs = devm_platform_ioremap_resource(pdev, 0);
|
||
if (IS_ERR(pc->regs))
|
||
return PTR_ERR(pc->regs);
|
||
|
||
platform_set_drvdata(pdev, pc);
|
||
|
||
pc->clk = devm_clk_get(&pdev->dev, NULL);
|
||
if (IS_ERR(pc->clk))
|
||
return PTR_ERR(pc->clk);
|
||
|
||
ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
|
||
if (ret)
|
||
return ret;
|
||
|
||
pm_runtime_enable(&pdev->dev);
|
||
ret = pm_runtime_resume_and_get(&pdev->dev);
|
||
if (ret)
|
||
return ret;
|
||
|
||
/* Set maximum frequency of the IP */
|
||
ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency);
|
||
if (ret < 0) {
|
||
dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
|
||
goto put_pm;
|
||
}
|
||
|
||
/*
|
||
* The requested and configured frequency may differ due to
|
||
* clock register resolutions. Get the configured frequency
|
||
* so that PWM period can be calculated more accurately.
|
||
*/
|
||
pc->clk_rate = clk_get_rate(pc->clk);
|
||
|
||
/* Set minimum limit of PWM period for the IP */
|
||
pc->min_period_ns =
|
||
(NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
|
||
|
||
pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
|
||
if (IS_ERR(pc->rst)) {
|
||
ret = PTR_ERR(pc->rst);
|
||
dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
|
||
goto put_pm;
|
||
}
|
||
|
||
reset_control_deassert(pc->rst);
|
||
|
||
pc->chip.dev = &pdev->dev;
|
||
pc->chip.ops = &tegra_pwm_ops;
|
||
pc->chip.npwm = pc->soc->num_channels;
|
||
|
||
ret = pwmchip_add(&pc->chip);
|
||
if (ret < 0) {
|
||
dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
|
||
reset_control_assert(pc->rst);
|
||
goto put_pm;
|
||
}
|
||
|
||
pm_runtime_put(&pdev->dev);
|
||
|
||
return 0;
|
||
put_pm:
|
||
pm_runtime_put_sync_suspend(&pdev->dev);
|
||
pm_runtime_force_suspend(&pdev->dev);
|
||
return ret;
|
||
}
|
||
|
||
static int tegra_pwm_remove(struct platform_device *pdev)
|
||
{
|
||
struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
|
||
|
||
pwmchip_remove(&pc->chip);
|
||
|
||
reset_control_assert(pc->rst);
|
||
|
||
pm_runtime_force_suspend(&pdev->dev);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
|
||
{
|
||
struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
|
||
int err;
|
||
|
||
clk_disable_unprepare(pc->clk);
|
||
|
||
err = pinctrl_pm_select_sleep_state(dev);
|
||
if (err) {
|
||
clk_prepare_enable(pc->clk);
|
||
return err;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
|
||
{
|
||
struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
|
||
int err;
|
||
|
||
err = pinctrl_pm_select_default_state(dev);
|
||
if (err)
|
||
return err;
|
||
|
||
err = clk_prepare_enable(pc->clk);
|
||
if (err) {
|
||
pinctrl_pm_select_sleep_state(dev);
|
||
return err;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct tegra_pwm_soc tegra20_pwm_soc = {
|
||
.num_channels = 4,
|
||
.max_frequency = 48000000UL,
|
||
};
|
||
|
||
static const struct tegra_pwm_soc tegra186_pwm_soc = {
|
||
.num_channels = 1,
|
||
.max_frequency = 102000000UL,
|
||
};
|
||
|
||
static const struct tegra_pwm_soc tegra194_pwm_soc = {
|
||
.num_channels = 1,
|
||
.max_frequency = 408000000UL,
|
||
};
|
||
|
||
static const struct of_device_id tegra_pwm_of_match[] = {
|
||
{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
|
||
{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
|
||
{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
|
||
{ }
|
||
};
|
||
MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
|
||
|
||
static const struct dev_pm_ops tegra_pwm_pm_ops = {
|
||
SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
|
||
NULL)
|
||
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
|
||
pm_runtime_force_resume)
|
||
};
|
||
|
||
static struct platform_driver tegra_pwm_driver = {
|
||
.driver = {
|
||
.name = "tegra-pwm",
|
||
.of_match_table = tegra_pwm_of_match,
|
||
.pm = &tegra_pwm_pm_ops,
|
||
},
|
||
.probe = tegra_pwm_probe,
|
||
.remove = tegra_pwm_remove,
|
||
};
|
||
|
||
module_platform_driver(tegra_pwm_driver);
|
||
|
||
MODULE_LICENSE("GPL");
|
||
MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
|
||
MODULE_DESCRIPTION("Tegra PWM controller driver");
|
||
MODULE_ALIAS("platform:tegra-pwm");
|