linux/drivers/usb/cdns3/cdnsp-ring.c
Pawel Laszczak 82b0417e4b usb: cdnsp: : add scatter gather support for ISOC endpoint
Patch implements scatter gather support for isochronous endpoint.
This fix is forced by 'commit e81e7f9a0e
("usb: gadget: uvc: add scatter gather support")'.
After this fix CDNSP driver stop working with UVC class.

Signed-off-by: Pawel Laszczak <pawell@cadence.com>
Reviewed-by: Peter Chen <peter.chen@kernel.org>
Link: https://lore.kernel.org/r/20221222090934.145140-1-pawell@cadence.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-17 17:30:17 +01:00

2492 lines
67 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Cadence CDNSP DRD Driver.
*
* Copyright (C) 2020 Cadence.
*
* Author: Pawel Laszczak <pawell@cadence.com>
*
* Code based on Linux XHCI driver.
* Origin: Copyright (C) 2008 Intel Corp
*/
/*
* Ring initialization rules:
* 1. Each segment is initialized to zero, except for link TRBs.
* 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
* Consumer Cycle State (CCS), depending on ring function.
* 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
*
* Ring behavior rules:
* 1. A ring is empty if enqueue == dequeue. This means there will always be at
* least one free TRB in the ring. This is useful if you want to turn that
* into a link TRB and expand the ring.
* 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
* link TRB, then load the pointer with the address in the link TRB. If the
* link TRB had its toggle bit set, you may need to update the ring cycle
* state (see cycle bit rules). You may have to do this multiple times
* until you reach a non-link TRB.
* 3. A ring is full if enqueue++ (for the definition of increment above)
* equals the dequeue pointer.
*
* Cycle bit rules:
* 1. When a consumer increments a dequeue pointer and encounters a toggle bit
* in a link TRB, it must toggle the ring cycle state.
* 2. When a producer increments an enqueue pointer and encounters a toggle bit
* in a link TRB, it must toggle the ring cycle state.
*
* Producer rules:
* 1. Check if ring is full before you enqueue.
* 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
* Update enqueue pointer between each write (which may update the ring
* cycle state).
* 3. Notify consumer. If SW is producer, it rings the doorbell for command
* and endpoint rings. If controller is the producer for the event ring,
* and it generates an interrupt according to interrupt modulation rules.
*
* Consumer rules:
* 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
* the TRB is owned by the consumer.
* 2. Update dequeue pointer (which may update the ring cycle state) and
* continue processing TRBs until you reach a TRB which is not owned by you.
* 3. Notify the producer. SW is the consumer for the event ring, and it
* updates event ring dequeue pointer. Controller is the consumer for the
* command and endpoint rings; it generates events on the event ring
* for these.
*/
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include "cdnsp-trace.h"
#include "cdnsp-gadget.h"
/*
* Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
* address of the TRB.
*/
dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg,
union cdnsp_trb *trb)
{
unsigned long segment_offset = trb - seg->trbs;
if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT)
return 0;
return seg->dma + (segment_offset * sizeof(*trb));
}
static bool cdnsp_trb_is_noop(union cdnsp_trb *trb)
{
return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
}
static bool cdnsp_trb_is_link(union cdnsp_trb *trb)
{
return TRB_TYPE_LINK_LE32(trb->link.control);
}
bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb)
{
return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
}
bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring,
struct cdnsp_segment *seg,
union cdnsp_trb *trb)
{
return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
}
static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb)
{
return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
}
static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type)
{
if (cdnsp_trb_is_link(trb)) {
/* Unchain chained link TRBs. */
trb->link.control &= cpu_to_le32(~TRB_CHAIN);
} else {
trb->generic.field[0] = 0;
trb->generic.field[1] = 0;
trb->generic.field[2] = 0;
/* Preserve only the cycle bit of this TRB. */
trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
}
}
/*
* Updates trb to point to the next TRB in the ring, and updates seg if the next
* TRB is in a new segment. This does not skip over link TRBs, and it does not
* effect the ring dequeue or enqueue pointers.
*/
static void cdnsp_next_trb(struct cdnsp_device *pdev,
struct cdnsp_ring *ring,
struct cdnsp_segment **seg,
union cdnsp_trb **trb)
{
if (cdnsp_trb_is_link(*trb)) {
*seg = (*seg)->next;
*trb = ((*seg)->trbs);
} else {
(*trb)++;
}
}
/*
* See Cycle bit rules. SW is the consumer for the event ring only.
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
*/
void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
{
/* event ring doesn't have link trbs, check for last trb. */
if (ring->type == TYPE_EVENT) {
if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
ring->dequeue++;
goto out;
}
if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
ring->cycle_state ^= 1;
ring->deq_seg = ring->deq_seg->next;
ring->dequeue = ring->deq_seg->trbs;
goto out;
}
/* All other rings have link trbs. */
if (!cdnsp_trb_is_link(ring->dequeue)) {
ring->dequeue++;
ring->num_trbs_free++;
}
while (cdnsp_trb_is_link(ring->dequeue)) {
ring->deq_seg = ring->deq_seg->next;
ring->dequeue = ring->deq_seg->trbs;
}
out:
trace_cdnsp_inc_deq(ring);
}
/*
* See Cycle bit rules. SW is the consumer for the event ring only.
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
*
* If we've just enqueued a TRB that is in the middle of a TD (meaning the
* chain bit is set), then set the chain bit in all the following link TRBs.
* If we've enqueued the last TRB in a TD, make sure the following link TRBs
* have their chain bit cleared (so that each Link TRB is a separate TD).
*
* @more_trbs_coming: Will you enqueue more TRBs before ringing the doorbell.
*/
static void cdnsp_inc_enq(struct cdnsp_device *pdev,
struct cdnsp_ring *ring,
bool more_trbs_coming)
{
union cdnsp_trb *next;
u32 chain;
chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
/* If this is not event ring, there is one less usable TRB. */
if (!cdnsp_trb_is_link(ring->enqueue))
ring->num_trbs_free--;
next = ++(ring->enqueue);
/* Update the dequeue pointer further if that was a link TRB */
while (cdnsp_trb_is_link(next)) {
/*
* If the caller doesn't plan on enqueuing more TDs before
* ringing the doorbell, then we don't want to give the link TRB
* to the hardware just yet. We'll give the link TRB back in
* cdnsp_prepare_ring() just before we enqueue the TD at the
* top of the ring.
*/
if (!chain && !more_trbs_coming)
break;
next->link.control &= cpu_to_le32(~TRB_CHAIN);
next->link.control |= cpu_to_le32(chain);
/* Give this link TRB to the hardware */
wmb();
next->link.control ^= cpu_to_le32(TRB_CYCLE);
/* Toggle the cycle bit after the last ring segment. */
if (cdnsp_link_trb_toggles_cycle(next))
ring->cycle_state ^= 1;
ring->enq_seg = ring->enq_seg->next;
ring->enqueue = ring->enq_seg->trbs;
next = ring->enqueue;
}
trace_cdnsp_inc_enq(ring);
}
/*
* Check to see if there's room to enqueue num_trbs on the ring and make sure
* enqueue pointer will not advance into dequeue segment.
*/
static bool cdnsp_room_on_ring(struct cdnsp_device *pdev,
struct cdnsp_ring *ring,
unsigned int num_trbs)
{
int num_trbs_in_deq_seg;
if (ring->num_trbs_free < num_trbs)
return false;
if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
return false;
}
return true;
}
/*
* Workaround for L1: controller has issue with resuming from L1 after
* setting doorbell for endpoint during L1 state. This function forces
* resume signal in such case.
*/
static void cdnsp_force_l0_go(struct cdnsp_device *pdev)
{
if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable)
cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0);
}
/* Ring the doorbell after placing a command on the ring. */
void cdnsp_ring_cmd_db(struct cdnsp_device *pdev)
{
writel(DB_VALUE_CMD, &pdev->dba->cmd_db);
}
/*
* Ring the doorbell after placing a transfer on the ring.
* Returns true if doorbell was set, otherwise false.
*/
static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
unsigned int stream_id)
{
__le32 __iomem *reg_addr = &pdev->dba->ep_db;
unsigned int ep_state = pep->ep_state;
unsigned int db_value;
/*
* Don't ring the doorbell for this endpoint if endpoint is halted or
* disabled.
*/
if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED))
return false;
/* For stream capable endpoints driver can ring doorbell only twice. */
if (pep->ep_state & EP_HAS_STREAMS) {
if (pep->stream_info.drbls_count >= 2)
return false;
pep->stream_info.drbls_count++;
}
pep->ep_state &= ~EP_STOPPED;
if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE &&
!pdev->ep0_expect_in)
db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id);
else
db_value = DB_VALUE(pep->idx, stream_id);
trace_cdnsp_tr_drbl(pep, stream_id);
writel(db_value, reg_addr);
cdnsp_force_l0_go(pdev);
/* Doorbell was set. */
return true;
}
/*
* Get the right ring for the given pep and stream_id.
* If the endpoint supports streams, boundary check the USB request's stream ID.
* If the endpoint doesn't support streams, return the singular endpoint ring.
*/
static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
unsigned int stream_id)
{
if (!(pep->ep_state & EP_HAS_STREAMS))
return pep->ring;
if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) {
dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n",
pep->name, stream_id);
return NULL;
}
return pep->stream_info.stream_rings[stream_id];
}
static struct cdnsp_ring *
cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev,
struct cdnsp_request *preq)
{
return cdnsp_get_transfer_ring(pdev, preq->pep,
preq->request.stream_id);
}
/* Ring the doorbell for any rings with pending requests. */
void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev,
struct cdnsp_ep *pep)
{
struct cdnsp_stream_info *stream_info;
unsigned int stream_id;
int ret;
if (pep->ep_state & EP_DIS_IN_RROGRESS)
return;
/* A ring has pending Request if its TD list is not empty. */
if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) {
if (pep->ring && !list_empty(&pep->ring->td_list))
cdnsp_ring_ep_doorbell(pdev, pep, 0);
return;
}
stream_info = &pep->stream_info;
for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) {
struct cdnsp_td *td, *td_temp;
struct cdnsp_ring *ep_ring;
if (stream_info->drbls_count >= 2)
return;
ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
if (!ep_ring)
continue;
if (!ep_ring->stream_active || ep_ring->stream_rejected)
continue;
list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
td_list) {
if (td->drbl)
continue;
ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
if (ret)
td->drbl = 1;
}
}
}
/*
* Get the hw dequeue pointer controller stopped on, either directly from the
* endpoint context, or if streams are in use from the stream context.
* The returned hw_dequeue contains the lowest four bits with cycle state
* and possible stream context type.
*/
static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev,
unsigned int ep_index,
unsigned int stream_id)
{
struct cdnsp_stream_ctx *st_ctx;
struct cdnsp_ep *pep;
pep = &pdev->eps[stream_id];
if (pep->ep_state & EP_HAS_STREAMS) {
st_ctx = &pep->stream_info.stream_ctx_array[stream_id];
return le64_to_cpu(st_ctx->stream_ring);
}
return le64_to_cpu(pep->out_ctx->deq);
}
/*
* Move the controller endpoint ring dequeue pointer past cur_td.
* Record the new state of the controller endpoint ring dequeue segment,
* dequeue pointer, and new consumer cycle state in state.
* Update internal representation of the ring's dequeue pointer.
*
* We do this in three jumps:
* - First we update our new ring state to be the same as when the
* controller stopped.
* - Then we traverse the ring to find the segment that contains
* the last TRB in the TD. We toggle the controller new cycle state
* when we pass any link TRBs with the toggle cycle bit set.
* - Finally we move the dequeue state one TRB further, toggling the cycle bit
* if we've moved it past a link TRB with the toggle cycle bit set.
*/
static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
unsigned int stream_id,
struct cdnsp_td *cur_td,
struct cdnsp_dequeue_state *state)
{
bool td_last_trb_found = false;
struct cdnsp_segment *new_seg;
struct cdnsp_ring *ep_ring;
union cdnsp_trb *new_deq;
bool cycle_found = false;
u64 hw_dequeue;
ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
if (!ep_ring)
return;
/*
* Dig out the cycle state saved by the controller during the
* stop endpoint command.
*/
hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id);
new_seg = ep_ring->deq_seg;
new_deq = ep_ring->dequeue;
state->new_cycle_state = hw_dequeue & 0x1;
state->stream_id = stream_id;
/*
* We want to find the pointer, segment and cycle state of the new trb
* (the one after current TD's last_trb). We know the cycle state at
* hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
* found.
*/
do {
if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq)
== (dma_addr_t)(hw_dequeue & ~0xf)) {
cycle_found = true;
if (td_last_trb_found)
break;
}
if (new_deq == cur_td->last_trb)
td_last_trb_found = true;
if (cycle_found && cdnsp_trb_is_link(new_deq) &&
cdnsp_link_trb_toggles_cycle(new_deq))
state->new_cycle_state ^= 0x1;
cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq);
/* Search wrapped around, bail out. */
if (new_deq == pep->ring->dequeue) {
dev_err(pdev->dev,
"Error: Failed finding new dequeue state\n");
state->new_deq_seg = NULL;
state->new_deq_ptr = NULL;
return;
}
} while (!cycle_found || !td_last_trb_found);
state->new_deq_seg = new_seg;
state->new_deq_ptr = new_deq;
trace_cdnsp_new_deq_state(state);
}
/*
* flip_cycle means flip the cycle bit of all but the first and last TRB.
* (The last TRB actually points to the ring enqueue pointer, which is not part
* of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
*/
static void cdnsp_td_to_noop(struct cdnsp_device *pdev,
struct cdnsp_ring *ep_ring,
struct cdnsp_td *td,
bool flip_cycle)
{
struct cdnsp_segment *seg = td->start_seg;
union cdnsp_trb *trb = td->first_trb;
while (1) {
cdnsp_trb_to_noop(trb, TRB_TR_NOOP);
/* flip cycle if asked to */
if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
if (trb == td->last_trb)
break;
cdnsp_next_trb(pdev, ep_ring, &seg, &trb);
}
}
/*
* This TD is defined by the TRBs starting at start_trb in start_seg and ending
* at end_trb, which may be in another segment. If the suspect DMA address is a
* TRB in this TD, this function returns that TRB's segment. Otherwise it
* returns 0.
*/
static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev,
struct cdnsp_segment *start_seg,
union cdnsp_trb *start_trb,
union cdnsp_trb *end_trb,
dma_addr_t suspect_dma)
{
struct cdnsp_segment *cur_seg;
union cdnsp_trb *temp_trb;
dma_addr_t end_seg_dma;
dma_addr_t end_trb_dma;
dma_addr_t start_dma;
start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb);
cur_seg = start_seg;
do {
if (start_dma == 0)
return NULL;
temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1];
/* We may get an event for a Link TRB in the middle of a TD */
end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb);
/* If the end TRB isn't in this segment, this is set to 0 */
end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb);
trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma,
end_trb_dma, cur_seg->dma,
end_seg_dma);
if (end_trb_dma > 0) {
/*
* The end TRB is in this segment, so suspect should
* be here
*/
if (start_dma <= end_trb_dma) {
if (suspect_dma >= start_dma &&
suspect_dma <= end_trb_dma) {
return cur_seg;
}
} else {
/*
* Case for one segment with a
* TD wrapped around to the top
*/
if ((suspect_dma >= start_dma &&
suspect_dma <= end_seg_dma) ||
(suspect_dma >= cur_seg->dma &&
suspect_dma <= end_trb_dma)) {
return cur_seg;
}
}
return NULL;
}
/* Might still be somewhere in this segment */
if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
return cur_seg;
cur_seg = cur_seg->next;
start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
} while (cur_seg != start_seg);
return NULL;
}
static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev,
struct cdnsp_ring *ring,
struct cdnsp_td *td)
{
struct cdnsp_segment *seg = td->bounce_seg;
struct cdnsp_request *preq;
size_t len;
if (!seg)
return;
preq = td->preq;
trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs,
seg->bounce_dma, 0);
if (!preq->direction) {
dma_unmap_single(pdev->dev, seg->bounce_dma,
ring->bounce_buf_len, DMA_TO_DEVICE);
return;
}
dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len,
DMA_FROM_DEVICE);
/* For in transfers we need to copy the data from bounce to sg */
len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs,
seg->bounce_buf, seg->bounce_len,
seg->bounce_offs);
if (len != seg->bounce_len)
dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n",
len, seg->bounce_len);
seg->bounce_len = 0;
seg->bounce_offs = 0;
}
static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
struct cdnsp_dequeue_state *deq_state)
{
struct cdnsp_ring *ep_ring;
int ret;
if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) {
cdnsp_ring_doorbell_for_active_rings(pdev, pep);
return 0;
}
cdnsp_queue_new_dequeue_state(pdev, pep, deq_state);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx));
trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx);
/*
* Update the ring's dequeue segment and dequeue pointer
* to reflect the new position.
*/
ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id);
if (cdnsp_trb_is_link(ep_ring->dequeue)) {
ep_ring->deq_seg = ep_ring->deq_seg->next;
ep_ring->dequeue = ep_ring->deq_seg->trbs;
}
while (ep_ring->dequeue != deq_state->new_deq_ptr) {
ep_ring->num_trbs_free++;
ep_ring->dequeue++;
if (cdnsp_trb_is_link(ep_ring->dequeue)) {
if (ep_ring->dequeue == deq_state->new_deq_ptr)
break;
ep_ring->deq_seg = ep_ring->deq_seg->next;
ep_ring->dequeue = ep_ring->deq_seg->trbs;
}
}
/*
* Probably there was TIMEOUT during handling Set Dequeue Pointer
* command. It's critical error and controller will be stopped.
*/
if (ret)
return -ESHUTDOWN;
/* Restart any rings with pending requests */
cdnsp_ring_doorbell_for_active_rings(pdev, pep);
return 0;
}
int cdnsp_remove_request(struct cdnsp_device *pdev,
struct cdnsp_request *preq,
struct cdnsp_ep *pep)
{
struct cdnsp_dequeue_state deq_state;
struct cdnsp_td *cur_td = NULL;
struct cdnsp_ring *ep_ring;
struct cdnsp_segment *seg;
int status = -ECONNRESET;
int ret = 0;
u64 hw_deq;
memset(&deq_state, 0, sizeof(deq_state));
trace_cdnsp_remove_request(pep->out_ctx);
trace_cdnsp_remove_request_td(preq);
cur_td = &preq->td;
ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
/*
* If we stopped on the TD we need to cancel, then we have to
* move the controller endpoint ring dequeue pointer past
* this TD.
*/
hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id);
hw_deq &= ~0xf;
seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb,
cur_td->last_trb, hw_deq);
if (seg && (pep->ep_state & EP_ENABLED))
cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id,
cur_td, &deq_state);
else
cdnsp_td_to_noop(pdev, ep_ring, cur_td, false);
/*
* The event handler won't see a completion for this TD anymore,
* so remove it from the endpoint ring's TD list.
*/
list_del_init(&cur_td->td_list);
ep_ring->num_tds--;
pep->stream_info.td_count--;
/*
* During disconnecting all endpoint will be disabled so we don't
* have to worry about updating dequeue pointer.
*/
if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING) {
status = -ESHUTDOWN;
ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state);
}
cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td);
cdnsp_gadget_giveback(pep, cur_td->preq, status);
return ret;
}
static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id)
{
struct cdnsp_port *port = pdev->active_port;
u8 old_port = 0;
if (port && port->port_num == port_id)
return 0;
if (port)
old_port = port->port_num;
if (port_id == pdev->usb2_port.port_num) {
port = &pdev->usb2_port;
} else if (port_id == pdev->usb3_port.port_num) {
port = &pdev->usb3_port;
} else {
dev_err(pdev->dev, "Port event with invalid port ID %d\n",
port_id);
return -EINVAL;
}
if (port_id != old_port) {
cdnsp_disable_slot(pdev);
pdev->active_port = port;
cdnsp_enable_slot(pdev);
}
if (port_id == pdev->usb2_port.port_num)
cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1);
else
writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1),
&pdev->usb3_port.regs->portpmsc);
return 0;
}
static void cdnsp_handle_port_status(struct cdnsp_device *pdev,
union cdnsp_trb *event)
{
struct cdnsp_port_regs __iomem *port_regs;
u32 portsc, cmd_regs;
bool port2 = false;
u32 link_state;
u32 port_id;
/* Port status change events always have a successful completion code */
if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
dev_err(pdev->dev, "ERR: incorrect PSC event\n");
port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
if (cdnsp_update_port_id(pdev, port_id))
goto cleanup;
port_regs = pdev->active_port->regs;
if (port_id == pdev->usb2_port.port_num)
port2 = true;
new_event:
portsc = readl(&port_regs->portsc);
writel(cdnsp_port_state_to_neutral(portsc) |
(portsc & PORT_CHANGE_BITS), &port_regs->portsc);
trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc);
pdev->gadget.speed = cdnsp_port_speed(portsc);
link_state = portsc & PORT_PLS_MASK;
/* Port Link State change detected. */
if ((portsc & PORT_PLC)) {
if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
link_state == XDEV_RESUME) {
cmd_regs = readl(&pdev->op_regs->command);
if (!(cmd_regs & CMD_R_S))
goto cleanup;
if (DEV_SUPERSPEED_ANY(portsc)) {
cdnsp_set_link_state(pdev, &port_regs->portsc,
XDEV_U0);
cdnsp_resume_gadget(pdev);
}
}
if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
link_state == XDEV_U0) {
pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING;
cdnsp_force_header_wakeup(pdev, 1);
cdnsp_ring_cmd_db(pdev);
cdnsp_wait_for_cmd_compl(pdev);
}
if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 &&
!DEV_SUPERSPEED_ANY(portsc))
cdnsp_resume_gadget(pdev);
if (link_state == XDEV_U3 && pdev->link_state != XDEV_U3)
cdnsp_suspend_gadget(pdev);
pdev->link_state = link_state;
}
if (portsc & PORT_CSC) {
/* Detach device. */
if (pdev->gadget.connected && !(portsc & PORT_CONNECT))
cdnsp_disconnect_gadget(pdev);
/* Attach device. */
if (portsc & PORT_CONNECT) {
if (!port2)
cdnsp_irq_reset(pdev);
usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED);
}
}
/* Port reset. */
if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) {
cdnsp_irq_reset(pdev);
pdev->u1_allowed = 0;
pdev->u2_allowed = 0;
pdev->may_wakeup = 0;
}
if (portsc & PORT_CEC)
dev_err(pdev->dev, "Port Over Current detected\n");
if (portsc & PORT_CEC)
dev_err(pdev->dev, "Port Configure Error detected\n");
if (readl(&port_regs->portsc) & PORT_CHANGE_BITS)
goto new_event;
cleanup:
cdnsp_inc_deq(pdev, pdev->event_ring);
}
static void cdnsp_td_cleanup(struct cdnsp_device *pdev,
struct cdnsp_td *td,
struct cdnsp_ring *ep_ring,
int *status)
{
struct cdnsp_request *preq = td->preq;
/* if a bounce buffer was used to align this td then unmap it */
cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td);
/*
* If the controller said we transferred more data than the buffer
* length, Play it safe and say we didn't transfer anything.
*/
if (preq->request.actual > preq->request.length) {
preq->request.actual = 0;
*status = 0;
}
list_del_init(&td->td_list);
ep_ring->num_tds--;
preq->pep->stream_info.td_count--;
cdnsp_gadget_giveback(preq->pep, preq, *status);
}
static void cdnsp_finish_td(struct cdnsp_device *pdev,
struct cdnsp_td *td,
struct cdnsp_transfer_event *event,
struct cdnsp_ep *ep,
int *status)
{
struct cdnsp_ring *ep_ring;
u32 trb_comp_code;
ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
trb_comp_code == COMP_STOPPED ||
trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
/*
* The Endpoint Stop Command completion will take care of any
* stopped TDs. A stopped TD may be restarted, so don't update
* the ring dequeue pointer or take this TD off any lists yet.
*/
return;
}
/* Update ring dequeue pointer */
while (ep_ring->dequeue != td->last_trb)
cdnsp_inc_deq(pdev, ep_ring);
cdnsp_inc_deq(pdev, ep_ring);
cdnsp_td_cleanup(pdev, td, ep_ring, status);
}
/* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev,
struct cdnsp_ring *ring,
union cdnsp_trb *stop_trb)
{
struct cdnsp_segment *seg = ring->deq_seg;
union cdnsp_trb *trb = ring->dequeue;
u32 sum;
for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) {
if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb))
sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
}
return sum;
}
static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
unsigned int stream_id,
int start_cycle,
struct cdnsp_generic_trb *start_trb)
{
/*
* Pass all the TRBs to the hardware at once and make sure this write
* isn't reordered.
*/
wmb();
if (start_cycle)
start_trb->field[3] |= cpu_to_le32(start_cycle);
else
start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
if ((pep->ep_state & EP_HAS_STREAMS) &&
!pep->stream_info.first_prime_det) {
trace_cdnsp_wait_for_prime(pep, stream_id);
return 0;
}
return cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
}
/*
* Process control tds, update USB request status and actual_length.
*/
static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev,
struct cdnsp_td *td,
union cdnsp_trb *event_trb,
struct cdnsp_transfer_event *event,
struct cdnsp_ep *pep,
int *status)
{
struct cdnsp_ring *ep_ring;
u32 remaining;
u32 trb_type;
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3]));
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
/*
* if on data stage then update the actual_length of the USB
* request and flag it as set, so it won't be overwritten in the event
* for the last TRB.
*/
if (trb_type == TRB_DATA) {
td->request_length_set = true;
td->preq->request.actual = td->preq->request.length - remaining;
}
/* at status stage */
if (!td->request_length_set)
td->preq->request.actual = td->preq->request.length;
if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 &&
pdev->three_stage_setup) {
td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
td_list);
pdev->ep0_stage = CDNSP_STATUS_STAGE;
cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state,
&td->last_trb->generic);
return;
}
*status = 0;
cdnsp_finish_td(pdev, td, event, pep, status);
}
/*
* Process isochronous tds, update usb request status and actual_length.
*/
static void cdnsp_process_isoc_td(struct cdnsp_device *pdev,
struct cdnsp_td *td,
union cdnsp_trb *ep_trb,
struct cdnsp_transfer_event *event,
struct cdnsp_ep *pep,
int status)
{
struct cdnsp_request *preq = td->preq;
u32 remaining, requested, ep_trb_len;
bool sum_trbs_for_length = false;
struct cdnsp_ring *ep_ring;
u32 trb_comp_code;
u32 td_length;
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
requested = preq->request.length;
/* handle completion code */
switch (trb_comp_code) {
case COMP_SUCCESS:
preq->request.status = 0;
break;
case COMP_SHORT_PACKET:
preq->request.status = 0;
sum_trbs_for_length = true;
break;
case COMP_ISOCH_BUFFER_OVERRUN:
case COMP_BABBLE_DETECTED_ERROR:
preq->request.status = -EOVERFLOW;
break;
case COMP_STOPPED:
sum_trbs_for_length = true;
break;
case COMP_STOPPED_SHORT_PACKET:
/* field normally containing residue now contains transferred */
preq->request.status = 0;
requested = remaining;
break;
case COMP_STOPPED_LENGTH_INVALID:
requested = 0;
remaining = 0;
break;
default:
sum_trbs_for_length = true;
preq->request.status = -1;
break;
}
if (sum_trbs_for_length) {
td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb);
td_length += ep_trb_len - remaining;
} else {
td_length = requested;
}
td->preq->request.actual += td_length;
cdnsp_finish_td(pdev, td, event, pep, &status);
}
static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev,
struct cdnsp_td *td,
struct cdnsp_transfer_event *event,
struct cdnsp_ep *pep,
int status)
{
struct cdnsp_ring *ep_ring;
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
td->preq->request.status = -EXDEV;
td->preq->request.actual = 0;
/* Update ring dequeue pointer */
while (ep_ring->dequeue != td->last_trb)
cdnsp_inc_deq(pdev, ep_ring);
cdnsp_inc_deq(pdev, ep_ring);
cdnsp_td_cleanup(pdev, td, ep_ring, &status);
}
/*
* Process bulk and interrupt tds, update usb request status and actual_length.
*/
static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev,
struct cdnsp_td *td,
union cdnsp_trb *ep_trb,
struct cdnsp_transfer_event *event,
struct cdnsp_ep *ep,
int *status)
{
u32 remaining, requested, ep_trb_len;
struct cdnsp_ring *ep_ring;
u32 trb_comp_code;
ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
requested = td->preq->request.length;
switch (trb_comp_code) {
case COMP_SUCCESS:
case COMP_SHORT_PACKET:
*status = 0;
break;
case COMP_STOPPED_SHORT_PACKET:
td->preq->request.actual = remaining;
goto finish_td;
case COMP_STOPPED_LENGTH_INVALID:
/* Stopped on ep trb with invalid length, exclude it. */
ep_trb_len = 0;
remaining = 0;
break;
}
if (ep_trb == td->last_trb)
ep_trb_len = requested - remaining;
else
ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) +
ep_trb_len - remaining;
td->preq->request.actual = ep_trb_len;
finish_td:
ep->stream_info.drbls_count--;
cdnsp_finish_td(pdev, td, event, ep, status);
}
static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev,
struct cdnsp_transfer_event *event)
{
struct cdnsp_generic_trb *generic;
struct cdnsp_ring *ep_ring;
struct cdnsp_ep *pep;
int cur_stream;
int ep_index;
int host_sid;
int dev_sid;
generic = (struct cdnsp_generic_trb *)event;
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0]));
host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2]));
pep = &pdev->eps[ep_index];
if (!(pep->ep_state & EP_HAS_STREAMS))
return;
if (host_sid == STREAM_PRIME_ACK) {
pep->stream_info.first_prime_det = 1;
for (cur_stream = 1; cur_stream < pep->stream_info.num_streams;
cur_stream++) {
ep_ring = pep->stream_info.stream_rings[cur_stream];
ep_ring->stream_active = 1;
ep_ring->stream_rejected = 0;
}
}
if (host_sid == STREAM_REJECTED) {
struct cdnsp_td *td, *td_temp;
pep->stream_info.drbls_count--;
ep_ring = pep->stream_info.stream_rings[dev_sid];
ep_ring->stream_active = 0;
ep_ring->stream_rejected = 1;
list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
td_list) {
td->drbl = 0;
}
}
cdnsp_ring_doorbell_for_active_rings(pdev, pep);
}
/*
* If this function returns an error condition, it means it got a Transfer
* event with a corrupted TRB DMA address or endpoint is disabled.
*/
static int cdnsp_handle_tx_event(struct cdnsp_device *pdev,
struct cdnsp_transfer_event *event)
{
const struct usb_endpoint_descriptor *desc;
bool handling_skipped_tds = false;
struct cdnsp_segment *ep_seg;
struct cdnsp_ring *ep_ring;
int status = -EINPROGRESS;
union cdnsp_trb *ep_trb;
dma_addr_t ep_trb_dma;
struct cdnsp_ep *pep;
struct cdnsp_td *td;
u32 trb_comp_code;
int invalidate;
int ep_index;
invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE;
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
ep_trb_dma = le64_to_cpu(event->buffer);
pep = &pdev->eps[ep_index];
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
/*
* If device is disconnect then all requests will be dequeued
* by upper layers as part of disconnect sequence.
* We don't want handle such event to avoid racing.
*/
if (invalidate || !pdev->gadget.connected)
goto cleanup;
if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) {
trace_cdnsp_ep_disabled(pep->out_ctx);
goto err_out;
}
/* Some transfer events don't always point to a trb*/
if (!ep_ring) {
switch (trb_comp_code) {
case COMP_INVALID_STREAM_TYPE_ERROR:
case COMP_INVALID_STREAM_ID_ERROR:
case COMP_RING_UNDERRUN:
case COMP_RING_OVERRUN:
goto cleanup;
default:
dev_err(pdev->dev, "ERROR: %s event for unknown ring\n",
pep->name);
goto err_out;
}
}
/* Look for some error cases that need special treatment. */
switch (trb_comp_code) {
case COMP_BABBLE_DETECTED_ERROR:
status = -EOVERFLOW;
break;
case COMP_RING_UNDERRUN:
case COMP_RING_OVERRUN:
/*
* When the Isoch ring is empty, the controller will generate
* a Ring Overrun Event for IN Isoch endpoint or Ring
* Underrun Event for OUT Isoch endpoint.
*/
goto cleanup;
case COMP_MISSED_SERVICE_ERROR:
/*
* When encounter missed service error, one or more isoc tds
* may be missed by controller.
* Set skip flag of the ep_ring; Complete the missed tds as
* short transfer when process the ep_ring next time.
*/
pep->skip = true;
break;
}
do {
/*
* This TRB should be in the TD at the head of this ring's TD
* list.
*/
if (list_empty(&ep_ring->td_list)) {
/*
* Don't print warnings if it's due to a stopped
* endpoint generating an extra completion event, or
* a event for the last TRB of a short TD we already
* got a short event for.
* The short TD is already removed from the TD list.
*/
if (!(trb_comp_code == COMP_STOPPED ||
trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
ep_ring->last_td_was_short))
trace_cdnsp_trb_without_td(ep_ring,
(struct cdnsp_generic_trb *)event);
if (pep->skip) {
pep->skip = false;
trace_cdnsp_ep_list_empty_with_skip(pep, 0);
}
goto cleanup;
}
td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
td_list);
/* Is this a TRB in the currently executing TD? */
ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg,
ep_ring->dequeue, td->last_trb,
ep_trb_dma);
desc = td->preq->pep->endpoint.desc;
if (ep_seg) {
ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma)
/ sizeof(*ep_trb)];
trace_cdnsp_handle_transfer(ep_ring,
(struct cdnsp_generic_trb *)ep_trb);
if (pep->skip && usb_endpoint_xfer_isoc(desc) &&
td->last_trb != ep_trb)
return -EAGAIN;
}
/*
* Skip the Force Stopped Event. The event_trb(ep_trb_dma)
* of FSE is not in the current TD pointed by ep_ring->dequeue
* because that the hardware dequeue pointer still at the
* previous TRB of the current TD. The previous TRB maybe a
* Link TD or the last TRB of the previous TD. The command
* completion handle will take care the rest.
*/
if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
pep->skip = false;
goto cleanup;
}
if (!ep_seg) {
if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) {
/* Something is busted, give up! */
dev_err(pdev->dev,
"ERROR Transfer event TRB DMA ptr not "
"part of current TD ep_index %d "
"comp_code %u\n", ep_index,
trb_comp_code);
return -EINVAL;
}
cdnsp_skip_isoc_td(pdev, td, event, pep, status);
goto cleanup;
}
if (trb_comp_code == COMP_SHORT_PACKET)
ep_ring->last_td_was_short = true;
else
ep_ring->last_td_was_short = false;
if (pep->skip) {
pep->skip = false;
cdnsp_skip_isoc_td(pdev, td, event, pep, status);
goto cleanup;
}
if (cdnsp_trb_is_noop(ep_trb))
goto cleanup;
if (usb_endpoint_xfer_control(desc))
cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep,
&status);
else if (usb_endpoint_xfer_isoc(desc))
cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep,
status);
else
cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep,
&status);
cleanup:
handling_skipped_tds = pep->skip;
/*
* Do not update event ring dequeue pointer if we're in a loop
* processing missed tds.
*/
if (!handling_skipped_tds)
cdnsp_inc_deq(pdev, pdev->event_ring);
/*
* If ep->skip is set, it means there are missed tds on the
* endpoint ring need to take care of.
* Process them as short transfer until reach the td pointed by
* the event.
*/
} while (handling_skipped_tds);
return 0;
err_out:
dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n",
(unsigned long long)
cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
pdev->event_ring->dequeue),
lower_32_bits(le64_to_cpu(event->buffer)),
upper_32_bits(le64_to_cpu(event->buffer)),
le32_to_cpu(event->transfer_len),
le32_to_cpu(event->flags));
return -EINVAL;
}
/*
* This function handles all events on the event ring.
* Returns true for "possibly more events to process" (caller should call
* again), otherwise false if done.
*/
static bool cdnsp_handle_event(struct cdnsp_device *pdev)
{
unsigned int comp_code;
union cdnsp_trb *event;
bool update_ptrs = true;
u32 cycle_bit;
int ret = 0;
u32 flags;
event = pdev->event_ring->dequeue;
flags = le32_to_cpu(event->event_cmd.flags);
cycle_bit = (flags & TRB_CYCLE);
/* Does the controller or driver own the TRB? */
if (cycle_bit != pdev->event_ring->cycle_state)
return false;
trace_cdnsp_handle_event(pdev->event_ring, &event->generic);
/*
* Barrier between reading the TRB_CYCLE (valid) flag above and any
* reads of the event's flags/data below.
*/
rmb();
switch (flags & TRB_TYPE_BITMASK) {
case TRB_TYPE(TRB_COMPLETION):
/*
* Command can't be handled in interrupt context so just
* increment command ring dequeue pointer.
*/
cdnsp_inc_deq(pdev, pdev->cmd_ring);
break;
case TRB_TYPE(TRB_PORT_STATUS):
cdnsp_handle_port_status(pdev, event);
update_ptrs = false;
break;
case TRB_TYPE(TRB_TRANSFER):
ret = cdnsp_handle_tx_event(pdev, &event->trans_event);
if (ret >= 0)
update_ptrs = false;
break;
case TRB_TYPE(TRB_SETUP):
pdev->ep0_stage = CDNSP_SETUP_STAGE;
pdev->setup_id = TRB_SETUPID_TO_TYPE(flags);
pdev->setup_speed = TRB_SETUP_SPEEDID(flags);
pdev->setup = *((struct usb_ctrlrequest *)
&event->trans_event.buffer);
cdnsp_setup_analyze(pdev);
break;
case TRB_TYPE(TRB_ENDPOINT_NRDY):
cdnsp_handle_tx_nrdy(pdev, &event->trans_event);
break;
case TRB_TYPE(TRB_HC_EVENT): {
comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
switch (comp_code) {
case COMP_EVENT_RING_FULL_ERROR:
dev_err(pdev->dev, "Event Ring Full\n");
break;
default:
dev_err(pdev->dev, "Controller error code 0x%02x\n",
comp_code);
}
break;
}
case TRB_TYPE(TRB_MFINDEX_WRAP):
case TRB_TYPE(TRB_DRB_OVERFLOW):
break;
default:
dev_warn(pdev->dev, "ERROR unknown event type %ld\n",
TRB_FIELD_TO_TYPE(flags));
}
if (update_ptrs)
/* Update SW event ring dequeue pointer. */
cdnsp_inc_deq(pdev, pdev->event_ring);
/*
* Caller will call us again to check if there are more items
* on the event ring.
*/
return true;
}
irqreturn_t cdnsp_thread_irq_handler(int irq, void *data)
{
struct cdnsp_device *pdev = (struct cdnsp_device *)data;
union cdnsp_trb *event_ring_deq;
unsigned long flags;
int counter = 0;
spin_lock_irqsave(&pdev->lock, flags);
if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) {
/*
* While removing or stopping driver there may still be deferred
* not handled interrupt which should not be treated as error.
* Driver should simply ignore it.
*/
if (pdev->gadget_driver)
cdnsp_died(pdev);
spin_unlock_irqrestore(&pdev->lock, flags);
return IRQ_HANDLED;
}
event_ring_deq = pdev->event_ring->dequeue;
while (cdnsp_handle_event(pdev)) {
if (++counter >= TRBS_PER_EV_DEQ_UPDATE) {
cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0);
event_ring_deq = pdev->event_ring->dequeue;
counter = 0;
}
}
cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
spin_unlock_irqrestore(&pdev->lock, flags);
return IRQ_HANDLED;
}
irqreturn_t cdnsp_irq_handler(int irq, void *priv)
{
struct cdnsp_device *pdev = (struct cdnsp_device *)priv;
u32 irq_pending;
u32 status;
status = readl(&pdev->op_regs->status);
if (status == ~(u32)0) {
cdnsp_died(pdev);
return IRQ_HANDLED;
}
if (!(status & STS_EINT))
return IRQ_NONE;
writel(status | STS_EINT, &pdev->op_regs->status);
irq_pending = readl(&pdev->ir_set->irq_pending);
irq_pending |= IMAN_IP;
writel(irq_pending, &pdev->ir_set->irq_pending);
if (status & STS_FATAL) {
cdnsp_died(pdev);
return IRQ_HANDLED;
}
return IRQ_WAKE_THREAD;
}
/*
* Generic function for queuing a TRB on a ring.
* The caller must have checked to make sure there's room on the ring.
*
* @more_trbs_coming: Will you enqueue more TRBs before setting doorbell?
*/
static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring,
bool more_trbs_coming, u32 field1, u32 field2,
u32 field3, u32 field4)
{
struct cdnsp_generic_trb *trb;
trb = &ring->enqueue->generic;
trb->field[0] = cpu_to_le32(field1);
trb->field[1] = cpu_to_le32(field2);
trb->field[2] = cpu_to_le32(field3);
trb->field[3] = cpu_to_le32(field4);
trace_cdnsp_queue_trb(ring, trb);
cdnsp_inc_enq(pdev, ring, more_trbs_coming);
}
/*
* Does various checks on the endpoint ring, and makes it ready to
* queue num_trbs.
*/
static int cdnsp_prepare_ring(struct cdnsp_device *pdev,
struct cdnsp_ring *ep_ring,
u32 ep_state, unsigned
int num_trbs,
gfp_t mem_flags)
{
unsigned int num_trbs_needed;
/* Make sure the endpoint has been added to controller schedule. */
switch (ep_state) {
case EP_STATE_STOPPED:
case EP_STATE_RUNNING:
case EP_STATE_HALTED:
break;
default:
dev_err(pdev->dev, "ERROR: incorrect endpoint state\n");
return -EINVAL;
}
while (1) {
if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs))
break;
trace_cdnsp_no_room_on_ring("try ring expansion");
num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed,
mem_flags)) {
dev_err(pdev->dev, "Ring expansion failed\n");
return -ENOMEM;
}
}
while (cdnsp_trb_is_link(ep_ring->enqueue)) {
ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN);
/* The cycle bit must be set as the last operation. */
wmb();
ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
/* Toggle the cycle bit after the last ring segment. */
if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue))
ep_ring->cycle_state ^= 1;
ep_ring->enq_seg = ep_ring->enq_seg->next;
ep_ring->enqueue = ep_ring->enq_seg->trbs;
}
return 0;
}
static int cdnsp_prepare_transfer(struct cdnsp_device *pdev,
struct cdnsp_request *preq,
unsigned int num_trbs)
{
struct cdnsp_ring *ep_ring;
int ret;
ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep,
preq->request.stream_id);
if (!ep_ring)
return -EINVAL;
ret = cdnsp_prepare_ring(pdev, ep_ring,
GET_EP_CTX_STATE(preq->pep->out_ctx),
num_trbs, GFP_ATOMIC);
if (ret)
return ret;
INIT_LIST_HEAD(&preq->td.td_list);
preq->td.preq = preq;
/* Add this TD to the tail of the endpoint ring's TD list. */
list_add_tail(&preq->td.td_list, &ep_ring->td_list);
ep_ring->num_tds++;
preq->pep->stream_info.td_count++;
preq->td.start_seg = ep_ring->enq_seg;
preq->td.first_trb = ep_ring->enqueue;
return 0;
}
static unsigned int cdnsp_count_trbs(u64 addr, u64 len)
{
unsigned int num_trbs;
num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
TRB_MAX_BUFF_SIZE);
if (num_trbs == 0)
num_trbs++;
return num_trbs;
}
static unsigned int count_trbs_needed(struct cdnsp_request *preq)
{
return cdnsp_count_trbs(preq->request.dma, preq->request.length);
}
static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq)
{
unsigned int i, len, full_len, num_trbs = 0;
struct scatterlist *sg;
full_len = preq->request.length;
for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) {
len = sg_dma_len(sg);
num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len);
len = min(len, full_len);
full_len -= len;
if (full_len == 0)
break;
}
return num_trbs;
}
static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total)
{
if (running_total != preq->request.length)
dev_err(preq->pep->pdev->dev,
"%s - Miscalculated tx length, "
"queued %#x, asked for %#x (%d)\n",
preq->pep->name, running_total,
preq->request.length, preq->request.actual);
}
/*
* TD size is the number of max packet sized packets remaining in the TD
* (*not* including this TRB).
*
* Total TD packet count = total_packet_count =
* DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
*
* Packets transferred up to and including this TRB = packets_transferred =
* rounddown(total bytes transferred including this TRB / wMaxPacketSize)
*
* TD size = total_packet_count - packets_transferred
*
* It must fit in bits 21:17, so it can't be bigger than 31.
* This is taken care of in the TRB_TD_SIZE() macro
*
* The last TRB in a TD must have the TD size set to zero.
*/
static u32 cdnsp_td_remainder(struct cdnsp_device *pdev,
int transferred,
int trb_buff_len,
unsigned int td_total_len,
struct cdnsp_request *preq,
bool more_trbs_coming,
bool zlp)
{
u32 maxp, total_packet_count;
/* Before ZLP driver needs set TD_SIZE = 1. */
if (zlp)
return 1;
/* One TRB with a zero-length data packet. */
if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
trb_buff_len == td_total_len)
return 0;
maxp = usb_endpoint_maxp(preq->pep->endpoint.desc);
total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
/* Queuing functions don't count the current TRB into transferred. */
return (total_packet_count - ((transferred + trb_buff_len) / maxp));
}
static int cdnsp_align_td(struct cdnsp_device *pdev,
struct cdnsp_request *preq, u32 enqd_len,
u32 *trb_buff_len, struct cdnsp_segment *seg)
{
struct device *dev = pdev->dev;
unsigned int unalign;
unsigned int max_pkt;
u32 new_buff_len;
max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
unalign = (enqd_len + *trb_buff_len) % max_pkt;
/* We got lucky, last normal TRB data on segment is packet aligned. */
if (unalign == 0)
return 0;
/* Is the last nornal TRB alignable by splitting it. */
if (*trb_buff_len > unalign) {
*trb_buff_len -= unalign;
trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len,
enqd_len, 0, unalign);
return 0;
}
/*
* We want enqd_len + trb_buff_len to sum up to a number aligned to
* number which is divisible by the endpoint's wMaxPacketSize. IOW:
* (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
*/
new_buff_len = max_pkt - (enqd_len % max_pkt);
if (new_buff_len > (preq->request.length - enqd_len))
new_buff_len = (preq->request.length - enqd_len);
/* Create a max max_pkt sized bounce buffer pointed to by last trb. */
if (preq->direction) {
sg_pcopy_to_buffer(preq->request.sg,
preq->request.num_mapped_sgs,
seg->bounce_buf, new_buff_len, enqd_len);
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
max_pkt, DMA_TO_DEVICE);
} else {
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
max_pkt, DMA_FROM_DEVICE);
}
if (dma_mapping_error(dev, seg->bounce_dma)) {
/* Try without aligning.*/
dev_warn(pdev->dev,
"Failed mapping bounce buffer, not aligning\n");
return 0;
}
*trb_buff_len = new_buff_len;
seg->bounce_len = new_buff_len;
seg->bounce_offs = enqd_len;
trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma,
unalign);
/*
* Bounce buffer successful aligned and seg->bounce_dma will be used
* in transfer TRB as new transfer buffer address.
*/
return 1;
}
int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
{
unsigned int enqd_len, block_len, trb_buff_len, full_len;
unsigned int start_cycle, num_sgs = 0;
struct cdnsp_generic_trb *start_trb;
u32 field, length_field, remainder;
struct scatterlist *sg = NULL;
bool more_trbs_coming = true;
bool need_zero_pkt = false;
bool zero_len_trb = false;
struct cdnsp_ring *ring;
bool first_trb = true;
unsigned int num_trbs;
struct cdnsp_ep *pep;
u64 addr, send_addr;
int sent_len, ret;
ring = cdnsp_request_to_transfer_ring(pdev, preq);
if (!ring)
return -EINVAL;
full_len = preq->request.length;
if (preq->request.num_sgs) {
num_sgs = preq->request.num_sgs;
sg = preq->request.sg;
addr = (u64)sg_dma_address(sg);
block_len = sg_dma_len(sg);
num_trbs = count_sg_trbs_needed(preq);
} else {
num_trbs = count_trbs_needed(preq);
addr = (u64)preq->request.dma;
block_len = full_len;
}
pep = preq->pep;
/* Deal with request.zero - need one more td/trb. */
if (preq->request.zero && preq->request.length &&
IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) {
need_zero_pkt = true;
num_trbs++;
}
ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
if (ret)
return ret;
/*
* Don't give the first TRB to the hardware (by toggling the cycle bit)
* until we've finished creating all the other TRBs. The ring's cycle
* state may change as we enqueue the other TRBs, so save it too.
*/
start_trb = &ring->enqueue->generic;
start_cycle = ring->cycle_state;
send_addr = addr;
/* Queue the TRBs, even if they are zero-length */
for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len;
enqd_len += trb_buff_len) {
field = TRB_TYPE(TRB_NORMAL);
/* TRB buffer should not cross 64KB boundaries */
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
trb_buff_len = min(trb_buff_len, block_len);
if (enqd_len + trb_buff_len > full_len)
trb_buff_len = full_len - enqd_len;
/* Don't change the cycle bit of the first TRB until later */
if (first_trb) {
first_trb = false;
if (start_cycle == 0)
field |= TRB_CYCLE;
} else {
field |= ring->cycle_state;
}
/*
* Chain all the TRBs together; clear the chain bit in the last
* TRB to indicate it's the last TRB in the chain.
*/
if (enqd_len + trb_buff_len < full_len || need_zero_pkt) {
field |= TRB_CHAIN;
if (cdnsp_trb_is_link(ring->enqueue + 1)) {
if (cdnsp_align_td(pdev, preq, enqd_len,
&trb_buff_len,
ring->enq_seg)) {
send_addr = ring->enq_seg->bounce_dma;
/* Assuming TD won't span 2 segs */
preq->td.bounce_seg = ring->enq_seg;
}
}
}
if (enqd_len + trb_buff_len >= full_len) {
if (need_zero_pkt && !zero_len_trb) {
zero_len_trb = true;
} else {
zero_len_trb = false;
field &= ~TRB_CHAIN;
field |= TRB_IOC;
more_trbs_coming = false;
need_zero_pkt = false;
preq->td.last_trb = ring->enqueue;
}
}
/* Only set interrupt on short packet for OUT endpoints. */
if (!preq->direction)
field |= TRB_ISP;
/* Set the TRB length, TD size, and interrupter fields. */
remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len,
full_len, preq,
more_trbs_coming,
zero_len_trb);
length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
TRB_INTR_TARGET(0);
cdnsp_queue_trb(pdev, ring, more_trbs_coming,
lower_32_bits(send_addr),
upper_32_bits(send_addr),
length_field,
field);
addr += trb_buff_len;
sent_len = trb_buff_len;
while (sg && sent_len >= block_len) {
/* New sg entry */
--num_sgs;
sent_len -= block_len;
if (num_sgs != 0) {
sg = sg_next(sg);
block_len = sg_dma_len(sg);
addr = (u64)sg_dma_address(sg);
addr += sent_len;
}
}
block_len -= sent_len;
send_addr = addr;
}
cdnsp_check_trb_math(preq, enqd_len);
ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id,
start_cycle, start_trb);
if (ret)
preq->td.drbl = 1;
return 0;
}
int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
{
u32 field, length_field, zlp = 0;
struct cdnsp_ep *pep = preq->pep;
struct cdnsp_ring *ep_ring;
int num_trbs;
u32 maxp;
int ret;
ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
if (!ep_ring)
return -EINVAL;
/* 1 TRB for data, 1 for status */
num_trbs = (pdev->three_stage_setup) ? 2 : 1;
maxp = usb_endpoint_maxp(pep->endpoint.desc);
if (preq->request.zero && preq->request.length &&
(preq->request.length % maxp == 0)) {
num_trbs++;
zlp = 1;
}
ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
if (ret)
return ret;
/* If there's data, queue data TRBs */
if (preq->request.length > 0) {
field = TRB_TYPE(TRB_DATA);
if (zlp)
field |= TRB_CHAIN;
else
field |= TRB_IOC | (pdev->ep0_expect_in ? 0 : TRB_ISP);
if (pdev->ep0_expect_in)
field |= TRB_DIR_IN;
length_field = TRB_LEN(preq->request.length) |
TRB_TD_SIZE(zlp) | TRB_INTR_TARGET(0);
cdnsp_queue_trb(pdev, ep_ring, true,
lower_32_bits(preq->request.dma),
upper_32_bits(preq->request.dma), length_field,
field | ep_ring->cycle_state |
TRB_SETUPID(pdev->setup_id) |
pdev->setup_speed);
if (zlp) {
field = TRB_TYPE(TRB_NORMAL) | TRB_IOC;
if (!pdev->ep0_expect_in)
field = TRB_ISP;
cdnsp_queue_trb(pdev, ep_ring, true,
lower_32_bits(preq->request.dma),
upper_32_bits(preq->request.dma), 0,
field | ep_ring->cycle_state |
TRB_SETUPID(pdev->setup_id) |
pdev->setup_speed);
}
pdev->ep0_stage = CDNSP_DATA_STAGE;
}
/* Save the DMA address of the last TRB in the TD. */
preq->td.last_trb = ep_ring->enqueue;
/* Queue status TRB. */
if (preq->request.length == 0)
field = ep_ring->cycle_state;
else
field = (ep_ring->cycle_state ^ 1);
if (preq->request.length > 0 && pdev->ep0_expect_in)
field |= TRB_DIR_IN;
if (pep->ep_state & EP0_HALTED_STATUS) {
pep->ep_state &= ~EP0_HALTED_STATUS;
field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL);
} else {
field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK);
}
cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0),
field | TRB_IOC | TRB_SETUPID(pdev->setup_id) |
TRB_TYPE(TRB_STATUS) | pdev->setup_speed);
cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id);
return 0;
}
int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx);
int ret = 0;
if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED ||
ep_state == EP_STATE_HALTED) {
trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx);
goto ep_stopped;
}
cdnsp_queue_stop_endpoint(pdev, pep->idx);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx);
ep_stopped:
pep->ep_state |= EP_STOPPED;
return ret;
}
int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
int ret;
cdnsp_queue_flush_endpoint(pdev, pep->idx);
cdnsp_ring_cmd_db(pdev);
ret = cdnsp_wait_for_cmd_compl(pdev);
trace_cdnsp_handle_cmd_flush_ep(pep->out_ctx);
return ret;
}
/*
* The transfer burst count field of the isochronous TRB defines the number of
* bursts that are required to move all packets in this TD. Only SuperSpeed
* devices can burst up to bMaxBurst number of packets per service interval.
* This field is zero based, meaning a value of zero in the field means one
* burst. Basically, for everything but SuperSpeed devices, this field will be
* zero.
*/
static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev,
struct cdnsp_request *preq,
unsigned int total_packet_count)
{
unsigned int max_burst;
if (pdev->gadget.speed < USB_SPEED_SUPER)
return 0;
max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
}
/*
* Returns the number of packets in the last "burst" of packets. This field is
* valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
* the last burst packet count is equal to the total number of packets in the
* TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
* must contain (bMaxBurst + 1) number of packets, but the last burst can
* contain 1 to (bMaxBurst + 1) packets.
*/
static unsigned int
cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev,
struct cdnsp_request *preq,
unsigned int total_packet_count)
{
unsigned int max_burst;
unsigned int residue;
if (pdev->gadget.speed >= USB_SPEED_SUPER) {
/* bMaxBurst is zero based: 0 means 1 packet per burst. */
max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
residue = total_packet_count % (max_burst + 1);
/*
* If residue is zero, the last burst contains (max_burst + 1)
* number of packets, but the TLBPC field is zero-based.
*/
if (residue == 0)
return max_burst;
return residue - 1;
}
if (total_packet_count == 0)
return 0;
return total_packet_count - 1;
}
/* Queue function isoc transfer */
int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev,
struct cdnsp_request *preq)
{
unsigned int trb_buff_len, td_len, td_remain_len, block_len;
unsigned int burst_count, last_burst_pkt;
unsigned int total_pkt_count, max_pkt;
struct cdnsp_generic_trb *start_trb;
struct scatterlist *sg = NULL;
bool more_trbs_coming = true;
struct cdnsp_ring *ep_ring;
unsigned int num_sgs = 0;
int running_total = 0;
u32 field, length_field;
u64 addr, send_addr;
int start_cycle;
int trbs_per_td;
int i, sent_len, ret;
ep_ring = preq->pep->ring;
td_len = preq->request.length;
if (preq->request.num_sgs) {
num_sgs = preq->request.num_sgs;
sg = preq->request.sg;
addr = (u64)sg_dma_address(sg);
block_len = sg_dma_len(sg);
trbs_per_td = count_sg_trbs_needed(preq);
} else {
addr = (u64)preq->request.dma;
block_len = td_len;
trbs_per_td = count_trbs_needed(preq);
}
ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td);
if (ret)
return ret;
start_trb = &ep_ring->enqueue->generic;
start_cycle = ep_ring->cycle_state;
td_remain_len = td_len;
send_addr = addr;
max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
/* A zero-length transfer still involves at least one packet. */
if (total_pkt_count == 0)
total_pkt_count++;
burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count);
last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq,
total_pkt_count);
/*
* Set isoc specific data for the first TRB in a TD.
* Prevent HW from getting the TRBs by keeping the cycle state
* inverted in the first TDs isoc TRB.
*/
field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) |
TRB_SIA | TRB_TBC(burst_count);
if (!start_cycle)
field |= TRB_CYCLE;
/* Fill the rest of the TRB fields, and remaining normal TRBs. */
for (i = 0; i < trbs_per_td; i++) {
u32 remainder;
/* Calculate TRB length. */
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
trb_buff_len = min(trb_buff_len, block_len);
if (trb_buff_len > td_remain_len)
trb_buff_len = td_remain_len;
/* Set the TRB length, TD size, & interrupter fields. */
remainder = cdnsp_td_remainder(pdev, running_total,
trb_buff_len, td_len, preq,
more_trbs_coming, 0);
length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
TRB_INTR_TARGET(0);
/* Only first TRB is isoc, overwrite otherwise. */
if (i) {
field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state;
length_field |= TRB_TD_SIZE(remainder);
} else {
length_field |= TRB_TD_SIZE_TBC(burst_count);
}
/* Only set interrupt on short packet for OUT EPs. */
if (usb_endpoint_dir_out(preq->pep->endpoint.desc))
field |= TRB_ISP;
/* Set the chain bit for all except the last TRB. */
if (i < trbs_per_td - 1) {
more_trbs_coming = true;
field |= TRB_CHAIN;
} else {
more_trbs_coming = false;
preq->td.last_trb = ep_ring->enqueue;
field |= TRB_IOC;
}
cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming,
lower_32_bits(send_addr), upper_32_bits(send_addr),
length_field, field);
running_total += trb_buff_len;
addr += trb_buff_len;
td_remain_len -= trb_buff_len;
sent_len = trb_buff_len;
while (sg && sent_len >= block_len) {
/* New sg entry */
--num_sgs;
sent_len -= block_len;
if (num_sgs != 0) {
sg = sg_next(sg);
block_len = sg_dma_len(sg);
addr = (u64)sg_dma_address(sg);
addr += sent_len;
}
}
block_len -= sent_len;
send_addr = addr;
}
/* Check TD length */
if (running_total != td_len) {
dev_err(pdev->dev, "ISOC TD length unmatch\n");
ret = -EINVAL;
goto cleanup;
}
cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id,
start_cycle, start_trb);
return 0;
cleanup:
/* Clean up a partially enqueued isoc transfer. */
list_del_init(&preq->td.td_list);
ep_ring->num_tds--;
/*
* Use the first TD as a temporary variable to turn the TDs we've
* queued into No-ops with a software-owned cycle bit.
* That way the hardware won't accidentally start executing bogus TDs
* when we partially overwrite them.
* td->first_trb and td->start_seg are already set.
*/
preq->td.last_trb = ep_ring->enqueue;
/* Every TRB except the first & last will have its cycle bit flipped. */
cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true);
/* Reset the ring enqueue back to the first TRB and its cycle bit. */
ep_ring->enqueue = preq->td.first_trb;
ep_ring->enq_seg = preq->td.start_seg;
ep_ring->cycle_state = start_cycle;
return ret;
}
/**** Command Ring Operations ****/
/*
* Generic function for queuing a command TRB on the command ring.
* Driver queue only one command to ring in the moment.
*/
static void cdnsp_queue_command(struct cdnsp_device *pdev,
u32 field1,
u32 field2,
u32 field3,
u32 field4)
{
cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1,
GFP_ATOMIC);
pdev->cmd.command_trb = pdev->cmd_ring->enqueue;
cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2,
field3, field4 | pdev->cmd_ring->cycle_state);
}
/* Queue a slot enable or disable request on the command ring */
void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type)
{
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) |
SLOT_ID_FOR_TRB(pdev->slot_id));
}
/* Queue an address device command TRB */
void cdnsp_queue_address_device(struct cdnsp_device *pdev,
dma_addr_t in_ctx_ptr,
enum cdnsp_setup_dev setup)
{
cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_ADDR_DEV) |
SLOT_ID_FOR_TRB(pdev->slot_id) |
(setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0));
}
/* Queue a reset device command TRB */
void cdnsp_queue_reset_device(struct cdnsp_device *pdev)
{
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) |
SLOT_ID_FOR_TRB(pdev->slot_id));
}
/* Queue a configure endpoint command TRB */
void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev,
dma_addr_t in_ctx_ptr)
{
cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_CONFIG_EP) |
SLOT_ID_FOR_TRB(pdev->slot_id));
}
/*
* Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
* activity on an endpoint that is about to be suspended.
*/
void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
{
cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) |
EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING));
}
/* Set Transfer Ring Dequeue Pointer command. */
void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev,
struct cdnsp_ep *pep,
struct cdnsp_dequeue_state *deq_state)
{
u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id);
u32 type = TRB_TYPE(TRB_SET_DEQ);
u32 trb_sct = 0;
dma_addr_t addr;
addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg,
deq_state->new_deq_ptr);
if (deq_state->stream_id)
trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct |
deq_state->new_cycle_state, upper_32_bits(addr),
trb_stream_id, trb_slot_id |
EP_ID_FOR_TRB(pep->idx) | type);
}
void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index)
{
return cdnsp_queue_command(pdev, 0, 0, 0,
SLOT_ID_FOR_TRB(pdev->slot_id) |
EP_ID_FOR_TRB(ep_index) |
TRB_TYPE(TRB_RESET_EP));
}
/*
* Queue a halt endpoint request on the command ring.
*/
void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
{
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) |
SLOT_ID_FOR_TRB(pdev->slot_id) |
EP_ID_FOR_TRB(ep_index));
}
/*
* Queue a flush endpoint request on the command ring.
*/
void cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev,
unsigned int ep_index)
{
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) |
SLOT_ID_FOR_TRB(pdev->slot_id) |
EP_ID_FOR_TRB(ep_index));
}
void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num)
{
u32 lo, mid;
lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) |
TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address);
mid = TRB_FH_TR_PACKET_DEV_NOT |
TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) |
TRB_FH_TO_INTERFACE(intf_num);
cdnsp_queue_command(pdev, lo, mid, 0,
TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2));
}