mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-29 15:14:18 +08:00
82b0417e4b
Patch implements scatter gather support for isochronous endpoint.
This fix is forced by 'commit e81e7f9a0e
("usb: gadget: uvc: add scatter gather support")'.
After this fix CDNSP driver stop working with UVC class.
Signed-off-by: Pawel Laszczak <pawell@cadence.com>
Reviewed-by: Peter Chen <peter.chen@kernel.org>
Link: https://lore.kernel.org/r/20221222090934.145140-1-pawell@cadence.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2492 lines
67 KiB
C
2492 lines
67 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Cadence CDNSP DRD Driver.
|
|
*
|
|
* Copyright (C) 2020 Cadence.
|
|
*
|
|
* Author: Pawel Laszczak <pawell@cadence.com>
|
|
*
|
|
* Code based on Linux XHCI driver.
|
|
* Origin: Copyright (C) 2008 Intel Corp
|
|
*/
|
|
|
|
/*
|
|
* Ring initialization rules:
|
|
* 1. Each segment is initialized to zero, except for link TRBs.
|
|
* 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
|
|
* Consumer Cycle State (CCS), depending on ring function.
|
|
* 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
|
|
*
|
|
* Ring behavior rules:
|
|
* 1. A ring is empty if enqueue == dequeue. This means there will always be at
|
|
* least one free TRB in the ring. This is useful if you want to turn that
|
|
* into a link TRB and expand the ring.
|
|
* 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
|
|
* link TRB, then load the pointer with the address in the link TRB. If the
|
|
* link TRB had its toggle bit set, you may need to update the ring cycle
|
|
* state (see cycle bit rules). You may have to do this multiple times
|
|
* until you reach a non-link TRB.
|
|
* 3. A ring is full if enqueue++ (for the definition of increment above)
|
|
* equals the dequeue pointer.
|
|
*
|
|
* Cycle bit rules:
|
|
* 1. When a consumer increments a dequeue pointer and encounters a toggle bit
|
|
* in a link TRB, it must toggle the ring cycle state.
|
|
* 2. When a producer increments an enqueue pointer and encounters a toggle bit
|
|
* in a link TRB, it must toggle the ring cycle state.
|
|
*
|
|
* Producer rules:
|
|
* 1. Check if ring is full before you enqueue.
|
|
* 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
|
|
* Update enqueue pointer between each write (which may update the ring
|
|
* cycle state).
|
|
* 3. Notify consumer. If SW is producer, it rings the doorbell for command
|
|
* and endpoint rings. If controller is the producer for the event ring,
|
|
* and it generates an interrupt according to interrupt modulation rules.
|
|
*
|
|
* Consumer rules:
|
|
* 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
|
|
* the TRB is owned by the consumer.
|
|
* 2. Update dequeue pointer (which may update the ring cycle state) and
|
|
* continue processing TRBs until you reach a TRB which is not owned by you.
|
|
* 3. Notify the producer. SW is the consumer for the event ring, and it
|
|
* updates event ring dequeue pointer. Controller is the consumer for the
|
|
* command and endpoint rings; it generates events on the event ring
|
|
* for these.
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include "cdnsp-trace.h"
|
|
#include "cdnsp-gadget.h"
|
|
|
|
/*
|
|
* Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
|
|
* address of the TRB.
|
|
*/
|
|
dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg,
|
|
union cdnsp_trb *trb)
|
|
{
|
|
unsigned long segment_offset = trb - seg->trbs;
|
|
|
|
if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT)
|
|
return 0;
|
|
|
|
return seg->dma + (segment_offset * sizeof(*trb));
|
|
}
|
|
|
|
static bool cdnsp_trb_is_noop(union cdnsp_trb *trb)
|
|
{
|
|
return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
|
|
}
|
|
|
|
static bool cdnsp_trb_is_link(union cdnsp_trb *trb)
|
|
{
|
|
return TRB_TYPE_LINK_LE32(trb->link.control);
|
|
}
|
|
|
|
bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb)
|
|
{
|
|
return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
|
|
}
|
|
|
|
bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring,
|
|
struct cdnsp_segment *seg,
|
|
union cdnsp_trb *trb)
|
|
{
|
|
return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
|
|
}
|
|
|
|
static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb)
|
|
{
|
|
return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
|
|
}
|
|
|
|
static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type)
|
|
{
|
|
if (cdnsp_trb_is_link(trb)) {
|
|
/* Unchain chained link TRBs. */
|
|
trb->link.control &= cpu_to_le32(~TRB_CHAIN);
|
|
} else {
|
|
trb->generic.field[0] = 0;
|
|
trb->generic.field[1] = 0;
|
|
trb->generic.field[2] = 0;
|
|
/* Preserve only the cycle bit of this TRB. */
|
|
trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
|
|
trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Updates trb to point to the next TRB in the ring, and updates seg if the next
|
|
* TRB is in a new segment. This does not skip over link TRBs, and it does not
|
|
* effect the ring dequeue or enqueue pointers.
|
|
*/
|
|
static void cdnsp_next_trb(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ring,
|
|
struct cdnsp_segment **seg,
|
|
union cdnsp_trb **trb)
|
|
{
|
|
if (cdnsp_trb_is_link(*trb)) {
|
|
*seg = (*seg)->next;
|
|
*trb = ((*seg)->trbs);
|
|
} else {
|
|
(*trb)++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See Cycle bit rules. SW is the consumer for the event ring only.
|
|
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
|
|
*/
|
|
void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
|
|
{
|
|
/* event ring doesn't have link trbs, check for last trb. */
|
|
if (ring->type == TYPE_EVENT) {
|
|
if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
|
|
ring->dequeue++;
|
|
goto out;
|
|
}
|
|
|
|
if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
|
|
ring->cycle_state ^= 1;
|
|
|
|
ring->deq_seg = ring->deq_seg->next;
|
|
ring->dequeue = ring->deq_seg->trbs;
|
|
goto out;
|
|
}
|
|
|
|
/* All other rings have link trbs. */
|
|
if (!cdnsp_trb_is_link(ring->dequeue)) {
|
|
ring->dequeue++;
|
|
ring->num_trbs_free++;
|
|
}
|
|
while (cdnsp_trb_is_link(ring->dequeue)) {
|
|
ring->deq_seg = ring->deq_seg->next;
|
|
ring->dequeue = ring->deq_seg->trbs;
|
|
}
|
|
out:
|
|
trace_cdnsp_inc_deq(ring);
|
|
}
|
|
|
|
/*
|
|
* See Cycle bit rules. SW is the consumer for the event ring only.
|
|
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
|
|
*
|
|
* If we've just enqueued a TRB that is in the middle of a TD (meaning the
|
|
* chain bit is set), then set the chain bit in all the following link TRBs.
|
|
* If we've enqueued the last TRB in a TD, make sure the following link TRBs
|
|
* have their chain bit cleared (so that each Link TRB is a separate TD).
|
|
*
|
|
* @more_trbs_coming: Will you enqueue more TRBs before ringing the doorbell.
|
|
*/
|
|
static void cdnsp_inc_enq(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ring,
|
|
bool more_trbs_coming)
|
|
{
|
|
union cdnsp_trb *next;
|
|
u32 chain;
|
|
|
|
chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
|
|
|
|
/* If this is not event ring, there is one less usable TRB. */
|
|
if (!cdnsp_trb_is_link(ring->enqueue))
|
|
ring->num_trbs_free--;
|
|
next = ++(ring->enqueue);
|
|
|
|
/* Update the dequeue pointer further if that was a link TRB */
|
|
while (cdnsp_trb_is_link(next)) {
|
|
/*
|
|
* If the caller doesn't plan on enqueuing more TDs before
|
|
* ringing the doorbell, then we don't want to give the link TRB
|
|
* to the hardware just yet. We'll give the link TRB back in
|
|
* cdnsp_prepare_ring() just before we enqueue the TD at the
|
|
* top of the ring.
|
|
*/
|
|
if (!chain && !more_trbs_coming)
|
|
break;
|
|
|
|
next->link.control &= cpu_to_le32(~TRB_CHAIN);
|
|
next->link.control |= cpu_to_le32(chain);
|
|
|
|
/* Give this link TRB to the hardware */
|
|
wmb();
|
|
next->link.control ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
/* Toggle the cycle bit after the last ring segment. */
|
|
if (cdnsp_link_trb_toggles_cycle(next))
|
|
ring->cycle_state ^= 1;
|
|
|
|
ring->enq_seg = ring->enq_seg->next;
|
|
ring->enqueue = ring->enq_seg->trbs;
|
|
next = ring->enqueue;
|
|
}
|
|
|
|
trace_cdnsp_inc_enq(ring);
|
|
}
|
|
|
|
/*
|
|
* Check to see if there's room to enqueue num_trbs on the ring and make sure
|
|
* enqueue pointer will not advance into dequeue segment.
|
|
*/
|
|
static bool cdnsp_room_on_ring(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ring,
|
|
unsigned int num_trbs)
|
|
{
|
|
int num_trbs_in_deq_seg;
|
|
|
|
if (ring->num_trbs_free < num_trbs)
|
|
return false;
|
|
|
|
if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
|
|
num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
|
|
|
|
if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Workaround for L1: controller has issue with resuming from L1 after
|
|
* setting doorbell for endpoint during L1 state. This function forces
|
|
* resume signal in such case.
|
|
*/
|
|
static void cdnsp_force_l0_go(struct cdnsp_device *pdev)
|
|
{
|
|
if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable)
|
|
cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0);
|
|
}
|
|
|
|
/* Ring the doorbell after placing a command on the ring. */
|
|
void cdnsp_ring_cmd_db(struct cdnsp_device *pdev)
|
|
{
|
|
writel(DB_VALUE_CMD, &pdev->dba->cmd_db);
|
|
}
|
|
|
|
/*
|
|
* Ring the doorbell after placing a transfer on the ring.
|
|
* Returns true if doorbell was set, otherwise false.
|
|
*/
|
|
static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
unsigned int stream_id)
|
|
{
|
|
__le32 __iomem *reg_addr = &pdev->dba->ep_db;
|
|
unsigned int ep_state = pep->ep_state;
|
|
unsigned int db_value;
|
|
|
|
/*
|
|
* Don't ring the doorbell for this endpoint if endpoint is halted or
|
|
* disabled.
|
|
*/
|
|
if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED))
|
|
return false;
|
|
|
|
/* For stream capable endpoints driver can ring doorbell only twice. */
|
|
if (pep->ep_state & EP_HAS_STREAMS) {
|
|
if (pep->stream_info.drbls_count >= 2)
|
|
return false;
|
|
|
|
pep->stream_info.drbls_count++;
|
|
}
|
|
|
|
pep->ep_state &= ~EP_STOPPED;
|
|
|
|
if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE &&
|
|
!pdev->ep0_expect_in)
|
|
db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id);
|
|
else
|
|
db_value = DB_VALUE(pep->idx, stream_id);
|
|
|
|
trace_cdnsp_tr_drbl(pep, stream_id);
|
|
|
|
writel(db_value, reg_addr);
|
|
|
|
cdnsp_force_l0_go(pdev);
|
|
|
|
/* Doorbell was set. */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Get the right ring for the given pep and stream_id.
|
|
* If the endpoint supports streams, boundary check the USB request's stream ID.
|
|
* If the endpoint doesn't support streams, return the singular endpoint ring.
|
|
*/
|
|
static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
unsigned int stream_id)
|
|
{
|
|
if (!(pep->ep_state & EP_HAS_STREAMS))
|
|
return pep->ring;
|
|
|
|
if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) {
|
|
dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n",
|
|
pep->name, stream_id);
|
|
return NULL;
|
|
}
|
|
|
|
return pep->stream_info.stream_rings[stream_id];
|
|
}
|
|
|
|
static struct cdnsp_ring *
|
|
cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev,
|
|
struct cdnsp_request *preq)
|
|
{
|
|
return cdnsp_get_transfer_ring(pdev, preq->pep,
|
|
preq->request.stream_id);
|
|
}
|
|
|
|
/* Ring the doorbell for any rings with pending requests. */
|
|
void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
struct cdnsp_stream_info *stream_info;
|
|
unsigned int stream_id;
|
|
int ret;
|
|
|
|
if (pep->ep_state & EP_DIS_IN_RROGRESS)
|
|
return;
|
|
|
|
/* A ring has pending Request if its TD list is not empty. */
|
|
if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) {
|
|
if (pep->ring && !list_empty(&pep->ring->td_list))
|
|
cdnsp_ring_ep_doorbell(pdev, pep, 0);
|
|
return;
|
|
}
|
|
|
|
stream_info = &pep->stream_info;
|
|
|
|
for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) {
|
|
struct cdnsp_td *td, *td_temp;
|
|
struct cdnsp_ring *ep_ring;
|
|
|
|
if (stream_info->drbls_count >= 2)
|
|
return;
|
|
|
|
ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
|
|
if (!ep_ring)
|
|
continue;
|
|
|
|
if (!ep_ring->stream_active || ep_ring->stream_rejected)
|
|
continue;
|
|
|
|
list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
|
|
td_list) {
|
|
if (td->drbl)
|
|
continue;
|
|
|
|
ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
|
|
if (ret)
|
|
td->drbl = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the hw dequeue pointer controller stopped on, either directly from the
|
|
* endpoint context, or if streams are in use from the stream context.
|
|
* The returned hw_dequeue contains the lowest four bits with cycle state
|
|
* and possible stream context type.
|
|
*/
|
|
static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev,
|
|
unsigned int ep_index,
|
|
unsigned int stream_id)
|
|
{
|
|
struct cdnsp_stream_ctx *st_ctx;
|
|
struct cdnsp_ep *pep;
|
|
|
|
pep = &pdev->eps[stream_id];
|
|
|
|
if (pep->ep_state & EP_HAS_STREAMS) {
|
|
st_ctx = &pep->stream_info.stream_ctx_array[stream_id];
|
|
return le64_to_cpu(st_ctx->stream_ring);
|
|
}
|
|
|
|
return le64_to_cpu(pep->out_ctx->deq);
|
|
}
|
|
|
|
/*
|
|
* Move the controller endpoint ring dequeue pointer past cur_td.
|
|
* Record the new state of the controller endpoint ring dequeue segment,
|
|
* dequeue pointer, and new consumer cycle state in state.
|
|
* Update internal representation of the ring's dequeue pointer.
|
|
*
|
|
* We do this in three jumps:
|
|
* - First we update our new ring state to be the same as when the
|
|
* controller stopped.
|
|
* - Then we traverse the ring to find the segment that contains
|
|
* the last TRB in the TD. We toggle the controller new cycle state
|
|
* when we pass any link TRBs with the toggle cycle bit set.
|
|
* - Finally we move the dequeue state one TRB further, toggling the cycle bit
|
|
* if we've moved it past a link TRB with the toggle cycle bit set.
|
|
*/
|
|
static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
unsigned int stream_id,
|
|
struct cdnsp_td *cur_td,
|
|
struct cdnsp_dequeue_state *state)
|
|
{
|
|
bool td_last_trb_found = false;
|
|
struct cdnsp_segment *new_seg;
|
|
struct cdnsp_ring *ep_ring;
|
|
union cdnsp_trb *new_deq;
|
|
bool cycle_found = false;
|
|
u64 hw_dequeue;
|
|
|
|
ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
|
|
if (!ep_ring)
|
|
return;
|
|
|
|
/*
|
|
* Dig out the cycle state saved by the controller during the
|
|
* stop endpoint command.
|
|
*/
|
|
hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id);
|
|
new_seg = ep_ring->deq_seg;
|
|
new_deq = ep_ring->dequeue;
|
|
state->new_cycle_state = hw_dequeue & 0x1;
|
|
state->stream_id = stream_id;
|
|
|
|
/*
|
|
* We want to find the pointer, segment and cycle state of the new trb
|
|
* (the one after current TD's last_trb). We know the cycle state at
|
|
* hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
|
|
* found.
|
|
*/
|
|
do {
|
|
if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq)
|
|
== (dma_addr_t)(hw_dequeue & ~0xf)) {
|
|
cycle_found = true;
|
|
|
|
if (td_last_trb_found)
|
|
break;
|
|
}
|
|
|
|
if (new_deq == cur_td->last_trb)
|
|
td_last_trb_found = true;
|
|
|
|
if (cycle_found && cdnsp_trb_is_link(new_deq) &&
|
|
cdnsp_link_trb_toggles_cycle(new_deq))
|
|
state->new_cycle_state ^= 0x1;
|
|
|
|
cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq);
|
|
|
|
/* Search wrapped around, bail out. */
|
|
if (new_deq == pep->ring->dequeue) {
|
|
dev_err(pdev->dev,
|
|
"Error: Failed finding new dequeue state\n");
|
|
state->new_deq_seg = NULL;
|
|
state->new_deq_ptr = NULL;
|
|
return;
|
|
}
|
|
|
|
} while (!cycle_found || !td_last_trb_found);
|
|
|
|
state->new_deq_seg = new_seg;
|
|
state->new_deq_ptr = new_deq;
|
|
|
|
trace_cdnsp_new_deq_state(state);
|
|
}
|
|
|
|
/*
|
|
* flip_cycle means flip the cycle bit of all but the first and last TRB.
|
|
* (The last TRB actually points to the ring enqueue pointer, which is not part
|
|
* of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
|
|
*/
|
|
static void cdnsp_td_to_noop(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ep_ring,
|
|
struct cdnsp_td *td,
|
|
bool flip_cycle)
|
|
{
|
|
struct cdnsp_segment *seg = td->start_seg;
|
|
union cdnsp_trb *trb = td->first_trb;
|
|
|
|
while (1) {
|
|
cdnsp_trb_to_noop(trb, TRB_TR_NOOP);
|
|
|
|
/* flip cycle if asked to */
|
|
if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
|
|
trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
if (trb == td->last_trb)
|
|
break;
|
|
|
|
cdnsp_next_trb(pdev, ep_ring, &seg, &trb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This TD is defined by the TRBs starting at start_trb in start_seg and ending
|
|
* at end_trb, which may be in another segment. If the suspect DMA address is a
|
|
* TRB in this TD, this function returns that TRB's segment. Otherwise it
|
|
* returns 0.
|
|
*/
|
|
static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev,
|
|
struct cdnsp_segment *start_seg,
|
|
union cdnsp_trb *start_trb,
|
|
union cdnsp_trb *end_trb,
|
|
dma_addr_t suspect_dma)
|
|
{
|
|
struct cdnsp_segment *cur_seg;
|
|
union cdnsp_trb *temp_trb;
|
|
dma_addr_t end_seg_dma;
|
|
dma_addr_t end_trb_dma;
|
|
dma_addr_t start_dma;
|
|
|
|
start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb);
|
|
cur_seg = start_seg;
|
|
|
|
do {
|
|
if (start_dma == 0)
|
|
return NULL;
|
|
|
|
temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1];
|
|
/* We may get an event for a Link TRB in the middle of a TD */
|
|
end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb);
|
|
/* If the end TRB isn't in this segment, this is set to 0 */
|
|
end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb);
|
|
|
|
trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma,
|
|
end_trb_dma, cur_seg->dma,
|
|
end_seg_dma);
|
|
|
|
if (end_trb_dma > 0) {
|
|
/*
|
|
* The end TRB is in this segment, so suspect should
|
|
* be here
|
|
*/
|
|
if (start_dma <= end_trb_dma) {
|
|
if (suspect_dma >= start_dma &&
|
|
suspect_dma <= end_trb_dma) {
|
|
return cur_seg;
|
|
}
|
|
} else {
|
|
/*
|
|
* Case for one segment with a
|
|
* TD wrapped around to the top
|
|
*/
|
|
if ((suspect_dma >= start_dma &&
|
|
suspect_dma <= end_seg_dma) ||
|
|
(suspect_dma >= cur_seg->dma &&
|
|
suspect_dma <= end_trb_dma)) {
|
|
return cur_seg;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Might still be somewhere in this segment */
|
|
if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
|
|
return cur_seg;
|
|
|
|
cur_seg = cur_seg->next;
|
|
start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
|
|
} while (cur_seg != start_seg);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ring,
|
|
struct cdnsp_td *td)
|
|
{
|
|
struct cdnsp_segment *seg = td->bounce_seg;
|
|
struct cdnsp_request *preq;
|
|
size_t len;
|
|
|
|
if (!seg)
|
|
return;
|
|
|
|
preq = td->preq;
|
|
|
|
trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs,
|
|
seg->bounce_dma, 0);
|
|
|
|
if (!preq->direction) {
|
|
dma_unmap_single(pdev->dev, seg->bounce_dma,
|
|
ring->bounce_buf_len, DMA_TO_DEVICE);
|
|
return;
|
|
}
|
|
|
|
dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* For in transfers we need to copy the data from bounce to sg */
|
|
len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs,
|
|
seg->bounce_buf, seg->bounce_len,
|
|
seg->bounce_offs);
|
|
if (len != seg->bounce_len)
|
|
dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n",
|
|
len, seg->bounce_len);
|
|
|
|
seg->bounce_len = 0;
|
|
seg->bounce_offs = 0;
|
|
}
|
|
|
|
static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
struct cdnsp_dequeue_state *deq_state)
|
|
{
|
|
struct cdnsp_ring *ep_ring;
|
|
int ret;
|
|
|
|
if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) {
|
|
cdnsp_ring_doorbell_for_active_rings(pdev, pep);
|
|
return 0;
|
|
}
|
|
|
|
cdnsp_queue_new_dequeue_state(pdev, pep, deq_state);
|
|
cdnsp_ring_cmd_db(pdev);
|
|
ret = cdnsp_wait_for_cmd_compl(pdev);
|
|
|
|
trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx));
|
|
trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx);
|
|
|
|
/*
|
|
* Update the ring's dequeue segment and dequeue pointer
|
|
* to reflect the new position.
|
|
*/
|
|
ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id);
|
|
|
|
if (cdnsp_trb_is_link(ep_ring->dequeue)) {
|
|
ep_ring->deq_seg = ep_ring->deq_seg->next;
|
|
ep_ring->dequeue = ep_ring->deq_seg->trbs;
|
|
}
|
|
|
|
while (ep_ring->dequeue != deq_state->new_deq_ptr) {
|
|
ep_ring->num_trbs_free++;
|
|
ep_ring->dequeue++;
|
|
|
|
if (cdnsp_trb_is_link(ep_ring->dequeue)) {
|
|
if (ep_ring->dequeue == deq_state->new_deq_ptr)
|
|
break;
|
|
|
|
ep_ring->deq_seg = ep_ring->deq_seg->next;
|
|
ep_ring->dequeue = ep_ring->deq_seg->trbs;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Probably there was TIMEOUT during handling Set Dequeue Pointer
|
|
* command. It's critical error and controller will be stopped.
|
|
*/
|
|
if (ret)
|
|
return -ESHUTDOWN;
|
|
|
|
/* Restart any rings with pending requests */
|
|
cdnsp_ring_doorbell_for_active_rings(pdev, pep);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cdnsp_remove_request(struct cdnsp_device *pdev,
|
|
struct cdnsp_request *preq,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
struct cdnsp_dequeue_state deq_state;
|
|
struct cdnsp_td *cur_td = NULL;
|
|
struct cdnsp_ring *ep_ring;
|
|
struct cdnsp_segment *seg;
|
|
int status = -ECONNRESET;
|
|
int ret = 0;
|
|
u64 hw_deq;
|
|
|
|
memset(&deq_state, 0, sizeof(deq_state));
|
|
|
|
trace_cdnsp_remove_request(pep->out_ctx);
|
|
trace_cdnsp_remove_request_td(preq);
|
|
|
|
cur_td = &preq->td;
|
|
ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
|
|
|
|
/*
|
|
* If we stopped on the TD we need to cancel, then we have to
|
|
* move the controller endpoint ring dequeue pointer past
|
|
* this TD.
|
|
*/
|
|
hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id);
|
|
hw_deq &= ~0xf;
|
|
|
|
seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb,
|
|
cur_td->last_trb, hw_deq);
|
|
|
|
if (seg && (pep->ep_state & EP_ENABLED))
|
|
cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id,
|
|
cur_td, &deq_state);
|
|
else
|
|
cdnsp_td_to_noop(pdev, ep_ring, cur_td, false);
|
|
|
|
/*
|
|
* The event handler won't see a completion for this TD anymore,
|
|
* so remove it from the endpoint ring's TD list.
|
|
*/
|
|
list_del_init(&cur_td->td_list);
|
|
ep_ring->num_tds--;
|
|
pep->stream_info.td_count--;
|
|
|
|
/*
|
|
* During disconnecting all endpoint will be disabled so we don't
|
|
* have to worry about updating dequeue pointer.
|
|
*/
|
|
if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING) {
|
|
status = -ESHUTDOWN;
|
|
ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state);
|
|
}
|
|
|
|
cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td);
|
|
cdnsp_gadget_giveback(pep, cur_td->preq, status);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id)
|
|
{
|
|
struct cdnsp_port *port = pdev->active_port;
|
|
u8 old_port = 0;
|
|
|
|
if (port && port->port_num == port_id)
|
|
return 0;
|
|
|
|
if (port)
|
|
old_port = port->port_num;
|
|
|
|
if (port_id == pdev->usb2_port.port_num) {
|
|
port = &pdev->usb2_port;
|
|
} else if (port_id == pdev->usb3_port.port_num) {
|
|
port = &pdev->usb3_port;
|
|
} else {
|
|
dev_err(pdev->dev, "Port event with invalid port ID %d\n",
|
|
port_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (port_id != old_port) {
|
|
cdnsp_disable_slot(pdev);
|
|
pdev->active_port = port;
|
|
cdnsp_enable_slot(pdev);
|
|
}
|
|
|
|
if (port_id == pdev->usb2_port.port_num)
|
|
cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1);
|
|
else
|
|
writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1),
|
|
&pdev->usb3_port.regs->portpmsc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cdnsp_handle_port_status(struct cdnsp_device *pdev,
|
|
union cdnsp_trb *event)
|
|
{
|
|
struct cdnsp_port_regs __iomem *port_regs;
|
|
u32 portsc, cmd_regs;
|
|
bool port2 = false;
|
|
u32 link_state;
|
|
u32 port_id;
|
|
|
|
/* Port status change events always have a successful completion code */
|
|
if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
|
|
dev_err(pdev->dev, "ERR: incorrect PSC event\n");
|
|
|
|
port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
|
|
|
|
if (cdnsp_update_port_id(pdev, port_id))
|
|
goto cleanup;
|
|
|
|
port_regs = pdev->active_port->regs;
|
|
|
|
if (port_id == pdev->usb2_port.port_num)
|
|
port2 = true;
|
|
|
|
new_event:
|
|
portsc = readl(&port_regs->portsc);
|
|
writel(cdnsp_port_state_to_neutral(portsc) |
|
|
(portsc & PORT_CHANGE_BITS), &port_regs->portsc);
|
|
|
|
trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc);
|
|
|
|
pdev->gadget.speed = cdnsp_port_speed(portsc);
|
|
link_state = portsc & PORT_PLS_MASK;
|
|
|
|
/* Port Link State change detected. */
|
|
if ((portsc & PORT_PLC)) {
|
|
if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
|
|
link_state == XDEV_RESUME) {
|
|
cmd_regs = readl(&pdev->op_regs->command);
|
|
if (!(cmd_regs & CMD_R_S))
|
|
goto cleanup;
|
|
|
|
if (DEV_SUPERSPEED_ANY(portsc)) {
|
|
cdnsp_set_link_state(pdev, &port_regs->portsc,
|
|
XDEV_U0);
|
|
|
|
cdnsp_resume_gadget(pdev);
|
|
}
|
|
}
|
|
|
|
if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
|
|
link_state == XDEV_U0) {
|
|
pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING;
|
|
|
|
cdnsp_force_header_wakeup(pdev, 1);
|
|
cdnsp_ring_cmd_db(pdev);
|
|
cdnsp_wait_for_cmd_compl(pdev);
|
|
}
|
|
|
|
if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 &&
|
|
!DEV_SUPERSPEED_ANY(portsc))
|
|
cdnsp_resume_gadget(pdev);
|
|
|
|
if (link_state == XDEV_U3 && pdev->link_state != XDEV_U3)
|
|
cdnsp_suspend_gadget(pdev);
|
|
|
|
pdev->link_state = link_state;
|
|
}
|
|
|
|
if (portsc & PORT_CSC) {
|
|
/* Detach device. */
|
|
if (pdev->gadget.connected && !(portsc & PORT_CONNECT))
|
|
cdnsp_disconnect_gadget(pdev);
|
|
|
|
/* Attach device. */
|
|
if (portsc & PORT_CONNECT) {
|
|
if (!port2)
|
|
cdnsp_irq_reset(pdev);
|
|
|
|
usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED);
|
|
}
|
|
}
|
|
|
|
/* Port reset. */
|
|
if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) {
|
|
cdnsp_irq_reset(pdev);
|
|
pdev->u1_allowed = 0;
|
|
pdev->u2_allowed = 0;
|
|
pdev->may_wakeup = 0;
|
|
}
|
|
|
|
if (portsc & PORT_CEC)
|
|
dev_err(pdev->dev, "Port Over Current detected\n");
|
|
|
|
if (portsc & PORT_CEC)
|
|
dev_err(pdev->dev, "Port Configure Error detected\n");
|
|
|
|
if (readl(&port_regs->portsc) & PORT_CHANGE_BITS)
|
|
goto new_event;
|
|
|
|
cleanup:
|
|
cdnsp_inc_deq(pdev, pdev->event_ring);
|
|
}
|
|
|
|
static void cdnsp_td_cleanup(struct cdnsp_device *pdev,
|
|
struct cdnsp_td *td,
|
|
struct cdnsp_ring *ep_ring,
|
|
int *status)
|
|
{
|
|
struct cdnsp_request *preq = td->preq;
|
|
|
|
/* if a bounce buffer was used to align this td then unmap it */
|
|
cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td);
|
|
|
|
/*
|
|
* If the controller said we transferred more data than the buffer
|
|
* length, Play it safe and say we didn't transfer anything.
|
|
*/
|
|
if (preq->request.actual > preq->request.length) {
|
|
preq->request.actual = 0;
|
|
*status = 0;
|
|
}
|
|
|
|
list_del_init(&td->td_list);
|
|
ep_ring->num_tds--;
|
|
preq->pep->stream_info.td_count--;
|
|
|
|
cdnsp_gadget_giveback(preq->pep, preq, *status);
|
|
}
|
|
|
|
static void cdnsp_finish_td(struct cdnsp_device *pdev,
|
|
struct cdnsp_td *td,
|
|
struct cdnsp_transfer_event *event,
|
|
struct cdnsp_ep *ep,
|
|
int *status)
|
|
{
|
|
struct cdnsp_ring *ep_ring;
|
|
u32 trb_comp_code;
|
|
|
|
ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
|
|
if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
|
|
trb_comp_code == COMP_STOPPED ||
|
|
trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
|
|
/*
|
|
* The Endpoint Stop Command completion will take care of any
|
|
* stopped TDs. A stopped TD may be restarted, so don't update
|
|
* the ring dequeue pointer or take this TD off any lists yet.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Update ring dequeue pointer */
|
|
while (ep_ring->dequeue != td->last_trb)
|
|
cdnsp_inc_deq(pdev, ep_ring);
|
|
|
|
cdnsp_inc_deq(pdev, ep_ring);
|
|
|
|
cdnsp_td_cleanup(pdev, td, ep_ring, status);
|
|
}
|
|
|
|
/* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
|
|
static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ring,
|
|
union cdnsp_trb *stop_trb)
|
|
{
|
|
struct cdnsp_segment *seg = ring->deq_seg;
|
|
union cdnsp_trb *trb = ring->dequeue;
|
|
u32 sum;
|
|
|
|
for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) {
|
|
if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb))
|
|
sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
unsigned int stream_id,
|
|
int start_cycle,
|
|
struct cdnsp_generic_trb *start_trb)
|
|
{
|
|
/*
|
|
* Pass all the TRBs to the hardware at once and make sure this write
|
|
* isn't reordered.
|
|
*/
|
|
wmb();
|
|
|
|
if (start_cycle)
|
|
start_trb->field[3] |= cpu_to_le32(start_cycle);
|
|
else
|
|
start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
|
|
|
|
if ((pep->ep_state & EP_HAS_STREAMS) &&
|
|
!pep->stream_info.first_prime_det) {
|
|
trace_cdnsp_wait_for_prime(pep, stream_id);
|
|
return 0;
|
|
}
|
|
|
|
return cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
|
|
}
|
|
|
|
/*
|
|
* Process control tds, update USB request status and actual_length.
|
|
*/
|
|
static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev,
|
|
struct cdnsp_td *td,
|
|
union cdnsp_trb *event_trb,
|
|
struct cdnsp_transfer_event *event,
|
|
struct cdnsp_ep *pep,
|
|
int *status)
|
|
{
|
|
struct cdnsp_ring *ep_ring;
|
|
u32 remaining;
|
|
u32 trb_type;
|
|
|
|
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3]));
|
|
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
|
|
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
|
|
/*
|
|
* if on data stage then update the actual_length of the USB
|
|
* request and flag it as set, so it won't be overwritten in the event
|
|
* for the last TRB.
|
|
*/
|
|
if (trb_type == TRB_DATA) {
|
|
td->request_length_set = true;
|
|
td->preq->request.actual = td->preq->request.length - remaining;
|
|
}
|
|
|
|
/* at status stage */
|
|
if (!td->request_length_set)
|
|
td->preq->request.actual = td->preq->request.length;
|
|
|
|
if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 &&
|
|
pdev->three_stage_setup) {
|
|
td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
|
|
td_list);
|
|
pdev->ep0_stage = CDNSP_STATUS_STAGE;
|
|
|
|
cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state,
|
|
&td->last_trb->generic);
|
|
return;
|
|
}
|
|
|
|
*status = 0;
|
|
|
|
cdnsp_finish_td(pdev, td, event, pep, status);
|
|
}
|
|
|
|
/*
|
|
* Process isochronous tds, update usb request status and actual_length.
|
|
*/
|
|
static void cdnsp_process_isoc_td(struct cdnsp_device *pdev,
|
|
struct cdnsp_td *td,
|
|
union cdnsp_trb *ep_trb,
|
|
struct cdnsp_transfer_event *event,
|
|
struct cdnsp_ep *pep,
|
|
int status)
|
|
{
|
|
struct cdnsp_request *preq = td->preq;
|
|
u32 remaining, requested, ep_trb_len;
|
|
bool sum_trbs_for_length = false;
|
|
struct cdnsp_ring *ep_ring;
|
|
u32 trb_comp_code;
|
|
u32 td_length;
|
|
|
|
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
|
|
|
|
requested = preq->request.length;
|
|
|
|
/* handle completion code */
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
preq->request.status = 0;
|
|
break;
|
|
case COMP_SHORT_PACKET:
|
|
preq->request.status = 0;
|
|
sum_trbs_for_length = true;
|
|
break;
|
|
case COMP_ISOCH_BUFFER_OVERRUN:
|
|
case COMP_BABBLE_DETECTED_ERROR:
|
|
preq->request.status = -EOVERFLOW;
|
|
break;
|
|
case COMP_STOPPED:
|
|
sum_trbs_for_length = true;
|
|
break;
|
|
case COMP_STOPPED_SHORT_PACKET:
|
|
/* field normally containing residue now contains transferred */
|
|
preq->request.status = 0;
|
|
requested = remaining;
|
|
break;
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
requested = 0;
|
|
remaining = 0;
|
|
break;
|
|
default:
|
|
sum_trbs_for_length = true;
|
|
preq->request.status = -1;
|
|
break;
|
|
}
|
|
|
|
if (sum_trbs_for_length) {
|
|
td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb);
|
|
td_length += ep_trb_len - remaining;
|
|
} else {
|
|
td_length = requested;
|
|
}
|
|
|
|
td->preq->request.actual += td_length;
|
|
|
|
cdnsp_finish_td(pdev, td, event, pep, &status);
|
|
}
|
|
|
|
static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev,
|
|
struct cdnsp_td *td,
|
|
struct cdnsp_transfer_event *event,
|
|
struct cdnsp_ep *pep,
|
|
int status)
|
|
{
|
|
struct cdnsp_ring *ep_ring;
|
|
|
|
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
|
|
td->preq->request.status = -EXDEV;
|
|
td->preq->request.actual = 0;
|
|
|
|
/* Update ring dequeue pointer */
|
|
while (ep_ring->dequeue != td->last_trb)
|
|
cdnsp_inc_deq(pdev, ep_ring);
|
|
|
|
cdnsp_inc_deq(pdev, ep_ring);
|
|
|
|
cdnsp_td_cleanup(pdev, td, ep_ring, &status);
|
|
}
|
|
|
|
/*
|
|
* Process bulk and interrupt tds, update usb request status and actual_length.
|
|
*/
|
|
static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev,
|
|
struct cdnsp_td *td,
|
|
union cdnsp_trb *ep_trb,
|
|
struct cdnsp_transfer_event *event,
|
|
struct cdnsp_ep *ep,
|
|
int *status)
|
|
{
|
|
u32 remaining, requested, ep_trb_len;
|
|
struct cdnsp_ring *ep_ring;
|
|
u32 trb_comp_code;
|
|
|
|
ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
|
|
requested = td->preq->request.length;
|
|
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
case COMP_SHORT_PACKET:
|
|
*status = 0;
|
|
break;
|
|
case COMP_STOPPED_SHORT_PACKET:
|
|
td->preq->request.actual = remaining;
|
|
goto finish_td;
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
/* Stopped on ep trb with invalid length, exclude it. */
|
|
ep_trb_len = 0;
|
|
remaining = 0;
|
|
break;
|
|
}
|
|
|
|
if (ep_trb == td->last_trb)
|
|
ep_trb_len = requested - remaining;
|
|
else
|
|
ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) +
|
|
ep_trb_len - remaining;
|
|
td->preq->request.actual = ep_trb_len;
|
|
|
|
finish_td:
|
|
ep->stream_info.drbls_count--;
|
|
|
|
cdnsp_finish_td(pdev, td, event, ep, status);
|
|
}
|
|
|
|
static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev,
|
|
struct cdnsp_transfer_event *event)
|
|
{
|
|
struct cdnsp_generic_trb *generic;
|
|
struct cdnsp_ring *ep_ring;
|
|
struct cdnsp_ep *pep;
|
|
int cur_stream;
|
|
int ep_index;
|
|
int host_sid;
|
|
int dev_sid;
|
|
|
|
generic = (struct cdnsp_generic_trb *)event;
|
|
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
|
|
dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0]));
|
|
host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2]));
|
|
|
|
pep = &pdev->eps[ep_index];
|
|
|
|
if (!(pep->ep_state & EP_HAS_STREAMS))
|
|
return;
|
|
|
|
if (host_sid == STREAM_PRIME_ACK) {
|
|
pep->stream_info.first_prime_det = 1;
|
|
for (cur_stream = 1; cur_stream < pep->stream_info.num_streams;
|
|
cur_stream++) {
|
|
ep_ring = pep->stream_info.stream_rings[cur_stream];
|
|
ep_ring->stream_active = 1;
|
|
ep_ring->stream_rejected = 0;
|
|
}
|
|
}
|
|
|
|
if (host_sid == STREAM_REJECTED) {
|
|
struct cdnsp_td *td, *td_temp;
|
|
|
|
pep->stream_info.drbls_count--;
|
|
ep_ring = pep->stream_info.stream_rings[dev_sid];
|
|
ep_ring->stream_active = 0;
|
|
ep_ring->stream_rejected = 1;
|
|
|
|
list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
|
|
td_list) {
|
|
td->drbl = 0;
|
|
}
|
|
}
|
|
|
|
cdnsp_ring_doorbell_for_active_rings(pdev, pep);
|
|
}
|
|
|
|
/*
|
|
* If this function returns an error condition, it means it got a Transfer
|
|
* event with a corrupted TRB DMA address or endpoint is disabled.
|
|
*/
|
|
static int cdnsp_handle_tx_event(struct cdnsp_device *pdev,
|
|
struct cdnsp_transfer_event *event)
|
|
{
|
|
const struct usb_endpoint_descriptor *desc;
|
|
bool handling_skipped_tds = false;
|
|
struct cdnsp_segment *ep_seg;
|
|
struct cdnsp_ring *ep_ring;
|
|
int status = -EINPROGRESS;
|
|
union cdnsp_trb *ep_trb;
|
|
dma_addr_t ep_trb_dma;
|
|
struct cdnsp_ep *pep;
|
|
struct cdnsp_td *td;
|
|
u32 trb_comp_code;
|
|
int invalidate;
|
|
int ep_index;
|
|
|
|
invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE;
|
|
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
ep_trb_dma = le64_to_cpu(event->buffer);
|
|
|
|
pep = &pdev->eps[ep_index];
|
|
ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
|
|
|
|
/*
|
|
* If device is disconnect then all requests will be dequeued
|
|
* by upper layers as part of disconnect sequence.
|
|
* We don't want handle such event to avoid racing.
|
|
*/
|
|
if (invalidate || !pdev->gadget.connected)
|
|
goto cleanup;
|
|
|
|
if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) {
|
|
trace_cdnsp_ep_disabled(pep->out_ctx);
|
|
goto err_out;
|
|
}
|
|
|
|
/* Some transfer events don't always point to a trb*/
|
|
if (!ep_ring) {
|
|
switch (trb_comp_code) {
|
|
case COMP_INVALID_STREAM_TYPE_ERROR:
|
|
case COMP_INVALID_STREAM_ID_ERROR:
|
|
case COMP_RING_UNDERRUN:
|
|
case COMP_RING_OVERRUN:
|
|
goto cleanup;
|
|
default:
|
|
dev_err(pdev->dev, "ERROR: %s event for unknown ring\n",
|
|
pep->name);
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
/* Look for some error cases that need special treatment. */
|
|
switch (trb_comp_code) {
|
|
case COMP_BABBLE_DETECTED_ERROR:
|
|
status = -EOVERFLOW;
|
|
break;
|
|
case COMP_RING_UNDERRUN:
|
|
case COMP_RING_OVERRUN:
|
|
/*
|
|
* When the Isoch ring is empty, the controller will generate
|
|
* a Ring Overrun Event for IN Isoch endpoint or Ring
|
|
* Underrun Event for OUT Isoch endpoint.
|
|
*/
|
|
goto cleanup;
|
|
case COMP_MISSED_SERVICE_ERROR:
|
|
/*
|
|
* When encounter missed service error, one or more isoc tds
|
|
* may be missed by controller.
|
|
* Set skip flag of the ep_ring; Complete the missed tds as
|
|
* short transfer when process the ep_ring next time.
|
|
*/
|
|
pep->skip = true;
|
|
break;
|
|
}
|
|
|
|
do {
|
|
/*
|
|
* This TRB should be in the TD at the head of this ring's TD
|
|
* list.
|
|
*/
|
|
if (list_empty(&ep_ring->td_list)) {
|
|
/*
|
|
* Don't print warnings if it's due to a stopped
|
|
* endpoint generating an extra completion event, or
|
|
* a event for the last TRB of a short TD we already
|
|
* got a short event for.
|
|
* The short TD is already removed from the TD list.
|
|
*/
|
|
if (!(trb_comp_code == COMP_STOPPED ||
|
|
trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
|
|
ep_ring->last_td_was_short))
|
|
trace_cdnsp_trb_without_td(ep_ring,
|
|
(struct cdnsp_generic_trb *)event);
|
|
|
|
if (pep->skip) {
|
|
pep->skip = false;
|
|
trace_cdnsp_ep_list_empty_with_skip(pep, 0);
|
|
}
|
|
|
|
goto cleanup;
|
|
}
|
|
|
|
td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
|
|
td_list);
|
|
|
|
/* Is this a TRB in the currently executing TD? */
|
|
ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg,
|
|
ep_ring->dequeue, td->last_trb,
|
|
ep_trb_dma);
|
|
|
|
desc = td->preq->pep->endpoint.desc;
|
|
|
|
if (ep_seg) {
|
|
ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma)
|
|
/ sizeof(*ep_trb)];
|
|
|
|
trace_cdnsp_handle_transfer(ep_ring,
|
|
(struct cdnsp_generic_trb *)ep_trb);
|
|
|
|
if (pep->skip && usb_endpoint_xfer_isoc(desc) &&
|
|
td->last_trb != ep_trb)
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Skip the Force Stopped Event. The event_trb(ep_trb_dma)
|
|
* of FSE is not in the current TD pointed by ep_ring->dequeue
|
|
* because that the hardware dequeue pointer still at the
|
|
* previous TRB of the current TD. The previous TRB maybe a
|
|
* Link TD or the last TRB of the previous TD. The command
|
|
* completion handle will take care the rest.
|
|
*/
|
|
if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
|
|
trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
|
|
pep->skip = false;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (!ep_seg) {
|
|
if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) {
|
|
/* Something is busted, give up! */
|
|
dev_err(pdev->dev,
|
|
"ERROR Transfer event TRB DMA ptr not "
|
|
"part of current TD ep_index %d "
|
|
"comp_code %u\n", ep_index,
|
|
trb_comp_code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cdnsp_skip_isoc_td(pdev, td, event, pep, status);
|
|
goto cleanup;
|
|
}
|
|
|
|
if (trb_comp_code == COMP_SHORT_PACKET)
|
|
ep_ring->last_td_was_short = true;
|
|
else
|
|
ep_ring->last_td_was_short = false;
|
|
|
|
if (pep->skip) {
|
|
pep->skip = false;
|
|
cdnsp_skip_isoc_td(pdev, td, event, pep, status);
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cdnsp_trb_is_noop(ep_trb))
|
|
goto cleanup;
|
|
|
|
if (usb_endpoint_xfer_control(desc))
|
|
cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep,
|
|
&status);
|
|
else if (usb_endpoint_xfer_isoc(desc))
|
|
cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep,
|
|
status);
|
|
else
|
|
cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep,
|
|
&status);
|
|
cleanup:
|
|
handling_skipped_tds = pep->skip;
|
|
|
|
/*
|
|
* Do not update event ring dequeue pointer if we're in a loop
|
|
* processing missed tds.
|
|
*/
|
|
if (!handling_skipped_tds)
|
|
cdnsp_inc_deq(pdev, pdev->event_ring);
|
|
|
|
/*
|
|
* If ep->skip is set, it means there are missed tds on the
|
|
* endpoint ring need to take care of.
|
|
* Process them as short transfer until reach the td pointed by
|
|
* the event.
|
|
*/
|
|
} while (handling_skipped_tds);
|
|
return 0;
|
|
|
|
err_out:
|
|
dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n",
|
|
(unsigned long long)
|
|
cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
|
|
pdev->event_ring->dequeue),
|
|
lower_32_bits(le64_to_cpu(event->buffer)),
|
|
upper_32_bits(le64_to_cpu(event->buffer)),
|
|
le32_to_cpu(event->transfer_len),
|
|
le32_to_cpu(event->flags));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* This function handles all events on the event ring.
|
|
* Returns true for "possibly more events to process" (caller should call
|
|
* again), otherwise false if done.
|
|
*/
|
|
static bool cdnsp_handle_event(struct cdnsp_device *pdev)
|
|
{
|
|
unsigned int comp_code;
|
|
union cdnsp_trb *event;
|
|
bool update_ptrs = true;
|
|
u32 cycle_bit;
|
|
int ret = 0;
|
|
u32 flags;
|
|
|
|
event = pdev->event_ring->dequeue;
|
|
flags = le32_to_cpu(event->event_cmd.flags);
|
|
cycle_bit = (flags & TRB_CYCLE);
|
|
|
|
/* Does the controller or driver own the TRB? */
|
|
if (cycle_bit != pdev->event_ring->cycle_state)
|
|
return false;
|
|
|
|
trace_cdnsp_handle_event(pdev->event_ring, &event->generic);
|
|
|
|
/*
|
|
* Barrier between reading the TRB_CYCLE (valid) flag above and any
|
|
* reads of the event's flags/data below.
|
|
*/
|
|
rmb();
|
|
|
|
switch (flags & TRB_TYPE_BITMASK) {
|
|
case TRB_TYPE(TRB_COMPLETION):
|
|
/*
|
|
* Command can't be handled in interrupt context so just
|
|
* increment command ring dequeue pointer.
|
|
*/
|
|
cdnsp_inc_deq(pdev, pdev->cmd_ring);
|
|
break;
|
|
case TRB_TYPE(TRB_PORT_STATUS):
|
|
cdnsp_handle_port_status(pdev, event);
|
|
update_ptrs = false;
|
|
break;
|
|
case TRB_TYPE(TRB_TRANSFER):
|
|
ret = cdnsp_handle_tx_event(pdev, &event->trans_event);
|
|
if (ret >= 0)
|
|
update_ptrs = false;
|
|
break;
|
|
case TRB_TYPE(TRB_SETUP):
|
|
pdev->ep0_stage = CDNSP_SETUP_STAGE;
|
|
pdev->setup_id = TRB_SETUPID_TO_TYPE(flags);
|
|
pdev->setup_speed = TRB_SETUP_SPEEDID(flags);
|
|
pdev->setup = *((struct usb_ctrlrequest *)
|
|
&event->trans_event.buffer);
|
|
|
|
cdnsp_setup_analyze(pdev);
|
|
break;
|
|
case TRB_TYPE(TRB_ENDPOINT_NRDY):
|
|
cdnsp_handle_tx_nrdy(pdev, &event->trans_event);
|
|
break;
|
|
case TRB_TYPE(TRB_HC_EVENT): {
|
|
comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
|
|
|
|
switch (comp_code) {
|
|
case COMP_EVENT_RING_FULL_ERROR:
|
|
dev_err(pdev->dev, "Event Ring Full\n");
|
|
break;
|
|
default:
|
|
dev_err(pdev->dev, "Controller error code 0x%02x\n",
|
|
comp_code);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TRB_TYPE(TRB_MFINDEX_WRAP):
|
|
case TRB_TYPE(TRB_DRB_OVERFLOW):
|
|
break;
|
|
default:
|
|
dev_warn(pdev->dev, "ERROR unknown event type %ld\n",
|
|
TRB_FIELD_TO_TYPE(flags));
|
|
}
|
|
|
|
if (update_ptrs)
|
|
/* Update SW event ring dequeue pointer. */
|
|
cdnsp_inc_deq(pdev, pdev->event_ring);
|
|
|
|
/*
|
|
* Caller will call us again to check if there are more items
|
|
* on the event ring.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
irqreturn_t cdnsp_thread_irq_handler(int irq, void *data)
|
|
{
|
|
struct cdnsp_device *pdev = (struct cdnsp_device *)data;
|
|
union cdnsp_trb *event_ring_deq;
|
|
unsigned long flags;
|
|
int counter = 0;
|
|
|
|
spin_lock_irqsave(&pdev->lock, flags);
|
|
|
|
if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) {
|
|
/*
|
|
* While removing or stopping driver there may still be deferred
|
|
* not handled interrupt which should not be treated as error.
|
|
* Driver should simply ignore it.
|
|
*/
|
|
if (pdev->gadget_driver)
|
|
cdnsp_died(pdev);
|
|
|
|
spin_unlock_irqrestore(&pdev->lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
event_ring_deq = pdev->event_ring->dequeue;
|
|
|
|
while (cdnsp_handle_event(pdev)) {
|
|
if (++counter >= TRBS_PER_EV_DEQ_UPDATE) {
|
|
cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0);
|
|
event_ring_deq = pdev->event_ring->dequeue;
|
|
counter = 0;
|
|
}
|
|
}
|
|
|
|
cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
|
|
|
|
spin_unlock_irqrestore(&pdev->lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t cdnsp_irq_handler(int irq, void *priv)
|
|
{
|
|
struct cdnsp_device *pdev = (struct cdnsp_device *)priv;
|
|
u32 irq_pending;
|
|
u32 status;
|
|
|
|
status = readl(&pdev->op_regs->status);
|
|
|
|
if (status == ~(u32)0) {
|
|
cdnsp_died(pdev);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (!(status & STS_EINT))
|
|
return IRQ_NONE;
|
|
|
|
writel(status | STS_EINT, &pdev->op_regs->status);
|
|
irq_pending = readl(&pdev->ir_set->irq_pending);
|
|
irq_pending |= IMAN_IP;
|
|
writel(irq_pending, &pdev->ir_set->irq_pending);
|
|
|
|
if (status & STS_FATAL) {
|
|
cdnsp_died(pdev);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/*
|
|
* Generic function for queuing a TRB on a ring.
|
|
* The caller must have checked to make sure there's room on the ring.
|
|
*
|
|
* @more_trbs_coming: Will you enqueue more TRBs before setting doorbell?
|
|
*/
|
|
static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring,
|
|
bool more_trbs_coming, u32 field1, u32 field2,
|
|
u32 field3, u32 field4)
|
|
{
|
|
struct cdnsp_generic_trb *trb;
|
|
|
|
trb = &ring->enqueue->generic;
|
|
|
|
trb->field[0] = cpu_to_le32(field1);
|
|
trb->field[1] = cpu_to_le32(field2);
|
|
trb->field[2] = cpu_to_le32(field3);
|
|
trb->field[3] = cpu_to_le32(field4);
|
|
|
|
trace_cdnsp_queue_trb(ring, trb);
|
|
cdnsp_inc_enq(pdev, ring, more_trbs_coming);
|
|
}
|
|
|
|
/*
|
|
* Does various checks on the endpoint ring, and makes it ready to
|
|
* queue num_trbs.
|
|
*/
|
|
static int cdnsp_prepare_ring(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ep_ring,
|
|
u32 ep_state, unsigned
|
|
int num_trbs,
|
|
gfp_t mem_flags)
|
|
{
|
|
unsigned int num_trbs_needed;
|
|
|
|
/* Make sure the endpoint has been added to controller schedule. */
|
|
switch (ep_state) {
|
|
case EP_STATE_STOPPED:
|
|
case EP_STATE_RUNNING:
|
|
case EP_STATE_HALTED:
|
|
break;
|
|
default:
|
|
dev_err(pdev->dev, "ERROR: incorrect endpoint state\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (1) {
|
|
if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs))
|
|
break;
|
|
|
|
trace_cdnsp_no_room_on_ring("try ring expansion");
|
|
|
|
num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
|
|
if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed,
|
|
mem_flags)) {
|
|
dev_err(pdev->dev, "Ring expansion failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
while (cdnsp_trb_is_link(ep_ring->enqueue)) {
|
|
ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN);
|
|
/* The cycle bit must be set as the last operation. */
|
|
wmb();
|
|
ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
/* Toggle the cycle bit after the last ring segment. */
|
|
if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue))
|
|
ep_ring->cycle_state ^= 1;
|
|
ep_ring->enq_seg = ep_ring->enq_seg->next;
|
|
ep_ring->enqueue = ep_ring->enq_seg->trbs;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cdnsp_prepare_transfer(struct cdnsp_device *pdev,
|
|
struct cdnsp_request *preq,
|
|
unsigned int num_trbs)
|
|
{
|
|
struct cdnsp_ring *ep_ring;
|
|
int ret;
|
|
|
|
ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep,
|
|
preq->request.stream_id);
|
|
if (!ep_ring)
|
|
return -EINVAL;
|
|
|
|
ret = cdnsp_prepare_ring(pdev, ep_ring,
|
|
GET_EP_CTX_STATE(preq->pep->out_ctx),
|
|
num_trbs, GFP_ATOMIC);
|
|
if (ret)
|
|
return ret;
|
|
|
|
INIT_LIST_HEAD(&preq->td.td_list);
|
|
preq->td.preq = preq;
|
|
|
|
/* Add this TD to the tail of the endpoint ring's TD list. */
|
|
list_add_tail(&preq->td.td_list, &ep_ring->td_list);
|
|
ep_ring->num_tds++;
|
|
preq->pep->stream_info.td_count++;
|
|
|
|
preq->td.start_seg = ep_ring->enq_seg;
|
|
preq->td.first_trb = ep_ring->enqueue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int cdnsp_count_trbs(u64 addr, u64 len)
|
|
{
|
|
unsigned int num_trbs;
|
|
|
|
num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
|
|
TRB_MAX_BUFF_SIZE);
|
|
if (num_trbs == 0)
|
|
num_trbs++;
|
|
|
|
return num_trbs;
|
|
}
|
|
|
|
static unsigned int count_trbs_needed(struct cdnsp_request *preq)
|
|
{
|
|
return cdnsp_count_trbs(preq->request.dma, preq->request.length);
|
|
}
|
|
|
|
static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq)
|
|
{
|
|
unsigned int i, len, full_len, num_trbs = 0;
|
|
struct scatterlist *sg;
|
|
|
|
full_len = preq->request.length;
|
|
|
|
for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) {
|
|
len = sg_dma_len(sg);
|
|
num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len);
|
|
len = min(len, full_len);
|
|
full_len -= len;
|
|
if (full_len == 0)
|
|
break;
|
|
}
|
|
|
|
return num_trbs;
|
|
}
|
|
|
|
static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total)
|
|
{
|
|
if (running_total != preq->request.length)
|
|
dev_err(preq->pep->pdev->dev,
|
|
"%s - Miscalculated tx length, "
|
|
"queued %#x, asked for %#x (%d)\n",
|
|
preq->pep->name, running_total,
|
|
preq->request.length, preq->request.actual);
|
|
}
|
|
|
|
/*
|
|
* TD size is the number of max packet sized packets remaining in the TD
|
|
* (*not* including this TRB).
|
|
*
|
|
* Total TD packet count = total_packet_count =
|
|
* DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
|
|
*
|
|
* Packets transferred up to and including this TRB = packets_transferred =
|
|
* rounddown(total bytes transferred including this TRB / wMaxPacketSize)
|
|
*
|
|
* TD size = total_packet_count - packets_transferred
|
|
*
|
|
* It must fit in bits 21:17, so it can't be bigger than 31.
|
|
* This is taken care of in the TRB_TD_SIZE() macro
|
|
*
|
|
* The last TRB in a TD must have the TD size set to zero.
|
|
*/
|
|
static u32 cdnsp_td_remainder(struct cdnsp_device *pdev,
|
|
int transferred,
|
|
int trb_buff_len,
|
|
unsigned int td_total_len,
|
|
struct cdnsp_request *preq,
|
|
bool more_trbs_coming,
|
|
bool zlp)
|
|
{
|
|
u32 maxp, total_packet_count;
|
|
|
|
/* Before ZLP driver needs set TD_SIZE = 1. */
|
|
if (zlp)
|
|
return 1;
|
|
|
|
/* One TRB with a zero-length data packet. */
|
|
if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
|
|
trb_buff_len == td_total_len)
|
|
return 0;
|
|
|
|
maxp = usb_endpoint_maxp(preq->pep->endpoint.desc);
|
|
total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
|
|
|
|
/* Queuing functions don't count the current TRB into transferred. */
|
|
return (total_packet_count - ((transferred + trb_buff_len) / maxp));
|
|
}
|
|
|
|
static int cdnsp_align_td(struct cdnsp_device *pdev,
|
|
struct cdnsp_request *preq, u32 enqd_len,
|
|
u32 *trb_buff_len, struct cdnsp_segment *seg)
|
|
{
|
|
struct device *dev = pdev->dev;
|
|
unsigned int unalign;
|
|
unsigned int max_pkt;
|
|
u32 new_buff_len;
|
|
|
|
max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
|
|
unalign = (enqd_len + *trb_buff_len) % max_pkt;
|
|
|
|
/* We got lucky, last normal TRB data on segment is packet aligned. */
|
|
if (unalign == 0)
|
|
return 0;
|
|
|
|
/* Is the last nornal TRB alignable by splitting it. */
|
|
if (*trb_buff_len > unalign) {
|
|
*trb_buff_len -= unalign;
|
|
trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len,
|
|
enqd_len, 0, unalign);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We want enqd_len + trb_buff_len to sum up to a number aligned to
|
|
* number which is divisible by the endpoint's wMaxPacketSize. IOW:
|
|
* (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
|
|
*/
|
|
new_buff_len = max_pkt - (enqd_len % max_pkt);
|
|
|
|
if (new_buff_len > (preq->request.length - enqd_len))
|
|
new_buff_len = (preq->request.length - enqd_len);
|
|
|
|
/* Create a max max_pkt sized bounce buffer pointed to by last trb. */
|
|
if (preq->direction) {
|
|
sg_pcopy_to_buffer(preq->request.sg,
|
|
preq->request.num_mapped_sgs,
|
|
seg->bounce_buf, new_buff_len, enqd_len);
|
|
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
|
|
max_pkt, DMA_TO_DEVICE);
|
|
} else {
|
|
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
|
|
max_pkt, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
if (dma_mapping_error(dev, seg->bounce_dma)) {
|
|
/* Try without aligning.*/
|
|
dev_warn(pdev->dev,
|
|
"Failed mapping bounce buffer, not aligning\n");
|
|
return 0;
|
|
}
|
|
|
|
*trb_buff_len = new_buff_len;
|
|
seg->bounce_len = new_buff_len;
|
|
seg->bounce_offs = enqd_len;
|
|
|
|
trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma,
|
|
unalign);
|
|
|
|
/*
|
|
* Bounce buffer successful aligned and seg->bounce_dma will be used
|
|
* in transfer TRB as new transfer buffer address.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
|
|
{
|
|
unsigned int enqd_len, block_len, trb_buff_len, full_len;
|
|
unsigned int start_cycle, num_sgs = 0;
|
|
struct cdnsp_generic_trb *start_trb;
|
|
u32 field, length_field, remainder;
|
|
struct scatterlist *sg = NULL;
|
|
bool more_trbs_coming = true;
|
|
bool need_zero_pkt = false;
|
|
bool zero_len_trb = false;
|
|
struct cdnsp_ring *ring;
|
|
bool first_trb = true;
|
|
unsigned int num_trbs;
|
|
struct cdnsp_ep *pep;
|
|
u64 addr, send_addr;
|
|
int sent_len, ret;
|
|
|
|
ring = cdnsp_request_to_transfer_ring(pdev, preq);
|
|
if (!ring)
|
|
return -EINVAL;
|
|
|
|
full_len = preq->request.length;
|
|
|
|
if (preq->request.num_sgs) {
|
|
num_sgs = preq->request.num_sgs;
|
|
sg = preq->request.sg;
|
|
addr = (u64)sg_dma_address(sg);
|
|
block_len = sg_dma_len(sg);
|
|
num_trbs = count_sg_trbs_needed(preq);
|
|
} else {
|
|
num_trbs = count_trbs_needed(preq);
|
|
addr = (u64)preq->request.dma;
|
|
block_len = full_len;
|
|
}
|
|
|
|
pep = preq->pep;
|
|
|
|
/* Deal with request.zero - need one more td/trb. */
|
|
if (preq->request.zero && preq->request.length &&
|
|
IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) {
|
|
need_zero_pkt = true;
|
|
num_trbs++;
|
|
}
|
|
|
|
ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Don't give the first TRB to the hardware (by toggling the cycle bit)
|
|
* until we've finished creating all the other TRBs. The ring's cycle
|
|
* state may change as we enqueue the other TRBs, so save it too.
|
|
*/
|
|
start_trb = &ring->enqueue->generic;
|
|
start_cycle = ring->cycle_state;
|
|
send_addr = addr;
|
|
|
|
/* Queue the TRBs, even if they are zero-length */
|
|
for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len;
|
|
enqd_len += trb_buff_len) {
|
|
field = TRB_TYPE(TRB_NORMAL);
|
|
|
|
/* TRB buffer should not cross 64KB boundaries */
|
|
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
|
|
trb_buff_len = min(trb_buff_len, block_len);
|
|
if (enqd_len + trb_buff_len > full_len)
|
|
trb_buff_len = full_len - enqd_len;
|
|
|
|
/* Don't change the cycle bit of the first TRB until later */
|
|
if (first_trb) {
|
|
first_trb = false;
|
|
if (start_cycle == 0)
|
|
field |= TRB_CYCLE;
|
|
} else {
|
|
field |= ring->cycle_state;
|
|
}
|
|
|
|
/*
|
|
* Chain all the TRBs together; clear the chain bit in the last
|
|
* TRB to indicate it's the last TRB in the chain.
|
|
*/
|
|
if (enqd_len + trb_buff_len < full_len || need_zero_pkt) {
|
|
field |= TRB_CHAIN;
|
|
if (cdnsp_trb_is_link(ring->enqueue + 1)) {
|
|
if (cdnsp_align_td(pdev, preq, enqd_len,
|
|
&trb_buff_len,
|
|
ring->enq_seg)) {
|
|
send_addr = ring->enq_seg->bounce_dma;
|
|
/* Assuming TD won't span 2 segs */
|
|
preq->td.bounce_seg = ring->enq_seg;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (enqd_len + trb_buff_len >= full_len) {
|
|
if (need_zero_pkt && !zero_len_trb) {
|
|
zero_len_trb = true;
|
|
} else {
|
|
zero_len_trb = false;
|
|
field &= ~TRB_CHAIN;
|
|
field |= TRB_IOC;
|
|
more_trbs_coming = false;
|
|
need_zero_pkt = false;
|
|
preq->td.last_trb = ring->enqueue;
|
|
}
|
|
}
|
|
|
|
/* Only set interrupt on short packet for OUT endpoints. */
|
|
if (!preq->direction)
|
|
field |= TRB_ISP;
|
|
|
|
/* Set the TRB length, TD size, and interrupter fields. */
|
|
remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len,
|
|
full_len, preq,
|
|
more_trbs_coming,
|
|
zero_len_trb);
|
|
|
|
length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
|
|
TRB_INTR_TARGET(0);
|
|
|
|
cdnsp_queue_trb(pdev, ring, more_trbs_coming,
|
|
lower_32_bits(send_addr),
|
|
upper_32_bits(send_addr),
|
|
length_field,
|
|
field);
|
|
|
|
addr += trb_buff_len;
|
|
sent_len = trb_buff_len;
|
|
while (sg && sent_len >= block_len) {
|
|
/* New sg entry */
|
|
--num_sgs;
|
|
sent_len -= block_len;
|
|
if (num_sgs != 0) {
|
|
sg = sg_next(sg);
|
|
block_len = sg_dma_len(sg);
|
|
addr = (u64)sg_dma_address(sg);
|
|
addr += sent_len;
|
|
}
|
|
}
|
|
block_len -= sent_len;
|
|
send_addr = addr;
|
|
}
|
|
|
|
cdnsp_check_trb_math(preq, enqd_len);
|
|
ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id,
|
|
start_cycle, start_trb);
|
|
|
|
if (ret)
|
|
preq->td.drbl = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
|
|
{
|
|
u32 field, length_field, zlp = 0;
|
|
struct cdnsp_ep *pep = preq->pep;
|
|
struct cdnsp_ring *ep_ring;
|
|
int num_trbs;
|
|
u32 maxp;
|
|
int ret;
|
|
|
|
ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
|
|
if (!ep_ring)
|
|
return -EINVAL;
|
|
|
|
/* 1 TRB for data, 1 for status */
|
|
num_trbs = (pdev->three_stage_setup) ? 2 : 1;
|
|
|
|
maxp = usb_endpoint_maxp(pep->endpoint.desc);
|
|
|
|
if (preq->request.zero && preq->request.length &&
|
|
(preq->request.length % maxp == 0)) {
|
|
num_trbs++;
|
|
zlp = 1;
|
|
}
|
|
|
|
ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* If there's data, queue data TRBs */
|
|
if (preq->request.length > 0) {
|
|
field = TRB_TYPE(TRB_DATA);
|
|
|
|
if (zlp)
|
|
field |= TRB_CHAIN;
|
|
else
|
|
field |= TRB_IOC | (pdev->ep0_expect_in ? 0 : TRB_ISP);
|
|
|
|
if (pdev->ep0_expect_in)
|
|
field |= TRB_DIR_IN;
|
|
|
|
length_field = TRB_LEN(preq->request.length) |
|
|
TRB_TD_SIZE(zlp) | TRB_INTR_TARGET(0);
|
|
|
|
cdnsp_queue_trb(pdev, ep_ring, true,
|
|
lower_32_bits(preq->request.dma),
|
|
upper_32_bits(preq->request.dma), length_field,
|
|
field | ep_ring->cycle_state |
|
|
TRB_SETUPID(pdev->setup_id) |
|
|
pdev->setup_speed);
|
|
|
|
if (zlp) {
|
|
field = TRB_TYPE(TRB_NORMAL) | TRB_IOC;
|
|
|
|
if (!pdev->ep0_expect_in)
|
|
field = TRB_ISP;
|
|
|
|
cdnsp_queue_trb(pdev, ep_ring, true,
|
|
lower_32_bits(preq->request.dma),
|
|
upper_32_bits(preq->request.dma), 0,
|
|
field | ep_ring->cycle_state |
|
|
TRB_SETUPID(pdev->setup_id) |
|
|
pdev->setup_speed);
|
|
}
|
|
|
|
pdev->ep0_stage = CDNSP_DATA_STAGE;
|
|
}
|
|
|
|
/* Save the DMA address of the last TRB in the TD. */
|
|
preq->td.last_trb = ep_ring->enqueue;
|
|
|
|
/* Queue status TRB. */
|
|
if (preq->request.length == 0)
|
|
field = ep_ring->cycle_state;
|
|
else
|
|
field = (ep_ring->cycle_state ^ 1);
|
|
|
|
if (preq->request.length > 0 && pdev->ep0_expect_in)
|
|
field |= TRB_DIR_IN;
|
|
|
|
if (pep->ep_state & EP0_HALTED_STATUS) {
|
|
pep->ep_state &= ~EP0_HALTED_STATUS;
|
|
field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL);
|
|
} else {
|
|
field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK);
|
|
}
|
|
|
|
cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0),
|
|
field | TRB_IOC | TRB_SETUPID(pdev->setup_id) |
|
|
TRB_TYPE(TRB_STATUS) | pdev->setup_speed);
|
|
|
|
cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
|
|
{
|
|
u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx);
|
|
int ret = 0;
|
|
|
|
if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED ||
|
|
ep_state == EP_STATE_HALTED) {
|
|
trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx);
|
|
goto ep_stopped;
|
|
}
|
|
|
|
cdnsp_queue_stop_endpoint(pdev, pep->idx);
|
|
cdnsp_ring_cmd_db(pdev);
|
|
ret = cdnsp_wait_for_cmd_compl(pdev);
|
|
|
|
trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx);
|
|
|
|
ep_stopped:
|
|
pep->ep_state |= EP_STOPPED;
|
|
return ret;
|
|
}
|
|
|
|
int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
|
|
{
|
|
int ret;
|
|
|
|
cdnsp_queue_flush_endpoint(pdev, pep->idx);
|
|
cdnsp_ring_cmd_db(pdev);
|
|
ret = cdnsp_wait_for_cmd_compl(pdev);
|
|
|
|
trace_cdnsp_handle_cmd_flush_ep(pep->out_ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The transfer burst count field of the isochronous TRB defines the number of
|
|
* bursts that are required to move all packets in this TD. Only SuperSpeed
|
|
* devices can burst up to bMaxBurst number of packets per service interval.
|
|
* This field is zero based, meaning a value of zero in the field means one
|
|
* burst. Basically, for everything but SuperSpeed devices, this field will be
|
|
* zero.
|
|
*/
|
|
static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev,
|
|
struct cdnsp_request *preq,
|
|
unsigned int total_packet_count)
|
|
{
|
|
unsigned int max_burst;
|
|
|
|
if (pdev->gadget.speed < USB_SPEED_SUPER)
|
|
return 0;
|
|
|
|
max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
|
|
return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of packets in the last "burst" of packets. This field is
|
|
* valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
|
|
* the last burst packet count is equal to the total number of packets in the
|
|
* TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
|
|
* must contain (bMaxBurst + 1) number of packets, but the last burst can
|
|
* contain 1 to (bMaxBurst + 1) packets.
|
|
*/
|
|
static unsigned int
|
|
cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev,
|
|
struct cdnsp_request *preq,
|
|
unsigned int total_packet_count)
|
|
{
|
|
unsigned int max_burst;
|
|
unsigned int residue;
|
|
|
|
if (pdev->gadget.speed >= USB_SPEED_SUPER) {
|
|
/* bMaxBurst is zero based: 0 means 1 packet per burst. */
|
|
max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
|
|
residue = total_packet_count % (max_burst + 1);
|
|
|
|
/*
|
|
* If residue is zero, the last burst contains (max_burst + 1)
|
|
* number of packets, but the TLBPC field is zero-based.
|
|
*/
|
|
if (residue == 0)
|
|
return max_burst;
|
|
|
|
return residue - 1;
|
|
}
|
|
if (total_packet_count == 0)
|
|
return 0;
|
|
|
|
return total_packet_count - 1;
|
|
}
|
|
|
|
/* Queue function isoc transfer */
|
|
int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev,
|
|
struct cdnsp_request *preq)
|
|
{
|
|
unsigned int trb_buff_len, td_len, td_remain_len, block_len;
|
|
unsigned int burst_count, last_burst_pkt;
|
|
unsigned int total_pkt_count, max_pkt;
|
|
struct cdnsp_generic_trb *start_trb;
|
|
struct scatterlist *sg = NULL;
|
|
bool more_trbs_coming = true;
|
|
struct cdnsp_ring *ep_ring;
|
|
unsigned int num_sgs = 0;
|
|
int running_total = 0;
|
|
u32 field, length_field;
|
|
u64 addr, send_addr;
|
|
int start_cycle;
|
|
int trbs_per_td;
|
|
int i, sent_len, ret;
|
|
|
|
ep_ring = preq->pep->ring;
|
|
|
|
td_len = preq->request.length;
|
|
|
|
if (preq->request.num_sgs) {
|
|
num_sgs = preq->request.num_sgs;
|
|
sg = preq->request.sg;
|
|
addr = (u64)sg_dma_address(sg);
|
|
block_len = sg_dma_len(sg);
|
|
trbs_per_td = count_sg_trbs_needed(preq);
|
|
} else {
|
|
addr = (u64)preq->request.dma;
|
|
block_len = td_len;
|
|
trbs_per_td = count_trbs_needed(preq);
|
|
}
|
|
|
|
ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td);
|
|
if (ret)
|
|
return ret;
|
|
|
|
start_trb = &ep_ring->enqueue->generic;
|
|
start_cycle = ep_ring->cycle_state;
|
|
td_remain_len = td_len;
|
|
send_addr = addr;
|
|
|
|
max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
|
|
total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
|
|
|
|
/* A zero-length transfer still involves at least one packet. */
|
|
if (total_pkt_count == 0)
|
|
total_pkt_count++;
|
|
|
|
burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count);
|
|
last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq,
|
|
total_pkt_count);
|
|
|
|
/*
|
|
* Set isoc specific data for the first TRB in a TD.
|
|
* Prevent HW from getting the TRBs by keeping the cycle state
|
|
* inverted in the first TDs isoc TRB.
|
|
*/
|
|
field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) |
|
|
TRB_SIA | TRB_TBC(burst_count);
|
|
|
|
if (!start_cycle)
|
|
field |= TRB_CYCLE;
|
|
|
|
/* Fill the rest of the TRB fields, and remaining normal TRBs. */
|
|
for (i = 0; i < trbs_per_td; i++) {
|
|
u32 remainder;
|
|
|
|
/* Calculate TRB length. */
|
|
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
|
|
trb_buff_len = min(trb_buff_len, block_len);
|
|
if (trb_buff_len > td_remain_len)
|
|
trb_buff_len = td_remain_len;
|
|
|
|
/* Set the TRB length, TD size, & interrupter fields. */
|
|
remainder = cdnsp_td_remainder(pdev, running_total,
|
|
trb_buff_len, td_len, preq,
|
|
more_trbs_coming, 0);
|
|
|
|
length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
|
|
TRB_INTR_TARGET(0);
|
|
|
|
/* Only first TRB is isoc, overwrite otherwise. */
|
|
if (i) {
|
|
field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state;
|
|
length_field |= TRB_TD_SIZE(remainder);
|
|
} else {
|
|
length_field |= TRB_TD_SIZE_TBC(burst_count);
|
|
}
|
|
|
|
/* Only set interrupt on short packet for OUT EPs. */
|
|
if (usb_endpoint_dir_out(preq->pep->endpoint.desc))
|
|
field |= TRB_ISP;
|
|
|
|
/* Set the chain bit for all except the last TRB. */
|
|
if (i < trbs_per_td - 1) {
|
|
more_trbs_coming = true;
|
|
field |= TRB_CHAIN;
|
|
} else {
|
|
more_trbs_coming = false;
|
|
preq->td.last_trb = ep_ring->enqueue;
|
|
field |= TRB_IOC;
|
|
}
|
|
|
|
cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming,
|
|
lower_32_bits(send_addr), upper_32_bits(send_addr),
|
|
length_field, field);
|
|
|
|
running_total += trb_buff_len;
|
|
addr += trb_buff_len;
|
|
td_remain_len -= trb_buff_len;
|
|
|
|
sent_len = trb_buff_len;
|
|
while (sg && sent_len >= block_len) {
|
|
/* New sg entry */
|
|
--num_sgs;
|
|
sent_len -= block_len;
|
|
if (num_sgs != 0) {
|
|
sg = sg_next(sg);
|
|
block_len = sg_dma_len(sg);
|
|
addr = (u64)sg_dma_address(sg);
|
|
addr += sent_len;
|
|
}
|
|
}
|
|
block_len -= sent_len;
|
|
send_addr = addr;
|
|
}
|
|
|
|
/* Check TD length */
|
|
if (running_total != td_len) {
|
|
dev_err(pdev->dev, "ISOC TD length unmatch\n");
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
|
|
cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id,
|
|
start_cycle, start_trb);
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
/* Clean up a partially enqueued isoc transfer. */
|
|
list_del_init(&preq->td.td_list);
|
|
ep_ring->num_tds--;
|
|
|
|
/*
|
|
* Use the first TD as a temporary variable to turn the TDs we've
|
|
* queued into No-ops with a software-owned cycle bit.
|
|
* That way the hardware won't accidentally start executing bogus TDs
|
|
* when we partially overwrite them.
|
|
* td->first_trb and td->start_seg are already set.
|
|
*/
|
|
preq->td.last_trb = ep_ring->enqueue;
|
|
/* Every TRB except the first & last will have its cycle bit flipped. */
|
|
cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true);
|
|
|
|
/* Reset the ring enqueue back to the first TRB and its cycle bit. */
|
|
ep_ring->enqueue = preq->td.first_trb;
|
|
ep_ring->enq_seg = preq->td.start_seg;
|
|
ep_ring->cycle_state = start_cycle;
|
|
return ret;
|
|
}
|
|
|
|
/**** Command Ring Operations ****/
|
|
/*
|
|
* Generic function for queuing a command TRB on the command ring.
|
|
* Driver queue only one command to ring in the moment.
|
|
*/
|
|
static void cdnsp_queue_command(struct cdnsp_device *pdev,
|
|
u32 field1,
|
|
u32 field2,
|
|
u32 field3,
|
|
u32 field4)
|
|
{
|
|
cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1,
|
|
GFP_ATOMIC);
|
|
|
|
pdev->cmd.command_trb = pdev->cmd_ring->enqueue;
|
|
|
|
cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2,
|
|
field3, field4 | pdev->cmd_ring->cycle_state);
|
|
}
|
|
|
|
/* Queue a slot enable or disable request on the command ring */
|
|
void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type)
|
|
{
|
|
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) |
|
|
SLOT_ID_FOR_TRB(pdev->slot_id));
|
|
}
|
|
|
|
/* Queue an address device command TRB */
|
|
void cdnsp_queue_address_device(struct cdnsp_device *pdev,
|
|
dma_addr_t in_ctx_ptr,
|
|
enum cdnsp_setup_dev setup)
|
|
{
|
|
cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_ADDR_DEV) |
|
|
SLOT_ID_FOR_TRB(pdev->slot_id) |
|
|
(setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0));
|
|
}
|
|
|
|
/* Queue a reset device command TRB */
|
|
void cdnsp_queue_reset_device(struct cdnsp_device *pdev)
|
|
{
|
|
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) |
|
|
SLOT_ID_FOR_TRB(pdev->slot_id));
|
|
}
|
|
|
|
/* Queue a configure endpoint command TRB */
|
|
void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev,
|
|
dma_addr_t in_ctx_ptr)
|
|
{
|
|
cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_CONFIG_EP) |
|
|
SLOT_ID_FOR_TRB(pdev->slot_id));
|
|
}
|
|
|
|
/*
|
|
* Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
|
|
* activity on an endpoint that is about to be suspended.
|
|
*/
|
|
void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
|
|
{
|
|
cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) |
|
|
EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING));
|
|
}
|
|
|
|
/* Set Transfer Ring Dequeue Pointer command. */
|
|
void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
struct cdnsp_dequeue_state *deq_state)
|
|
{
|
|
u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
|
|
u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id);
|
|
u32 type = TRB_TYPE(TRB_SET_DEQ);
|
|
u32 trb_sct = 0;
|
|
dma_addr_t addr;
|
|
|
|
addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg,
|
|
deq_state->new_deq_ptr);
|
|
|
|
if (deq_state->stream_id)
|
|
trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
|
|
|
|
cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct |
|
|
deq_state->new_cycle_state, upper_32_bits(addr),
|
|
trb_stream_id, trb_slot_id |
|
|
EP_ID_FOR_TRB(pep->idx) | type);
|
|
}
|
|
|
|
void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index)
|
|
{
|
|
return cdnsp_queue_command(pdev, 0, 0, 0,
|
|
SLOT_ID_FOR_TRB(pdev->slot_id) |
|
|
EP_ID_FOR_TRB(ep_index) |
|
|
TRB_TYPE(TRB_RESET_EP));
|
|
}
|
|
|
|
/*
|
|
* Queue a halt endpoint request on the command ring.
|
|
*/
|
|
void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
|
|
{
|
|
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) |
|
|
SLOT_ID_FOR_TRB(pdev->slot_id) |
|
|
EP_ID_FOR_TRB(ep_index));
|
|
}
|
|
|
|
/*
|
|
* Queue a flush endpoint request on the command ring.
|
|
*/
|
|
void cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev,
|
|
unsigned int ep_index)
|
|
{
|
|
cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) |
|
|
SLOT_ID_FOR_TRB(pdev->slot_id) |
|
|
EP_ID_FOR_TRB(ep_index));
|
|
}
|
|
|
|
void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num)
|
|
{
|
|
u32 lo, mid;
|
|
|
|
lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) |
|
|
TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address);
|
|
mid = TRB_FH_TR_PACKET_DEV_NOT |
|
|
TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) |
|
|
TRB_FH_TO_INTERFACE(intf_num);
|
|
|
|
cdnsp_queue_command(pdev, lo, mid, 0,
|
|
TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2));
|
|
}
|