linux/drivers/net/phy/mxl-gpy.c
Michael Walle 97a89ed101 net: phy: mxl-gpy: disable interrupts on GPY215 by default
The interrupts on the GPY215B and GPY215C are broken and the only viable
fix is to disable them altogether. There is still the possibilty to
opt-in via the device tree.

Signed-off-by: Michael Walle <michael@walle.cc>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-10 13:38:37 +01:00

1031 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2021 Maxlinear Corporation
* Copyright (C) 2020 Intel Corporation
*
* Drivers for Maxlinear Ethernet GPY
*
*/
#include <linux/module.h>
#include <linux/bitfield.h>
#include <linux/hwmon.h>
#include <linux/mutex.h>
#include <linux/phy.h>
#include <linux/polynomial.h>
#include <linux/property.h>
#include <linux/netdevice.h>
/* PHY ID */
#define PHY_ID_GPYx15B_MASK 0xFFFFFFFC
#define PHY_ID_GPY21xB_MASK 0xFFFFFFF9
#define PHY_ID_GPY2xx 0x67C9DC00
#define PHY_ID_GPY115B 0x67C9DF00
#define PHY_ID_GPY115C 0x67C9DF10
#define PHY_ID_GPY211B 0x67C9DE08
#define PHY_ID_GPY211C 0x67C9DE10
#define PHY_ID_GPY212B 0x67C9DE09
#define PHY_ID_GPY212C 0x67C9DE20
#define PHY_ID_GPY215B 0x67C9DF04
#define PHY_ID_GPY215C 0x67C9DF20
#define PHY_ID_GPY241B 0x67C9DE40
#define PHY_ID_GPY241BM 0x67C9DE80
#define PHY_ID_GPY245B 0x67C9DEC0
#define PHY_CTL1 0x13
#define PHY_CTL1_MDICD BIT(3)
#define PHY_CTL1_MDIAB BIT(2)
#define PHY_CTL1_AMDIX BIT(0)
#define PHY_MIISTAT 0x18 /* MII state */
#define PHY_IMASK 0x19 /* interrupt mask */
#define PHY_ISTAT 0x1A /* interrupt status */
#define PHY_FWV 0x1E /* firmware version */
#define PHY_MIISTAT_SPD_MASK GENMASK(2, 0)
#define PHY_MIISTAT_DPX BIT(3)
#define PHY_MIISTAT_LS BIT(10)
#define PHY_MIISTAT_SPD_10 0
#define PHY_MIISTAT_SPD_100 1
#define PHY_MIISTAT_SPD_1000 2
#define PHY_MIISTAT_SPD_2500 4
#define PHY_IMASK_WOL BIT(15) /* Wake-on-LAN */
#define PHY_IMASK_ANC BIT(10) /* Auto-Neg complete */
#define PHY_IMASK_ADSC BIT(5) /* Link auto-downspeed detect */
#define PHY_IMASK_DXMC BIT(2) /* Duplex mode change */
#define PHY_IMASK_LSPC BIT(1) /* Link speed change */
#define PHY_IMASK_LSTC BIT(0) /* Link state change */
#define PHY_IMASK_MASK (PHY_IMASK_LSTC | \
PHY_IMASK_LSPC | \
PHY_IMASK_DXMC | \
PHY_IMASK_ADSC | \
PHY_IMASK_ANC)
#define PHY_FWV_REL_MASK BIT(15)
#define PHY_FWV_MAJOR_MASK GENMASK(11, 8)
#define PHY_FWV_MINOR_MASK GENMASK(7, 0)
#define PHY_PMA_MGBT_POLARITY 0x82
#define PHY_MDI_MDI_X_MASK GENMASK(1, 0)
#define PHY_MDI_MDI_X_NORMAL 0x3
#define PHY_MDI_MDI_X_AB 0x2
#define PHY_MDI_MDI_X_CD 0x1
#define PHY_MDI_MDI_X_CROSS 0x0
/* SGMII */
#define VSPEC1_SGMII_CTRL 0x08
#define VSPEC1_SGMII_CTRL_ANEN BIT(12) /* Aneg enable */
#define VSPEC1_SGMII_CTRL_ANRS BIT(9) /* Restart Aneg */
#define VSPEC1_SGMII_ANEN_ANRS (VSPEC1_SGMII_CTRL_ANEN | \
VSPEC1_SGMII_CTRL_ANRS)
/* Temperature sensor */
#define VSPEC1_TEMP_STA 0x0E
#define VSPEC1_TEMP_STA_DATA GENMASK(9, 0)
/* Mailbox */
#define VSPEC1_MBOX_DATA 0x5
#define VSPEC1_MBOX_ADDRLO 0x6
#define VSPEC1_MBOX_CMD 0x7
#define VSPEC1_MBOX_CMD_ADDRHI GENMASK(7, 0)
#define VSPEC1_MBOX_CMD_RD (0 << 8)
#define VSPEC1_MBOX_CMD_READY BIT(15)
/* WoL */
#define VPSPEC2_WOL_CTL 0x0E06
#define VPSPEC2_WOL_AD01 0x0E08
#define VPSPEC2_WOL_AD23 0x0E09
#define VPSPEC2_WOL_AD45 0x0E0A
#define WOL_EN BIT(0)
/* Internal registers, access via mbox */
#define REG_GPIO0_OUT 0xd3ce00
struct gpy_priv {
/* serialize mailbox acesses */
struct mutex mbox_lock;
u8 fw_major;
u8 fw_minor;
};
static const struct {
int major;
int minor;
} ver_need_sgmii_reaneg[] = {
{7, 0x6D},
{8, 0x6D},
{9, 0x73},
};
#if IS_ENABLED(CONFIG_HWMON)
/* The original translation formulae of the temperature (in degrees of Celsius)
* are as follows:
*
* T = -2.5761e-11*(N^4) + 9.7332e-8*(N^3) + -1.9165e-4*(N^2) +
* 3.0762e-1*(N^1) + -5.2156e1
*
* where [-52.156, 137.961]C and N = [0, 1023].
*
* They must be accordingly altered to be suitable for the integer arithmetics.
* The technique is called 'factor redistribution', which just makes sure the
* multiplications and divisions are made so to have a result of the operations
* within the integer numbers limit. In addition we need to translate the
* formulae to accept millidegrees of Celsius. Here what it looks like after
* the alterations:
*
* T = -25761e-12*(N^4) + 97332e-9*(N^3) + -191650e-6*(N^2) +
* 307620e-3*(N^1) + -52156
*
* where T = [-52156, 137961]mC and N = [0, 1023].
*/
static const struct polynomial poly_N_to_temp = {
.terms = {
{4, -25761, 1000, 1},
{3, 97332, 1000, 1},
{2, -191650, 1000, 1},
{1, 307620, 1000, 1},
{0, -52156, 1, 1}
}
};
static int gpy_hwmon_read(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long *value)
{
struct phy_device *phydev = dev_get_drvdata(dev);
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_TEMP_STA);
if (ret < 0)
return ret;
if (!ret)
return -ENODATA;
*value = polynomial_calc(&poly_N_to_temp,
FIELD_GET(VSPEC1_TEMP_STA_DATA, ret));
return 0;
}
static umode_t gpy_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
return 0444;
}
static const struct hwmon_channel_info *gpy_hwmon_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
NULL
};
static const struct hwmon_ops gpy_hwmon_hwmon_ops = {
.is_visible = gpy_hwmon_is_visible,
.read = gpy_hwmon_read,
};
static const struct hwmon_chip_info gpy_hwmon_chip_info = {
.ops = &gpy_hwmon_hwmon_ops,
.info = gpy_hwmon_info,
};
static int gpy_hwmon_register(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct device *hwmon_dev;
char *hwmon_name;
hwmon_name = devm_hwmon_sanitize_name(dev, dev_name(dev));
if (IS_ERR(hwmon_name))
return PTR_ERR(hwmon_name);
hwmon_dev = devm_hwmon_device_register_with_info(dev, hwmon_name,
phydev,
&gpy_hwmon_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
#else
static int gpy_hwmon_register(struct phy_device *phydev)
{
return 0;
}
#endif
static int gpy_mbox_read(struct phy_device *phydev, u32 addr)
{
struct gpy_priv *priv = phydev->priv;
int val, ret;
u16 cmd;
mutex_lock(&priv->mbox_lock);
ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_ADDRLO,
addr);
if (ret)
goto out;
cmd = VSPEC1_MBOX_CMD_RD;
cmd |= FIELD_PREP(VSPEC1_MBOX_CMD_ADDRHI, addr >> 16);
ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_CMD, cmd);
if (ret)
goto out;
/* The mbox read is used in the interrupt workaround. It was observed
* that a read might take up to 2.5ms. This is also the time for which
* the interrupt line is stuck low. To be on the safe side, poll the
* ready bit for 10ms.
*/
ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
VSPEC1_MBOX_CMD, val,
(val & VSPEC1_MBOX_CMD_READY),
500, 10000, false);
if (ret)
goto out;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_MBOX_DATA);
out:
mutex_unlock(&priv->mbox_lock);
return ret;
}
static int gpy_config_init(struct phy_device *phydev)
{
int ret;
/* Mask all interrupts */
ret = phy_write(phydev, PHY_IMASK, 0);
if (ret)
return ret;
/* Clear all pending interrupts */
ret = phy_read(phydev, PHY_ISTAT);
return ret < 0 ? ret : 0;
}
static bool gpy_has_broken_mdint(struct phy_device *phydev)
{
/* At least these PHYs are known to have broken interrupt handling */
return phydev->drv->phy_id == PHY_ID_GPY215B ||
phydev->drv->phy_id == PHY_ID_GPY215C;
}
static int gpy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct gpy_priv *priv;
int fw_version;
int ret;
if (!phydev->is_c45) {
ret = phy_get_c45_ids(phydev);
if (ret < 0)
return ret;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
mutex_init(&priv->mbox_lock);
if (gpy_has_broken_mdint(phydev) &&
!device_property_present(dev, "maxlinear,use-broken-interrupts"))
phydev->dev_flags |= PHY_F_NO_IRQ;
fw_version = phy_read(phydev, PHY_FWV);
if (fw_version < 0)
return fw_version;
priv->fw_major = FIELD_GET(PHY_FWV_MAJOR_MASK, fw_version);
priv->fw_minor = FIELD_GET(PHY_FWV_MINOR_MASK, fw_version);
ret = gpy_hwmon_register(phydev);
if (ret)
return ret;
/* Show GPY PHY FW version in dmesg */
phydev_info(phydev, "Firmware Version: %d.%d (0x%04X%s)\n",
priv->fw_major, priv->fw_minor, fw_version,
fw_version & PHY_FWV_REL_MASK ? "" : " test version");
return 0;
}
static bool gpy_sgmii_need_reaneg(struct phy_device *phydev)
{
struct gpy_priv *priv = phydev->priv;
size_t i;
for (i = 0; i < ARRAY_SIZE(ver_need_sgmii_reaneg); i++) {
if (priv->fw_major != ver_need_sgmii_reaneg[i].major)
continue;
if (priv->fw_minor < ver_need_sgmii_reaneg[i].minor)
return true;
break;
}
return false;
}
static bool gpy_2500basex_chk(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, PHY_MIISTAT);
if (ret < 0) {
phydev_err(phydev, "Error: MDIO register access failed: %d\n",
ret);
return false;
}
if (!(ret & PHY_MIISTAT_LS) ||
FIELD_GET(PHY_MIISTAT_SPD_MASK, ret) != PHY_MIISTAT_SPD_2500)
return false;
phydev->speed = SPEED_2500;
phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_CTRL_ANEN, 0);
return true;
}
static bool gpy_sgmii_aneg_en(struct phy_device *phydev)
{
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL);
if (ret < 0) {
phydev_err(phydev, "Error: MMD register access failed: %d\n",
ret);
return true;
}
return (ret & VSPEC1_SGMII_CTRL_ANEN) ? true : false;
}
static int gpy_config_mdix(struct phy_device *phydev, u8 ctrl)
{
int ret;
u16 val;
switch (ctrl) {
case ETH_TP_MDI_AUTO:
val = PHY_CTL1_AMDIX;
break;
case ETH_TP_MDI_X:
val = (PHY_CTL1_MDIAB | PHY_CTL1_MDICD);
break;
case ETH_TP_MDI:
val = 0;
break;
default:
return 0;
}
ret = phy_modify(phydev, PHY_CTL1, PHY_CTL1_AMDIX | PHY_CTL1_MDIAB |
PHY_CTL1_MDICD, val);
if (ret < 0)
return ret;
return genphy_c45_restart_aneg(phydev);
}
static int gpy_config_aneg(struct phy_device *phydev)
{
bool changed = false;
u32 adv;
int ret;
if (phydev->autoneg == AUTONEG_DISABLE) {
/* Configure half duplex with genphy_setup_forced,
* because genphy_c45_pma_setup_forced does not support.
*/
return phydev->duplex != DUPLEX_FULL
? genphy_setup_forced(phydev)
: genphy_c45_pma_setup_forced(phydev);
}
ret = gpy_config_mdix(phydev, phydev->mdix_ctrl);
if (ret < 0)
return ret;
ret = genphy_c45_an_config_aneg(phydev);
if (ret < 0)
return ret;
if (ret > 0)
changed = true;
adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
ret = phy_modify_changed(phydev, MII_CTRL1000,
ADVERTISE_1000FULL | ADVERTISE_1000HALF,
adv);
if (ret < 0)
return ret;
if (ret > 0)
changed = true;
ret = genphy_c45_check_and_restart_aneg(phydev, changed);
if (ret < 0)
return ret;
if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
return 0;
/* No need to trigger re-ANEG if link speed is 2.5G or SGMII ANEG is
* disabled.
*/
if (!gpy_sgmii_need_reaneg(phydev) || gpy_2500basex_chk(phydev) ||
!gpy_sgmii_aneg_en(phydev))
return 0;
/* There is a design constraint in GPY2xx device where SGMII AN is
* only triggered when there is change of speed. If, PHY link
* partner`s speed is still same even after PHY TPI is down and up
* again, SGMII AN is not triggered and hence no new in-band message
* from GPY to MAC side SGMII.
* This could cause an issue during power up, when PHY is up prior to
* MAC. At this condition, once MAC side SGMII is up, MAC side SGMII
* wouldn`t receive new in-band message from GPY with correct link
* status, speed and duplex info.
*
* 1) If PHY is already up and TPI link status is still down (such as
* hard reboot), TPI link status is polled for 4 seconds before
* retriggerring SGMII AN.
* 2) If PHY is already up and TPI link status is also up (such as soft
* reboot), polling of TPI link status is not needed and SGMII AN is
* immediately retriggered.
* 3) Other conditions such as PHY is down, speed change etc, skip
* retriggering SGMII AN. Note: in case of speed change, GPY FW will
* initiate SGMII AN.
*/
if (phydev->state != PHY_UP)
return 0;
ret = phy_read_poll_timeout(phydev, MII_BMSR, ret, ret & BMSR_LSTATUS,
20000, 4000000, false);
if (ret == -ETIMEDOUT)
return 0;
else if (ret < 0)
return ret;
/* Trigger SGMII AN. */
return phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_CTRL_ANRS, VSPEC1_SGMII_CTRL_ANRS);
}
static int gpy_update_mdix(struct phy_device *phydev)
{
int ret;
ret = phy_read(phydev, PHY_CTL1);
if (ret < 0)
return ret;
if (ret & PHY_CTL1_AMDIX)
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
else
if (ret & PHY_CTL1_MDICD || ret & PHY_CTL1_MDIAB)
phydev->mdix_ctrl = ETH_TP_MDI_X;
else
phydev->mdix_ctrl = ETH_TP_MDI;
ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, PHY_PMA_MGBT_POLARITY);
if (ret < 0)
return ret;
if ((ret & PHY_MDI_MDI_X_MASK) < PHY_MDI_MDI_X_NORMAL)
phydev->mdix = ETH_TP_MDI_X;
else
phydev->mdix = ETH_TP_MDI;
return 0;
}
static int gpy_update_interface(struct phy_device *phydev)
{
int ret;
/* Interface mode is fixed for USXGMII and integrated PHY */
if (phydev->interface == PHY_INTERFACE_MODE_USXGMII ||
phydev->interface == PHY_INTERFACE_MODE_INTERNAL)
return -EINVAL;
/* Automatically switch SERDES interface between SGMII and 2500-BaseX
* according to speed. Disable ANEG in 2500-BaseX mode.
*/
switch (phydev->speed) {
case SPEED_2500:
phydev->interface = PHY_INTERFACE_MODE_2500BASEX;
ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_CTRL_ANEN, 0);
if (ret < 0) {
phydev_err(phydev,
"Error: Disable of SGMII ANEG failed: %d\n",
ret);
return ret;
}
break;
case SPEED_1000:
case SPEED_100:
case SPEED_10:
phydev->interface = PHY_INTERFACE_MODE_SGMII;
if (gpy_sgmii_aneg_en(phydev))
break;
/* Enable and restart SGMII ANEG for 10/100/1000Mbps link speed
* if ANEG is disabled (in 2500-BaseX mode).
*/
ret = phy_modify_mmd(phydev, MDIO_MMD_VEND1, VSPEC1_SGMII_CTRL,
VSPEC1_SGMII_ANEN_ANRS,
VSPEC1_SGMII_ANEN_ANRS);
if (ret < 0) {
phydev_err(phydev,
"Error: Enable of SGMII ANEG failed: %d\n",
ret);
return ret;
}
break;
}
if (phydev->speed == SPEED_2500 || phydev->speed == SPEED_1000) {
ret = genphy_read_master_slave(phydev);
if (ret < 0)
return ret;
}
return gpy_update_mdix(phydev);
}
static int gpy_read_status(struct phy_device *phydev)
{
int ret;
ret = genphy_update_link(phydev);
if (ret)
return ret;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
ret = genphy_c45_read_lpa(phydev);
if (ret < 0)
return ret;
/* Read the link partner's 1G advertisement */
ret = phy_read(phydev, MII_STAT1000);
if (ret < 0)
return ret;
mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, ret);
} else if (phydev->autoneg == AUTONEG_DISABLE) {
linkmode_zero(phydev->lp_advertising);
}
ret = phy_read(phydev, PHY_MIISTAT);
if (ret < 0)
return ret;
phydev->link = (ret & PHY_MIISTAT_LS) ? 1 : 0;
phydev->duplex = (ret & PHY_MIISTAT_DPX) ? DUPLEX_FULL : DUPLEX_HALF;
switch (FIELD_GET(PHY_MIISTAT_SPD_MASK, ret)) {
case PHY_MIISTAT_SPD_10:
phydev->speed = SPEED_10;
break;
case PHY_MIISTAT_SPD_100:
phydev->speed = SPEED_100;
break;
case PHY_MIISTAT_SPD_1000:
phydev->speed = SPEED_1000;
break;
case PHY_MIISTAT_SPD_2500:
phydev->speed = SPEED_2500;
break;
}
if (phydev->link) {
ret = gpy_update_interface(phydev);
if (ret < 0)
return ret;
}
return 0;
}
static int gpy_config_intr(struct phy_device *phydev)
{
u16 mask = 0;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
mask = PHY_IMASK_MASK;
return phy_write(phydev, PHY_IMASK, mask);
}
static irqreturn_t gpy_handle_interrupt(struct phy_device *phydev)
{
int reg;
reg = phy_read(phydev, PHY_ISTAT);
if (reg < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (!(reg & PHY_IMASK_MASK))
return IRQ_NONE;
/* The PHY might leave the interrupt line asserted even after PHY_ISTAT
* is read. To avoid interrupt storms, delay the interrupt handling as
* long as the PHY drives the interrupt line. An internal bus read will
* stall as long as the interrupt line is asserted, thus just read a
* random register here.
* Because we cannot access the internal bus at all while the interrupt
* is driven by the PHY, there is no way to make the interrupt line
* unstuck (e.g. by changing the pinmux to GPIO input) during that time
* frame. Therefore, polling is the best we can do and won't do any more
* harm.
* It was observed that this bug happens on link state and link speed
* changes on a GPY215B and GYP215C independent of the firmware version
* (which doesn't mean that this list is exhaustive).
*/
if (gpy_has_broken_mdint(phydev) &&
(reg & (PHY_IMASK_LSTC | PHY_IMASK_LSPC))) {
reg = gpy_mbox_read(phydev, REG_GPIO0_OUT);
if (reg < 0) {
phy_error(phydev);
return IRQ_NONE;
}
}
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int gpy_set_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
struct net_device *attach_dev = phydev->attached_dev;
int ret;
if (wol->wolopts & WAKE_MAGIC) {
/* MAC address - Byte0:Byte1:Byte2:Byte3:Byte4:Byte5
* VPSPEC2_WOL_AD45 = Byte0:Byte1
* VPSPEC2_WOL_AD23 = Byte2:Byte3
* VPSPEC2_WOL_AD01 = Byte4:Byte5
*/
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_AD45,
((attach_dev->dev_addr[0] << 8) |
attach_dev->dev_addr[1]));
if (ret < 0)
return ret;
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_AD23,
((attach_dev->dev_addr[2] << 8) |
attach_dev->dev_addr[3]));
if (ret < 0)
return ret;
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_AD01,
((attach_dev->dev_addr[4] << 8) |
attach_dev->dev_addr[5]));
if (ret < 0)
return ret;
/* Enable the WOL interrupt */
ret = phy_write(phydev, PHY_IMASK, PHY_IMASK_WOL);
if (ret < 0)
return ret;
/* Enable magic packet matching */
ret = phy_set_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_CTL,
WOL_EN);
if (ret < 0)
return ret;
/* Clear the interrupt status register.
* Only WoL is enabled so clear all.
*/
ret = phy_read(phydev, PHY_ISTAT);
if (ret < 0)
return ret;
} else {
/* Disable magic packet matching */
ret = phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2,
VPSPEC2_WOL_CTL,
WOL_EN);
if (ret < 0)
return ret;
}
if (wol->wolopts & WAKE_PHY) {
/* Enable the link state change interrupt */
ret = phy_set_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
if (ret < 0)
return ret;
/* Clear the interrupt status register */
ret = phy_read(phydev, PHY_ISTAT);
if (ret < 0)
return ret;
if (ret & (PHY_IMASK_MASK & ~PHY_IMASK_LSTC))
phy_trigger_machine(phydev);
return 0;
}
/* Disable the link state change interrupt */
return phy_clear_bits(phydev, PHY_IMASK, PHY_IMASK_LSTC);
}
static void gpy_get_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int ret;
wol->supported = WAKE_MAGIC | WAKE_PHY;
wol->wolopts = 0;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND2, VPSPEC2_WOL_CTL);
if (ret & WOL_EN)
wol->wolopts |= WAKE_MAGIC;
ret = phy_read(phydev, PHY_IMASK);
if (ret & PHY_IMASK_LSTC)
wol->wolopts |= WAKE_PHY;
}
static int gpy_loopback(struct phy_device *phydev, bool enable)
{
int ret;
ret = phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK,
enable ? BMCR_LOOPBACK : 0);
if (!ret) {
/* It takes some time for PHY device to switch
* into/out-of loopback mode.
*/
msleep(100);
}
return ret;
}
static int gpy115_loopback(struct phy_device *phydev, bool enable)
{
struct gpy_priv *priv = phydev->priv;
if (enable)
return gpy_loopback(phydev, enable);
if (priv->fw_minor > 0x76)
return gpy_loopback(phydev, 0);
return genphy_soft_reset(phydev);
}
static struct phy_driver gpy_drivers[] = {
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx),
.name = "Maxlinear Ethernet GPY2xx",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
.phy_id = PHY_ID_GPY115B,
.phy_id_mask = PHY_ID_GPYx15B_MASK,
.name = "Maxlinear Ethernet GPY115B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy115_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY115C),
.name = "Maxlinear Ethernet GPY115C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy115_loopback,
},
{
.phy_id = PHY_ID_GPY211B,
.phy_id_mask = PHY_ID_GPY21xB_MASK,
.name = "Maxlinear Ethernet GPY211B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY211C),
.name = "Maxlinear Ethernet GPY211C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
.phy_id = PHY_ID_GPY212B,
.phy_id_mask = PHY_ID_GPY21xB_MASK,
.name = "Maxlinear Ethernet GPY212B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY212C),
.name = "Maxlinear Ethernet GPY212C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
.phy_id = PHY_ID_GPY215B,
.phy_id_mask = PHY_ID_GPYx15B_MASK,
.name = "Maxlinear Ethernet GPY215B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY215C),
.name = "Maxlinear Ethernet GPY215C",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY241B),
.name = "Maxlinear Ethernet GPY241B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM),
.name = "Maxlinear Ethernet GPY241BM",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_GPY245B),
.name = "Maxlinear Ethernet GPY245B",
.get_features = genphy_c45_pma_read_abilities,
.config_init = gpy_config_init,
.probe = gpy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.config_aneg = gpy_config_aneg,
.aneg_done = genphy_c45_aneg_done,
.read_status = gpy_read_status,
.config_intr = gpy_config_intr,
.handle_interrupt = gpy_handle_interrupt,
.set_wol = gpy_set_wol,
.get_wol = gpy_get_wol,
.set_loopback = gpy_loopback,
},
};
module_phy_driver(gpy_drivers);
static struct mdio_device_id __maybe_unused gpy_tbl[] = {
{PHY_ID_MATCH_MODEL(PHY_ID_GPY2xx)},
{PHY_ID_GPY115B, PHY_ID_GPYx15B_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY115C)},
{PHY_ID_GPY211B, PHY_ID_GPY21xB_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY211C)},
{PHY_ID_GPY212B, PHY_ID_GPY21xB_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY212C)},
{PHY_ID_GPY215B, PHY_ID_GPYx15B_MASK},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY215C)},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY241B)},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY241BM)},
{PHY_ID_MATCH_MODEL(PHY_ID_GPY245B)},
{ }
};
MODULE_DEVICE_TABLE(mdio, gpy_tbl);
MODULE_DESCRIPTION("Maxlinear Ethernet GPY Driver");
MODULE_AUTHOR("Xu Liang");
MODULE_LICENSE("GPL");