mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-12 05:24:12 +08:00
5ddcc03a07
During the comparative study of cpuidle governors, it is noticed that the menu governor does not select CEDE state in some scenarios even though when the sleep duration of the CPU exceeds the target residency of the CEDE idle state this is because the CPU exits the snooze "polling" state when snooze time limit is reached in the snooze_loop(), which is not a real wake up and it just means that the polling state selection was not adequate. cpuidle governors rely on CPUIDLE_FLAG_POLLING flag to be set for the polling states to handle the condition mentioned above. Hence, set the CPUIDLE_FLAG_POLLING flag for snooze state (polling state) in powerpc arch to make the cpuidle governor work as expected. Reference Commits: - Timeout enabled for snooze state: commit78eaa10f02
("cpuidle: powernv/pseries: Auto-promotion of snooze to deeper idle state") - commitdc2251bf98
("cpuidle: Eliminate the CPUIDLE_DRIVER_STATE_START symbol") - Fix wakeup stats in governor for polling states commit5f26bdceb9
("cpuidle: menu: Fix wakeup statistics updates for polling state") Signed-off-by: Aboorva Devarajan <aboorvad@linux.vnet.ibm.com> Tested-by: Vishal Chourasia <vishalc@linux.vnet.ibm.com> Reviewed-by: Vaidyanathan Srinivasan <svaidy@linux.ibm.com> Reviewed-by: Vishal Chourasia <vishalc@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20221114145611.37669-1-aboorvad@linux.vnet.ibm.com
484 lines
12 KiB
C
484 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* cpuidle-pseries - idle state cpuidle driver.
|
|
* Adapted from drivers/idle/intel_idle.c and
|
|
* drivers/acpi/processor_idle.c
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
|
|
#include <asm/paca.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/runlatch.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/plpar_wrappers.h>
|
|
#include <asm/rtas.h>
|
|
|
|
static struct cpuidle_driver pseries_idle_driver = {
|
|
.name = "pseries_idle",
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int max_idle_state __read_mostly;
|
|
static struct cpuidle_state *cpuidle_state_table __read_mostly;
|
|
static u64 snooze_timeout __read_mostly;
|
|
static bool snooze_timeout_en __read_mostly;
|
|
|
|
static int snooze_loop(struct cpuidle_device *dev,
|
|
struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
u64 snooze_exit_time;
|
|
|
|
set_thread_flag(TIF_POLLING_NRFLAG);
|
|
|
|
pseries_idle_prolog();
|
|
local_irq_enable();
|
|
snooze_exit_time = get_tb() + snooze_timeout;
|
|
dev->poll_time_limit = false;
|
|
|
|
while (!need_resched()) {
|
|
HMT_low();
|
|
HMT_very_low();
|
|
if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) {
|
|
/*
|
|
* Task has not woken up but we are exiting the polling
|
|
* loop anyway. Require a barrier after polling is
|
|
* cleared to order subsequent test of need_resched().
|
|
*/
|
|
dev->poll_time_limit = true;
|
|
clear_thread_flag(TIF_POLLING_NRFLAG);
|
|
smp_mb();
|
|
break;
|
|
}
|
|
}
|
|
|
|
HMT_medium();
|
|
clear_thread_flag(TIF_POLLING_NRFLAG);
|
|
|
|
local_irq_disable();
|
|
|
|
pseries_idle_epilog();
|
|
|
|
return index;
|
|
}
|
|
|
|
static void check_and_cede_processor(void)
|
|
{
|
|
/*
|
|
* Ensure our interrupt state is properly tracked,
|
|
* also checks if no interrupt has occurred while we
|
|
* were soft-disabled
|
|
*/
|
|
if (prep_irq_for_idle()) {
|
|
cede_processor();
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
/* Ensure that H_CEDE returns with IRQs on */
|
|
if (WARN_ON(!(mfmsr() & MSR_EE)))
|
|
__hard_irq_enable();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XCEDE: Extended CEDE states discovered through the
|
|
* "ibm,get-systems-parameter" RTAS call with the token
|
|
* CEDE_LATENCY_TOKEN
|
|
*/
|
|
|
|
/*
|
|
* Section 7.3.16 System Parameters Option of PAPR version 2.8.1 has a
|
|
* table with all the parameters to ibm,get-system-parameters.
|
|
* CEDE_LATENCY_TOKEN corresponds to the token value for Cede Latency
|
|
* Settings Information.
|
|
*/
|
|
#define CEDE_LATENCY_TOKEN 45
|
|
|
|
/*
|
|
* If the platform supports the cede latency settings information system
|
|
* parameter it must provide the following information in the NULL terminated
|
|
* parameter string:
|
|
*
|
|
* a. The first byte is the length “N” of each cede latency setting record minus
|
|
* one (zero indicates a length of 1 byte).
|
|
*
|
|
* b. For each supported cede latency setting a cede latency setting record
|
|
* consisting of the first “N” bytes as per the following table.
|
|
*
|
|
* -----------------------------
|
|
* | Field | Field |
|
|
* | Name | Length |
|
|
* -----------------------------
|
|
* | Cede Latency | 1 Byte |
|
|
* | Specifier Value | |
|
|
* -----------------------------
|
|
* | Maximum wakeup | |
|
|
* | latency in | 8 Bytes |
|
|
* | tb-ticks | |
|
|
* -----------------------------
|
|
* | Responsive to | |
|
|
* | external | 1 Byte |
|
|
* | interrupts | |
|
|
* -----------------------------
|
|
*
|
|
* This version has cede latency record size = 10.
|
|
*
|
|
* The structure xcede_latency_payload represents a) and b) with
|
|
* xcede_latency_record representing the table in b).
|
|
*
|
|
* xcede_latency_parameter is what gets returned by
|
|
* ibm,get-systems-parameter RTAS call when made with
|
|
* CEDE_LATENCY_TOKEN.
|
|
*
|
|
* These structures are only used to represent the data obtained by the RTAS
|
|
* call. The data is in big-endian.
|
|
*/
|
|
struct xcede_latency_record {
|
|
u8 hint;
|
|
__be64 latency_ticks;
|
|
u8 wake_on_irqs;
|
|
} __packed;
|
|
|
|
// Make space for 16 records, which "should be enough".
|
|
struct xcede_latency_payload {
|
|
u8 record_size;
|
|
struct xcede_latency_record records[16];
|
|
} __packed;
|
|
|
|
struct xcede_latency_parameter {
|
|
__be16 payload_size;
|
|
struct xcede_latency_payload payload;
|
|
u8 null_char;
|
|
} __packed;
|
|
|
|
static unsigned int nr_xcede_records;
|
|
static struct xcede_latency_parameter xcede_latency_parameter __initdata;
|
|
|
|
static int __init parse_cede_parameters(void)
|
|
{
|
|
struct xcede_latency_payload *payload;
|
|
u32 total_xcede_records_size;
|
|
u8 xcede_record_size;
|
|
u16 payload_size;
|
|
int ret, i;
|
|
|
|
ret = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
|
|
NULL, CEDE_LATENCY_TOKEN, __pa(&xcede_latency_parameter),
|
|
sizeof(xcede_latency_parameter));
|
|
if (ret) {
|
|
pr_err("xcede: Error parsing CEDE_LATENCY_TOKEN\n");
|
|
return ret;
|
|
}
|
|
|
|
payload_size = be16_to_cpu(xcede_latency_parameter.payload_size);
|
|
payload = &xcede_latency_parameter.payload;
|
|
|
|
xcede_record_size = payload->record_size + 1;
|
|
|
|
if (xcede_record_size != sizeof(struct xcede_latency_record)) {
|
|
pr_err("xcede: Expected record-size %lu. Observed size %u.\n",
|
|
sizeof(struct xcede_latency_record), xcede_record_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pr_info("xcede: xcede_record_size = %d\n", xcede_record_size);
|
|
|
|
/*
|
|
* Since the payload_size includes the last NULL byte and the
|
|
* xcede_record_size, the remaining bytes correspond to array of all
|
|
* cede_latency settings.
|
|
*/
|
|
total_xcede_records_size = payload_size - 2;
|
|
nr_xcede_records = total_xcede_records_size / xcede_record_size;
|
|
|
|
for (i = 0; i < nr_xcede_records; i++) {
|
|
struct xcede_latency_record *record = &payload->records[i];
|
|
u64 latency_ticks = be64_to_cpu(record->latency_ticks);
|
|
u8 wake_on_irqs = record->wake_on_irqs;
|
|
u8 hint = record->hint;
|
|
|
|
pr_info("xcede: Record %d : hint = %u, latency = 0x%llx tb ticks, Wake-on-irq = %u\n",
|
|
i, hint, latency_ticks, wake_on_irqs);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define NR_DEDICATED_STATES 2 /* snooze, CEDE */
|
|
static u8 cede_latency_hint[NR_DEDICATED_STATES];
|
|
|
|
static int dedicated_cede_loop(struct cpuidle_device *dev,
|
|
struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
u8 old_latency_hint;
|
|
|
|
pseries_idle_prolog();
|
|
get_lppaca()->donate_dedicated_cpu = 1;
|
|
old_latency_hint = get_lppaca()->cede_latency_hint;
|
|
get_lppaca()->cede_latency_hint = cede_latency_hint[index];
|
|
|
|
HMT_medium();
|
|
check_and_cede_processor();
|
|
|
|
local_irq_disable();
|
|
get_lppaca()->donate_dedicated_cpu = 0;
|
|
get_lppaca()->cede_latency_hint = old_latency_hint;
|
|
|
|
pseries_idle_epilog();
|
|
|
|
return index;
|
|
}
|
|
|
|
static int shared_cede_loop(struct cpuidle_device *dev,
|
|
struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
|
|
pseries_idle_prolog();
|
|
|
|
/*
|
|
* Yield the processor to the hypervisor. We return if
|
|
* an external interrupt occurs (which are driven prior
|
|
* to returning here) or if a prod occurs from another
|
|
* processor. When returning here, external interrupts
|
|
* are enabled.
|
|
*/
|
|
check_and_cede_processor();
|
|
|
|
local_irq_disable();
|
|
pseries_idle_epilog();
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* States for dedicated partition case.
|
|
*/
|
|
static struct cpuidle_state dedicated_states[NR_DEDICATED_STATES] = {
|
|
{ /* Snooze */
|
|
.name = "snooze",
|
|
.desc = "snooze",
|
|
.exit_latency = 0,
|
|
.target_residency = 0,
|
|
.enter = &snooze_loop,
|
|
.flags = CPUIDLE_FLAG_POLLING },
|
|
{ /* CEDE */
|
|
.name = "CEDE",
|
|
.desc = "CEDE",
|
|
.exit_latency = 10,
|
|
.target_residency = 100,
|
|
.enter = &dedicated_cede_loop },
|
|
};
|
|
|
|
/*
|
|
* States for shared partition case.
|
|
*/
|
|
static struct cpuidle_state shared_states[] = {
|
|
{ /* Snooze */
|
|
.name = "snooze",
|
|
.desc = "snooze",
|
|
.exit_latency = 0,
|
|
.target_residency = 0,
|
|
.enter = &snooze_loop,
|
|
.flags = CPUIDLE_FLAG_POLLING },
|
|
{ /* Shared Cede */
|
|
.name = "Shared Cede",
|
|
.desc = "Shared Cede",
|
|
.exit_latency = 10,
|
|
.target_residency = 100,
|
|
.enter = &shared_cede_loop },
|
|
};
|
|
|
|
static int pseries_cpuidle_cpu_online(unsigned int cpu)
|
|
{
|
|
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
|
|
|
|
if (dev && cpuidle_get_driver()) {
|
|
cpuidle_pause_and_lock();
|
|
cpuidle_enable_device(dev);
|
|
cpuidle_resume_and_unlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pseries_cpuidle_cpu_dead(unsigned int cpu)
|
|
{
|
|
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
|
|
|
|
if (dev && cpuidle_get_driver()) {
|
|
cpuidle_pause_and_lock();
|
|
cpuidle_disable_device(dev);
|
|
cpuidle_resume_and_unlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pseries_cpuidle_driver_init()
|
|
*/
|
|
static int pseries_cpuidle_driver_init(void)
|
|
{
|
|
int idle_state;
|
|
struct cpuidle_driver *drv = &pseries_idle_driver;
|
|
|
|
drv->state_count = 0;
|
|
|
|
for (idle_state = 0; idle_state < max_idle_state; ++idle_state) {
|
|
/* Is the state not enabled? */
|
|
if (cpuidle_state_table[idle_state].enter == NULL)
|
|
continue;
|
|
|
|
drv->states[drv->state_count] = /* structure copy */
|
|
cpuidle_state_table[idle_state];
|
|
|
|
drv->state_count += 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init fixup_cede0_latency(void)
|
|
{
|
|
struct xcede_latency_payload *payload;
|
|
u64 min_xcede_latency_us = UINT_MAX;
|
|
int i;
|
|
|
|
if (parse_cede_parameters())
|
|
return;
|
|
|
|
pr_info("cpuidle: Skipping the %d Extended CEDE idle states\n",
|
|
nr_xcede_records);
|
|
|
|
payload = &xcede_latency_parameter.payload;
|
|
|
|
/*
|
|
* The CEDE idle state maps to CEDE(0). While the hypervisor
|
|
* does not advertise CEDE(0) exit latency values, it does
|
|
* advertise the latency values of the extended CEDE states.
|
|
* We use the lowest advertised exit latency value as a proxy
|
|
* for the exit latency of CEDE(0).
|
|
*/
|
|
for (i = 0; i < nr_xcede_records; i++) {
|
|
struct xcede_latency_record *record = &payload->records[i];
|
|
u8 hint = record->hint;
|
|
u64 latency_tb = be64_to_cpu(record->latency_ticks);
|
|
u64 latency_us = DIV_ROUND_UP_ULL(tb_to_ns(latency_tb), NSEC_PER_USEC);
|
|
|
|
/*
|
|
* We expect the exit latency of an extended CEDE
|
|
* state to be non-zero, it to since it takes at least
|
|
* a few nanoseconds to wakeup the idle CPU and
|
|
* dispatch the virtual processor into the Linux
|
|
* Guest.
|
|
*
|
|
* So we consider only non-zero value for performing
|
|
* the fixup of CEDE(0) latency.
|
|
*/
|
|
if (latency_us == 0) {
|
|
pr_warn("cpuidle: Skipping xcede record %d [hint=%d]. Exit latency = 0us\n",
|
|
i, hint);
|
|
continue;
|
|
}
|
|
|
|
if (latency_us < min_xcede_latency_us)
|
|
min_xcede_latency_us = latency_us;
|
|
}
|
|
|
|
if (min_xcede_latency_us != UINT_MAX) {
|
|
dedicated_states[1].exit_latency = min_xcede_latency_us;
|
|
dedicated_states[1].target_residency = 10 * (min_xcede_latency_us);
|
|
pr_info("cpuidle: Fixed up CEDE exit latency to %llu us\n",
|
|
min_xcede_latency_us);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* pseries_idle_probe()
|
|
* Choose state table for shared versus dedicated partition
|
|
*/
|
|
static int __init pseries_idle_probe(void)
|
|
{
|
|
|
|
if (cpuidle_disable != IDLE_NO_OVERRIDE)
|
|
return -ENODEV;
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
|
|
/*
|
|
* Use local_paca instead of get_lppaca() since
|
|
* preemption is not disabled, and it is not required in
|
|
* fact, since lppaca_ptr does not need to be the value
|
|
* associated to the current CPU, it can be from any CPU.
|
|
*/
|
|
if (lppaca_shared_proc(local_paca->lppaca_ptr)) {
|
|
cpuidle_state_table = shared_states;
|
|
max_idle_state = ARRAY_SIZE(shared_states);
|
|
} else {
|
|
/*
|
|
* Use firmware provided latency values
|
|
* starting with POWER10 platforms. In the
|
|
* case that we are running on a POWER10
|
|
* platform but in an earlier compat mode, we
|
|
* can still use the firmware provided values.
|
|
*
|
|
* However, on platforms prior to POWER10, we
|
|
* cannot rely on the accuracy of the firmware
|
|
* provided latency values. On such platforms,
|
|
* go with the conservative default estimate
|
|
* of 10us.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31) || pvr_version_is(PVR_POWER10))
|
|
fixup_cede0_latency();
|
|
cpuidle_state_table = dedicated_states;
|
|
max_idle_state = NR_DEDICATED_STATES;
|
|
}
|
|
} else
|
|
return -ENODEV;
|
|
|
|
if (max_idle_state > 1) {
|
|
snooze_timeout_en = true;
|
|
snooze_timeout = cpuidle_state_table[1].target_residency *
|
|
tb_ticks_per_usec;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init pseries_processor_idle_init(void)
|
|
{
|
|
int retval;
|
|
|
|
retval = pseries_idle_probe();
|
|
if (retval)
|
|
return retval;
|
|
|
|
pseries_cpuidle_driver_init();
|
|
retval = cpuidle_register(&pseries_idle_driver, NULL);
|
|
if (retval) {
|
|
printk(KERN_DEBUG "Registration of pseries driver failed.\n");
|
|
return retval;
|
|
}
|
|
|
|
retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
|
|
"cpuidle/pseries:online",
|
|
pseries_cpuidle_cpu_online, NULL);
|
|
WARN_ON(retval < 0);
|
|
retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD,
|
|
"cpuidle/pseries:DEAD", NULL,
|
|
pseries_cpuidle_cpu_dead);
|
|
WARN_ON(retval < 0);
|
|
printk(KERN_DEBUG "pseries_idle_driver registered\n");
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(pseries_processor_idle_init);
|