mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 16:54:20 +08:00
d60dafdca4
Pull MD updates from Shaohua Li: "A few fixes of MD for this merge window. Mostly bug fixes: - raid5 stripe batch fix from Amy - Read error handling for raid1 FailFast device from Gioh - raid10 recovery NULL pointer dereference fix from Guoqing - Support write hint for raid5 stripe cache from Mariusz - Fixes for device hot add/remove from Neil and Yufen - Improve flush bio scalability from Xiao" * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md: MD: fix lock contention for flush bios md/raid5: Assigning NULL to sh->batch_head before testing bit R5_Overlap of a stripe md/raid1: add error handling of read error from FailFast device md: fix NULL dereference of mddev->pers in remove_and_add_spares() raid5: copy write hint from origin bio to stripe md: fix two problems with setting the "re-add" device state. raid10: check bio in r10buf_pool_free to void NULL pointer dereference md: fix an error code format and remove unsed bio_sector
770 lines
28 KiB
C
770 lines
28 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _RAID5_H
|
|
#define _RAID5_H
|
|
|
|
#include <linux/raid/xor.h>
|
|
#include <linux/dmaengine.h>
|
|
|
|
/*
|
|
*
|
|
* Each stripe contains one buffer per device. Each buffer can be in
|
|
* one of a number of states stored in "flags". Changes between
|
|
* these states happen *almost* exclusively under the protection of the
|
|
* STRIPE_ACTIVE flag. Some very specific changes can happen in bi_end_io, and
|
|
* these are not protected by STRIPE_ACTIVE.
|
|
*
|
|
* The flag bits that are used to represent these states are:
|
|
* R5_UPTODATE and R5_LOCKED
|
|
*
|
|
* State Empty == !UPTODATE, !LOCK
|
|
* We have no data, and there is no active request
|
|
* State Want == !UPTODATE, LOCK
|
|
* A read request is being submitted for this block
|
|
* State Dirty == UPTODATE, LOCK
|
|
* Some new data is in this buffer, and it is being written out
|
|
* State Clean == UPTODATE, !LOCK
|
|
* We have valid data which is the same as on disc
|
|
*
|
|
* The possible state transitions are:
|
|
*
|
|
* Empty -> Want - on read or write to get old data for parity calc
|
|
* Empty -> Dirty - on compute_parity to satisfy write/sync request.
|
|
* Empty -> Clean - on compute_block when computing a block for failed drive
|
|
* Want -> Empty - on failed read
|
|
* Want -> Clean - on successful completion of read request
|
|
* Dirty -> Clean - on successful completion of write request
|
|
* Dirty -> Clean - on failed write
|
|
* Clean -> Dirty - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
|
|
*
|
|
* The Want->Empty, Want->Clean, Dirty->Clean, transitions
|
|
* all happen in b_end_io at interrupt time.
|
|
* Each sets the Uptodate bit before releasing the Lock bit.
|
|
* This leaves one multi-stage transition:
|
|
* Want->Dirty->Clean
|
|
* This is safe because thinking that a Clean buffer is actually dirty
|
|
* will at worst delay some action, and the stripe will be scheduled
|
|
* for attention after the transition is complete.
|
|
*
|
|
* There is one possibility that is not covered by these states. That
|
|
* is if one drive has failed and there is a spare being rebuilt. We
|
|
* can't distinguish between a clean block that has been generated
|
|
* from parity calculations, and a clean block that has been
|
|
* successfully written to the spare ( or to parity when resyncing).
|
|
* To distinguish these states we have a stripe bit STRIPE_INSYNC that
|
|
* is set whenever a write is scheduled to the spare, or to the parity
|
|
* disc if there is no spare. A sync request clears this bit, and
|
|
* when we find it set with no buffers locked, we know the sync is
|
|
* complete.
|
|
*
|
|
* Buffers for the md device that arrive via make_request are attached
|
|
* to the appropriate stripe in one of two lists linked on b_reqnext.
|
|
* One list (bh_read) for read requests, one (bh_write) for write.
|
|
* There should never be more than one buffer on the two lists
|
|
* together, but we are not guaranteed of that so we allow for more.
|
|
*
|
|
* If a buffer is on the read list when the associated cache buffer is
|
|
* Uptodate, the data is copied into the read buffer and it's b_end_io
|
|
* routine is called. This may happen in the end_request routine only
|
|
* if the buffer has just successfully been read. end_request should
|
|
* remove the buffers from the list and then set the Uptodate bit on
|
|
* the buffer. Other threads may do this only if they first check
|
|
* that the Uptodate bit is set. Once they have checked that they may
|
|
* take buffers off the read queue.
|
|
*
|
|
* When a buffer on the write list is committed for write it is copied
|
|
* into the cache buffer, which is then marked dirty, and moved onto a
|
|
* third list, the written list (bh_written). Once both the parity
|
|
* block and the cached buffer are successfully written, any buffer on
|
|
* a written list can be returned with b_end_io.
|
|
*
|
|
* The write list and read list both act as fifos. The read list,
|
|
* write list and written list are protected by the device_lock.
|
|
* The device_lock is only for list manipulations and will only be
|
|
* held for a very short time. It can be claimed from interrupts.
|
|
*
|
|
*
|
|
* Stripes in the stripe cache can be on one of two lists (or on
|
|
* neither). The "inactive_list" contains stripes which are not
|
|
* currently being used for any request. They can freely be reused
|
|
* for another stripe. The "handle_list" contains stripes that need
|
|
* to be handled in some way. Both of these are fifo queues. Each
|
|
* stripe is also (potentially) linked to a hash bucket in the hash
|
|
* table so that it can be found by sector number. Stripes that are
|
|
* not hashed must be on the inactive_list, and will normally be at
|
|
* the front. All stripes start life this way.
|
|
*
|
|
* The inactive_list, handle_list and hash bucket lists are all protected by the
|
|
* device_lock.
|
|
* - stripes have a reference counter. If count==0, they are on a list.
|
|
* - If a stripe might need handling, STRIPE_HANDLE is set.
|
|
* - When refcount reaches zero, then if STRIPE_HANDLE it is put on
|
|
* handle_list else inactive_list
|
|
*
|
|
* This, combined with the fact that STRIPE_HANDLE is only ever
|
|
* cleared while a stripe has a non-zero count means that if the
|
|
* refcount is 0 and STRIPE_HANDLE is set, then it is on the
|
|
* handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
|
|
* the stripe is on inactive_list.
|
|
*
|
|
* The possible transitions are:
|
|
* activate an unhashed/inactive stripe (get_active_stripe())
|
|
* lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
|
|
* activate a hashed, possibly active stripe (get_active_stripe())
|
|
* lockdev check-hash if(!cnt++)unlink-stripe unlockdev
|
|
* attach a request to an active stripe (add_stripe_bh())
|
|
* lockdev attach-buffer unlockdev
|
|
* handle a stripe (handle_stripe())
|
|
* setSTRIPE_ACTIVE, clrSTRIPE_HANDLE ...
|
|
* (lockdev check-buffers unlockdev) ..
|
|
* change-state ..
|
|
* record io/ops needed clearSTRIPE_ACTIVE schedule io/ops
|
|
* release an active stripe (release_stripe())
|
|
* lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
|
|
*
|
|
* The refcount counts each thread that have activated the stripe,
|
|
* plus raid5d if it is handling it, plus one for each active request
|
|
* on a cached buffer, and plus one if the stripe is undergoing stripe
|
|
* operations.
|
|
*
|
|
* The stripe operations are:
|
|
* -copying data between the stripe cache and user application buffers
|
|
* -computing blocks to save a disk access, or to recover a missing block
|
|
* -updating the parity on a write operation (reconstruct write and
|
|
* read-modify-write)
|
|
* -checking parity correctness
|
|
* -running i/o to disk
|
|
* These operations are carried out by raid5_run_ops which uses the async_tx
|
|
* api to (optionally) offload operations to dedicated hardware engines.
|
|
* When requesting an operation handle_stripe sets the pending bit for the
|
|
* operation and increments the count. raid5_run_ops is then run whenever
|
|
* the count is non-zero.
|
|
* There are some critical dependencies between the operations that prevent some
|
|
* from being requested while another is in flight.
|
|
* 1/ Parity check operations destroy the in cache version of the parity block,
|
|
* so we prevent parity dependent operations like writes and compute_blocks
|
|
* from starting while a check is in progress. Some dma engines can perform
|
|
* the check without damaging the parity block, in these cases the parity
|
|
* block is re-marked up to date (assuming the check was successful) and is
|
|
* not re-read from disk.
|
|
* 2/ When a write operation is requested we immediately lock the affected
|
|
* blocks, and mark them as not up to date. This causes new read requests
|
|
* to be held off, as well as parity checks and compute block operations.
|
|
* 3/ Once a compute block operation has been requested handle_stripe treats
|
|
* that block as if it is up to date. raid5_run_ops guaruntees that any
|
|
* operation that is dependent on the compute block result is initiated after
|
|
* the compute block completes.
|
|
*/
|
|
|
|
/*
|
|
* Operations state - intermediate states that are visible outside of
|
|
* STRIPE_ACTIVE.
|
|
* In general _idle indicates nothing is running, _run indicates a data
|
|
* processing operation is active, and _result means the data processing result
|
|
* is stable and can be acted upon. For simple operations like biofill and
|
|
* compute that only have an _idle and _run state they are indicated with
|
|
* sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN)
|
|
*/
|
|
/**
|
|
* enum check_states - handles syncing / repairing a stripe
|
|
* @check_state_idle - check operations are quiesced
|
|
* @check_state_run - check operation is running
|
|
* @check_state_result - set outside lock when check result is valid
|
|
* @check_state_compute_run - check failed and we are repairing
|
|
* @check_state_compute_result - set outside lock when compute result is valid
|
|
*/
|
|
enum check_states {
|
|
check_state_idle = 0,
|
|
check_state_run, /* xor parity check */
|
|
check_state_run_q, /* q-parity check */
|
|
check_state_run_pq, /* pq dual parity check */
|
|
check_state_check_result,
|
|
check_state_compute_run, /* parity repair */
|
|
check_state_compute_result,
|
|
};
|
|
|
|
/**
|
|
* enum reconstruct_states - handles writing or expanding a stripe
|
|
*/
|
|
enum reconstruct_states {
|
|
reconstruct_state_idle = 0,
|
|
reconstruct_state_prexor_drain_run, /* prexor-write */
|
|
reconstruct_state_drain_run, /* write */
|
|
reconstruct_state_run, /* expand */
|
|
reconstruct_state_prexor_drain_result,
|
|
reconstruct_state_drain_result,
|
|
reconstruct_state_result,
|
|
};
|
|
|
|
struct stripe_head {
|
|
struct hlist_node hash;
|
|
struct list_head lru; /* inactive_list or handle_list */
|
|
struct llist_node release_list;
|
|
struct r5conf *raid_conf;
|
|
short generation; /* increments with every
|
|
* reshape */
|
|
sector_t sector; /* sector of this row */
|
|
short pd_idx; /* parity disk index */
|
|
short qd_idx; /* 'Q' disk index for raid6 */
|
|
short ddf_layout;/* use DDF ordering to calculate Q */
|
|
short hash_lock_index;
|
|
unsigned long state; /* state flags */
|
|
atomic_t count; /* nr of active thread/requests */
|
|
int bm_seq; /* sequence number for bitmap flushes */
|
|
int disks; /* disks in stripe */
|
|
int overwrite_disks; /* total overwrite disks in stripe,
|
|
* this is only checked when stripe
|
|
* has STRIPE_BATCH_READY
|
|
*/
|
|
enum check_states check_state;
|
|
enum reconstruct_states reconstruct_state;
|
|
spinlock_t stripe_lock;
|
|
int cpu;
|
|
struct r5worker_group *group;
|
|
|
|
struct stripe_head *batch_head; /* protected by stripe lock */
|
|
spinlock_t batch_lock; /* only header's lock is useful */
|
|
struct list_head batch_list; /* protected by head's batch lock*/
|
|
|
|
union {
|
|
struct r5l_io_unit *log_io;
|
|
struct ppl_io_unit *ppl_io;
|
|
};
|
|
|
|
struct list_head log_list;
|
|
sector_t log_start; /* first meta block on the journal */
|
|
struct list_head r5c; /* for r5c_cache->stripe_in_journal */
|
|
|
|
struct page *ppl_page; /* partial parity of this stripe */
|
|
/**
|
|
* struct stripe_operations
|
|
* @target - STRIPE_OP_COMPUTE_BLK target
|
|
* @target2 - 2nd compute target in the raid6 case
|
|
* @zero_sum_result - P and Q verification flags
|
|
* @request - async service request flags for raid_run_ops
|
|
*/
|
|
struct stripe_operations {
|
|
int target, target2;
|
|
enum sum_check_flags zero_sum_result;
|
|
} ops;
|
|
struct r5dev {
|
|
/* rreq and rvec are used for the replacement device when
|
|
* writing data to both devices.
|
|
*/
|
|
struct bio req, rreq;
|
|
struct bio_vec vec, rvec;
|
|
struct page *page, *orig_page;
|
|
struct bio *toread, *read, *towrite, *written;
|
|
sector_t sector; /* sector of this page */
|
|
unsigned long flags;
|
|
u32 log_checksum;
|
|
unsigned short write_hint;
|
|
} dev[1]; /* allocated with extra space depending of RAID geometry */
|
|
};
|
|
|
|
/* stripe_head_state - collects and tracks the dynamic state of a stripe_head
|
|
* for handle_stripe.
|
|
*/
|
|
struct stripe_head_state {
|
|
/* 'syncing' means that we need to read all devices, either
|
|
* to check/correct parity, or to reconstruct a missing device.
|
|
* 'replacing' means we are replacing one or more drives and
|
|
* the source is valid at this point so we don't need to
|
|
* read all devices, just the replacement targets.
|
|
*/
|
|
int syncing, expanding, expanded, replacing;
|
|
int locked, uptodate, to_read, to_write, failed, written;
|
|
int to_fill, compute, req_compute, non_overwrite;
|
|
int injournal, just_cached;
|
|
int failed_num[2];
|
|
int p_failed, q_failed;
|
|
int dec_preread_active;
|
|
unsigned long ops_request;
|
|
|
|
struct md_rdev *blocked_rdev;
|
|
int handle_bad_blocks;
|
|
int log_failed;
|
|
int waiting_extra_page;
|
|
};
|
|
|
|
/* Flags for struct r5dev.flags */
|
|
enum r5dev_flags {
|
|
R5_UPTODATE, /* page contains current data */
|
|
R5_LOCKED, /* IO has been submitted on "req" */
|
|
R5_DOUBLE_LOCKED,/* Cannot clear R5_LOCKED until 2 writes complete */
|
|
R5_OVERWRITE, /* towrite covers whole page */
|
|
/* and some that are internal to handle_stripe */
|
|
R5_Insync, /* rdev && rdev->in_sync at start */
|
|
R5_Wantread, /* want to schedule a read */
|
|
R5_Wantwrite,
|
|
R5_Overlap, /* There is a pending overlapping request
|
|
* on this block */
|
|
R5_ReadNoMerge, /* prevent bio from merging in block-layer */
|
|
R5_ReadError, /* seen a read error here recently */
|
|
R5_ReWrite, /* have tried to over-write the readerror */
|
|
|
|
R5_Expanded, /* This block now has post-expand data */
|
|
R5_Wantcompute, /* compute_block in progress treat as
|
|
* uptodate
|
|
*/
|
|
R5_Wantfill, /* dev->toread contains a bio that needs
|
|
* filling
|
|
*/
|
|
R5_Wantdrain, /* dev->towrite needs to be drained */
|
|
R5_WantFUA, /* Write should be FUA */
|
|
R5_SyncIO, /* The IO is sync */
|
|
R5_WriteError, /* got a write error - need to record it */
|
|
R5_MadeGood, /* A bad block has been fixed by writing to it */
|
|
R5_ReadRepl, /* Will/did read from replacement rather than orig */
|
|
R5_MadeGoodRepl,/* A bad block on the replacement device has been
|
|
* fixed by writing to it */
|
|
R5_NeedReplace, /* This device has a replacement which is not
|
|
* up-to-date at this stripe. */
|
|
R5_WantReplace, /* We need to update the replacement, we have read
|
|
* data in, and now is a good time to write it out.
|
|
*/
|
|
R5_Discard, /* Discard the stripe */
|
|
R5_SkipCopy, /* Don't copy data from bio to stripe cache */
|
|
R5_InJournal, /* data being written is in the journal device.
|
|
* if R5_InJournal is set for parity pd_idx, all the
|
|
* data and parity being written are in the journal
|
|
* device
|
|
*/
|
|
R5_OrigPageUPTDODATE, /* with write back cache, we read old data into
|
|
* dev->orig_page for prexor. When this flag is
|
|
* set, orig_page contains latest data in the
|
|
* raid disk.
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* Stripe state
|
|
*/
|
|
enum {
|
|
STRIPE_ACTIVE,
|
|
STRIPE_HANDLE,
|
|
STRIPE_SYNC_REQUESTED,
|
|
STRIPE_SYNCING,
|
|
STRIPE_INSYNC,
|
|
STRIPE_REPLACED,
|
|
STRIPE_PREREAD_ACTIVE,
|
|
STRIPE_DELAYED,
|
|
STRIPE_DEGRADED,
|
|
STRIPE_BIT_DELAY,
|
|
STRIPE_EXPANDING,
|
|
STRIPE_EXPAND_SOURCE,
|
|
STRIPE_EXPAND_READY,
|
|
STRIPE_IO_STARTED, /* do not count towards 'bypass_count' */
|
|
STRIPE_FULL_WRITE, /* all blocks are set to be overwritten */
|
|
STRIPE_BIOFILL_RUN,
|
|
STRIPE_COMPUTE_RUN,
|
|
STRIPE_OPS_REQ_PENDING,
|
|
STRIPE_ON_UNPLUG_LIST,
|
|
STRIPE_DISCARD,
|
|
STRIPE_ON_RELEASE_LIST,
|
|
STRIPE_BATCH_READY,
|
|
STRIPE_BATCH_ERR,
|
|
STRIPE_BITMAP_PENDING, /* Being added to bitmap, don't add
|
|
* to batch yet.
|
|
*/
|
|
STRIPE_LOG_TRAPPED, /* trapped into log (see raid5-cache.c)
|
|
* this bit is used in two scenarios:
|
|
*
|
|
* 1. write-out phase
|
|
* set in first entry of r5l_write_stripe
|
|
* clear in second entry of r5l_write_stripe
|
|
* used to bypass logic in handle_stripe
|
|
*
|
|
* 2. caching phase
|
|
* set in r5c_try_caching_write()
|
|
* clear when journal write is done
|
|
* used to initiate r5c_cache_data()
|
|
* also used to bypass logic in handle_stripe
|
|
*/
|
|
STRIPE_R5C_CACHING, /* the stripe is in caching phase
|
|
* see more detail in the raid5-cache.c
|
|
*/
|
|
STRIPE_R5C_PARTIAL_STRIPE, /* in r5c cache (to-be/being handled or
|
|
* in conf->r5c_partial_stripe_list)
|
|
*/
|
|
STRIPE_R5C_FULL_STRIPE, /* in r5c cache (to-be/being handled or
|
|
* in conf->r5c_full_stripe_list)
|
|
*/
|
|
STRIPE_R5C_PREFLUSH, /* need to flush journal device */
|
|
};
|
|
|
|
#define STRIPE_EXPAND_SYNC_FLAGS \
|
|
((1 << STRIPE_EXPAND_SOURCE) |\
|
|
(1 << STRIPE_EXPAND_READY) |\
|
|
(1 << STRIPE_EXPANDING) |\
|
|
(1 << STRIPE_SYNC_REQUESTED))
|
|
/*
|
|
* Operation request flags
|
|
*/
|
|
enum {
|
|
STRIPE_OP_BIOFILL,
|
|
STRIPE_OP_COMPUTE_BLK,
|
|
STRIPE_OP_PREXOR,
|
|
STRIPE_OP_BIODRAIN,
|
|
STRIPE_OP_RECONSTRUCT,
|
|
STRIPE_OP_CHECK,
|
|
STRIPE_OP_PARTIAL_PARITY,
|
|
};
|
|
|
|
/*
|
|
* RAID parity calculation preferences
|
|
*/
|
|
enum {
|
|
PARITY_DISABLE_RMW = 0,
|
|
PARITY_ENABLE_RMW,
|
|
PARITY_PREFER_RMW,
|
|
};
|
|
|
|
/*
|
|
* Pages requested from set_syndrome_sources()
|
|
*/
|
|
enum {
|
|
SYNDROME_SRC_ALL,
|
|
SYNDROME_SRC_WANT_DRAIN,
|
|
SYNDROME_SRC_WRITTEN,
|
|
};
|
|
/*
|
|
* Plugging:
|
|
*
|
|
* To improve write throughput, we need to delay the handling of some
|
|
* stripes until there has been a chance that several write requests
|
|
* for the one stripe have all been collected.
|
|
* In particular, any write request that would require pre-reading
|
|
* is put on a "delayed" queue until there are no stripes currently
|
|
* in a pre-read phase. Further, if the "delayed" queue is empty when
|
|
* a stripe is put on it then we "plug" the queue and do not process it
|
|
* until an unplug call is made. (the unplug_io_fn() is called).
|
|
*
|
|
* When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
|
|
* it to the count of prereading stripes.
|
|
* When write is initiated, or the stripe refcnt == 0 (just in case) we
|
|
* clear the PREREAD_ACTIVE flag and decrement the count
|
|
* Whenever the 'handle' queue is empty and the device is not plugged, we
|
|
* move any strips from delayed to handle and clear the DELAYED flag and set
|
|
* PREREAD_ACTIVE.
|
|
* In stripe_handle, if we find pre-reading is necessary, we do it if
|
|
* PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
|
|
* HANDLE gets cleared if stripe_handle leaves nothing locked.
|
|
*/
|
|
|
|
/* Note: disk_info.rdev can be set to NULL asynchronously by raid5_remove_disk.
|
|
* There are three safe ways to access disk_info.rdev.
|
|
* 1/ when holding mddev->reconfig_mutex
|
|
* 2/ when resync/recovery/reshape is known to be happening - i.e. in code that
|
|
* is called as part of performing resync/recovery/reshape.
|
|
* 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
|
|
* and if it is non-NULL, increment rdev->nr_pending before dropping the RCU
|
|
* lock.
|
|
* When .rdev is set to NULL, the nr_pending count checked again and if
|
|
* it has been incremented, the pointer is put back in .rdev.
|
|
*/
|
|
|
|
struct disk_info {
|
|
struct md_rdev *rdev, *replacement;
|
|
struct page *extra_page; /* extra page to use in prexor */
|
|
};
|
|
|
|
/*
|
|
* Stripe cache
|
|
*/
|
|
|
|
#define NR_STRIPES 256
|
|
#define STRIPE_SIZE PAGE_SIZE
|
|
#define STRIPE_SHIFT (PAGE_SHIFT - 9)
|
|
#define STRIPE_SECTORS (STRIPE_SIZE>>9)
|
|
#define IO_THRESHOLD 1
|
|
#define BYPASS_THRESHOLD 1
|
|
#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
|
|
#define HASH_MASK (NR_HASH - 1)
|
|
#define MAX_STRIPE_BATCH 8
|
|
|
|
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
|
|
* order without overlap. There may be several bio's per stripe+device, and
|
|
* a bio could span several devices.
|
|
* When walking this list for a particular stripe+device, we must never proceed
|
|
* beyond a bio that extends past this device, as the next bio might no longer
|
|
* be valid.
|
|
* This function is used to determine the 'next' bio in the list, given the
|
|
* sector of the current stripe+device
|
|
*/
|
|
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
|
|
{
|
|
int sectors = bio_sectors(bio);
|
|
|
|
if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
|
|
return bio->bi_next;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* NOTE NR_STRIPE_HASH_LOCKS must remain below 64.
|
|
* This is because we sometimes take all the spinlocks
|
|
* and creating that much locking depth can cause
|
|
* problems.
|
|
*/
|
|
#define NR_STRIPE_HASH_LOCKS 8
|
|
#define STRIPE_HASH_LOCKS_MASK (NR_STRIPE_HASH_LOCKS - 1)
|
|
|
|
struct r5worker {
|
|
struct work_struct work;
|
|
struct r5worker_group *group;
|
|
struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
|
|
bool working;
|
|
};
|
|
|
|
struct r5worker_group {
|
|
struct list_head handle_list;
|
|
struct list_head loprio_list;
|
|
struct r5conf *conf;
|
|
struct r5worker *workers;
|
|
int stripes_cnt;
|
|
};
|
|
|
|
/*
|
|
* r5c journal modes of the array: write-back or write-through.
|
|
* write-through mode has identical behavior as existing log only
|
|
* implementation.
|
|
*/
|
|
enum r5c_journal_mode {
|
|
R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
|
|
R5C_JOURNAL_MODE_WRITE_BACK = 1,
|
|
};
|
|
|
|
enum r5_cache_state {
|
|
R5_INACTIVE_BLOCKED, /* release of inactive stripes blocked,
|
|
* waiting for 25% to be free
|
|
*/
|
|
R5_ALLOC_MORE, /* It might help to allocate another
|
|
* stripe.
|
|
*/
|
|
R5_DID_ALLOC, /* A stripe was allocated, don't allocate
|
|
* more until at least one has been
|
|
* released. This avoids flooding
|
|
* the cache.
|
|
*/
|
|
R5C_LOG_TIGHT, /* log device space tight, need to
|
|
* prioritize stripes at last_checkpoint
|
|
*/
|
|
R5C_LOG_CRITICAL, /* log device is running out of space,
|
|
* only process stripes that are already
|
|
* occupying the log
|
|
*/
|
|
R5C_EXTRA_PAGE_IN_USE, /* a stripe is using disk_info.extra_page
|
|
* for prexor
|
|
*/
|
|
};
|
|
|
|
#define PENDING_IO_MAX 512
|
|
#define PENDING_IO_ONE_FLUSH 128
|
|
struct r5pending_data {
|
|
struct list_head sibling;
|
|
sector_t sector; /* stripe sector */
|
|
struct bio_list bios;
|
|
};
|
|
|
|
struct r5conf {
|
|
struct hlist_head *stripe_hashtbl;
|
|
/* only protect corresponding hash list and inactive_list */
|
|
spinlock_t hash_locks[NR_STRIPE_HASH_LOCKS];
|
|
struct mddev *mddev;
|
|
int chunk_sectors;
|
|
int level, algorithm, rmw_level;
|
|
int max_degraded;
|
|
int raid_disks;
|
|
int max_nr_stripes;
|
|
int min_nr_stripes;
|
|
|
|
/* reshape_progress is the leading edge of a 'reshape'
|
|
* It has value MaxSector when no reshape is happening
|
|
* If delta_disks < 0, it is the last sector we started work on,
|
|
* else is it the next sector to work on.
|
|
*/
|
|
sector_t reshape_progress;
|
|
/* reshape_safe is the trailing edge of a reshape. We know that
|
|
* before (or after) this address, all reshape has completed.
|
|
*/
|
|
sector_t reshape_safe;
|
|
int previous_raid_disks;
|
|
int prev_chunk_sectors;
|
|
int prev_algo;
|
|
short generation; /* increments with every reshape */
|
|
seqcount_t gen_lock; /* lock against generation changes */
|
|
unsigned long reshape_checkpoint; /* Time we last updated
|
|
* metadata */
|
|
long long min_offset_diff; /* minimum difference between
|
|
* data_offset and
|
|
* new_data_offset across all
|
|
* devices. May be negative,
|
|
* but is closest to zero.
|
|
*/
|
|
|
|
struct list_head handle_list; /* stripes needing handling */
|
|
struct list_head loprio_list; /* low priority stripes */
|
|
struct list_head hold_list; /* preread ready stripes */
|
|
struct list_head delayed_list; /* stripes that have plugged requests */
|
|
struct list_head bitmap_list; /* stripes delaying awaiting bitmap update */
|
|
struct bio *retry_read_aligned; /* currently retrying aligned bios */
|
|
unsigned int retry_read_offset; /* sector offset into retry_read_aligned */
|
|
struct bio *retry_read_aligned_list; /* aligned bios retry list */
|
|
atomic_t preread_active_stripes; /* stripes with scheduled io */
|
|
atomic_t active_aligned_reads;
|
|
atomic_t pending_full_writes; /* full write backlog */
|
|
int bypass_count; /* bypassed prereads */
|
|
int bypass_threshold; /* preread nice */
|
|
int skip_copy; /* Don't copy data from bio to stripe cache */
|
|
struct list_head *last_hold; /* detect hold_list promotions */
|
|
|
|
atomic_t reshape_stripes; /* stripes with pending writes for reshape */
|
|
/* unfortunately we need two cache names as we temporarily have
|
|
* two caches.
|
|
*/
|
|
int active_name;
|
|
char cache_name[2][32];
|
|
struct kmem_cache *slab_cache; /* for allocating stripes */
|
|
struct mutex cache_size_mutex; /* Protect changes to cache size */
|
|
|
|
int seq_flush, seq_write;
|
|
int quiesce;
|
|
|
|
int fullsync; /* set to 1 if a full sync is needed,
|
|
* (fresh device added).
|
|
* Cleared when a sync completes.
|
|
*/
|
|
int recovery_disabled;
|
|
/* per cpu variables */
|
|
struct raid5_percpu {
|
|
struct page *spare_page; /* Used when checking P/Q in raid6 */
|
|
struct flex_array *scribble; /* space for constructing buffer
|
|
* lists and performing address
|
|
* conversions
|
|
*/
|
|
} __percpu *percpu;
|
|
int scribble_disks;
|
|
int scribble_sectors;
|
|
struct hlist_node node;
|
|
|
|
/*
|
|
* Free stripes pool
|
|
*/
|
|
atomic_t active_stripes;
|
|
struct list_head inactive_list[NR_STRIPE_HASH_LOCKS];
|
|
|
|
atomic_t r5c_cached_full_stripes;
|
|
struct list_head r5c_full_stripe_list;
|
|
atomic_t r5c_cached_partial_stripes;
|
|
struct list_head r5c_partial_stripe_list;
|
|
atomic_t r5c_flushing_full_stripes;
|
|
atomic_t r5c_flushing_partial_stripes;
|
|
|
|
atomic_t empty_inactive_list_nr;
|
|
struct llist_head released_stripes;
|
|
wait_queue_head_t wait_for_quiescent;
|
|
wait_queue_head_t wait_for_stripe;
|
|
wait_queue_head_t wait_for_overlap;
|
|
unsigned long cache_state;
|
|
struct shrinker shrinker;
|
|
int pool_size; /* number of disks in stripeheads in pool */
|
|
spinlock_t device_lock;
|
|
struct disk_info *disks;
|
|
struct bio_set bio_split;
|
|
|
|
/* When taking over an array from a different personality, we store
|
|
* the new thread here until we fully activate the array.
|
|
*/
|
|
struct md_thread *thread;
|
|
struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
|
|
struct r5worker_group *worker_groups;
|
|
int group_cnt;
|
|
int worker_cnt_per_group;
|
|
struct r5l_log *log;
|
|
void *log_private;
|
|
|
|
spinlock_t pending_bios_lock;
|
|
bool batch_bio_dispatch;
|
|
struct r5pending_data *pending_data;
|
|
struct list_head free_list;
|
|
struct list_head pending_list;
|
|
int pending_data_cnt;
|
|
struct r5pending_data *next_pending_data;
|
|
};
|
|
|
|
|
|
/*
|
|
* Our supported algorithms
|
|
*/
|
|
#define ALGORITHM_LEFT_ASYMMETRIC 0 /* Rotating Parity N with Data Restart */
|
|
#define ALGORITHM_RIGHT_ASYMMETRIC 1 /* Rotating Parity 0 with Data Restart */
|
|
#define ALGORITHM_LEFT_SYMMETRIC 2 /* Rotating Parity N with Data Continuation */
|
|
#define ALGORITHM_RIGHT_SYMMETRIC 3 /* Rotating Parity 0 with Data Continuation */
|
|
|
|
/* Define non-rotating (raid4) algorithms. These allow
|
|
* conversion of raid4 to raid5.
|
|
*/
|
|
#define ALGORITHM_PARITY_0 4 /* P or P,Q are initial devices */
|
|
#define ALGORITHM_PARITY_N 5 /* P or P,Q are final devices. */
|
|
|
|
/* DDF RAID6 layouts differ from md/raid6 layouts in two ways.
|
|
* Firstly, the exact positioning of the parity block is slightly
|
|
* different between the 'LEFT_*' modes of md and the "_N_*" modes
|
|
* of DDF.
|
|
* Secondly, or order of datablocks over which the Q syndrome is computed
|
|
* is different.
|
|
* Consequently we have different layouts for DDF/raid6 than md/raid6.
|
|
* These layouts are from the DDFv1.2 spec.
|
|
* Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but
|
|
* leaves RLQ=3 as 'Vendor Specific'
|
|
*/
|
|
|
|
#define ALGORITHM_ROTATING_ZERO_RESTART 8 /* DDF PRL=6 RLQ=1 */
|
|
#define ALGORITHM_ROTATING_N_RESTART 9 /* DDF PRL=6 RLQ=2 */
|
|
#define ALGORITHM_ROTATING_N_CONTINUE 10 /*DDF PRL=6 RLQ=3 */
|
|
|
|
/* For every RAID5 algorithm we define a RAID6 algorithm
|
|
* with exactly the same layout for data and parity, and
|
|
* with the Q block always on the last device (N-1).
|
|
* This allows trivial conversion from RAID5 to RAID6
|
|
*/
|
|
#define ALGORITHM_LEFT_ASYMMETRIC_6 16
|
|
#define ALGORITHM_RIGHT_ASYMMETRIC_6 17
|
|
#define ALGORITHM_LEFT_SYMMETRIC_6 18
|
|
#define ALGORITHM_RIGHT_SYMMETRIC_6 19
|
|
#define ALGORITHM_PARITY_0_6 20
|
|
#define ALGORITHM_PARITY_N_6 ALGORITHM_PARITY_N
|
|
|
|
static inline int algorithm_valid_raid5(int layout)
|
|
{
|
|
return (layout >= 0) &&
|
|
(layout <= 5);
|
|
}
|
|
static inline int algorithm_valid_raid6(int layout)
|
|
{
|
|
return (layout >= 0 && layout <= 5)
|
|
||
|
|
(layout >= 8 && layout <= 10)
|
|
||
|
|
(layout >= 16 && layout <= 20);
|
|
}
|
|
|
|
static inline int algorithm_is_DDF(int layout)
|
|
{
|
|
return layout >= 8 && layout <= 10;
|
|
}
|
|
|
|
extern void md_raid5_kick_device(struct r5conf *conf);
|
|
extern int raid5_set_cache_size(struct mddev *mddev, int size);
|
|
extern sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous);
|
|
extern void raid5_release_stripe(struct stripe_head *sh);
|
|
extern sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
|
|
int previous, int *dd_idx,
|
|
struct stripe_head *sh);
|
|
extern struct stripe_head *
|
|
raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
|
|
int previous, int noblock, int noquiesce);
|
|
extern int raid5_calc_degraded(struct r5conf *conf);
|
|
extern int r5c_journal_mode_set(struct mddev *mddev, int journal_mode);
|
|
#endif
|