linux/mm/swap_state.c
Nhat Pham 16e96ba5e9 mm/swap_state: update zswap LRU's protection range with the folio locked
When a folio is swapped in, the protection size of the corresponding zswap
LRU is incremented, so that the zswap shrinker is more conservative with
its reclaiming action.  This field is embedded within the struct lruvec,
so updating it requires looking up the folio's memcg and lruvec.  However,
currently this lookup can happen after the folio is unlocked, for instance
if a new folio is allocated, and swap_read_folio() unlocks the folio
before returning.  In this scenario, there is no stability guarantee for
the binding between a folio and its memcg and lruvec:

* A folio's memcg and lruvec can be freed between the lookup and the
  update, leading to a UAF.
* Folio migration can clear the now-unlocked folio's memcg_data, which
  directs the zswap LRU protection size update towards the root memcg
  instead of the original memcg. This was recently picked up by the
  syzbot thanks to a warning in the inlined folio_lruvec() call.

Move the zswap LRU protection range update above the swap_read_folio()
call, and only when a new page is allocated, to prevent this.

[nphamcs@gmail.com: add VM_WARN_ON_ONCE() to zswap_folio_swapin()]
  Link: https://lkml.kernel.org/r/20240206180855.3987204-1-nphamcs@gmail.com
[nphamcs@gmail.com: remove unneeded if (folio) checks]
  Link: https://lkml.kernel.org/r/20240206191355.83755-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240205232442.3240571-1-nphamcs@gmail.com
Fixes: b5ba474f3f ("zswap: shrink zswap pool based on memory pressure")
Reported-by: syzbot+17a611d10af7d18a7092@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000ae47f90610803260@google.com/
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-20 14:20:48 -08:00

949 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/swap_state.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
*/
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/migrate.h>
#include <linux/vmalloc.h>
#include <linux/swap_slots.h>
#include <linux/huge_mm.h>
#include <linux/shmem_fs.h>
#include "internal.h"
#include "swap.h"
/*
* swapper_space is a fiction, retained to simplify the path through
* vmscan's shrink_page_list.
*/
static const struct address_space_operations swap_aops = {
.writepage = swap_writepage,
.dirty_folio = noop_dirty_folio,
#ifdef CONFIG_MIGRATION
.migrate_folio = migrate_folio,
#endif
};
struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
static bool enable_vma_readahead __read_mostly = true;
#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
#define SWAP_RA_VAL(addr, win, hits) \
(((addr) & PAGE_MASK) | \
(((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
((hits) & SWAP_RA_HITS_MASK))
/* Initial readahead hits is 4 to start up with a small window */
#define GET_SWAP_RA_VAL(vma) \
(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
void show_swap_cache_info(void)
{
printk("%lu pages in swap cache\n", total_swapcache_pages());
printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
printk("Total swap = %lukB\n", K(total_swap_pages));
}
void *get_shadow_from_swap_cache(swp_entry_t entry)
{
struct address_space *address_space = swap_address_space(entry);
pgoff_t idx = swp_offset(entry);
struct page *page;
page = xa_load(&address_space->i_pages, idx);
if (xa_is_value(page))
return page;
return NULL;
}
/*
* add_to_swap_cache resembles filemap_add_folio on swapper_space,
* but sets SwapCache flag and private instead of mapping and index.
*/
int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
gfp_t gfp, void **shadowp)
{
struct address_space *address_space = swap_address_space(entry);
pgoff_t idx = swp_offset(entry);
XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
unsigned long i, nr = folio_nr_pages(folio);
void *old;
xas_set_update(&xas, workingset_update_node);
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
folio_ref_add(folio, nr);
folio_set_swapcache(folio);
folio->swap = entry;
do {
xas_lock_irq(&xas);
xas_create_range(&xas);
if (xas_error(&xas))
goto unlock;
for (i = 0; i < nr; i++) {
VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
if (shadowp) {
old = xas_load(&xas);
if (xa_is_value(old))
*shadowp = old;
}
xas_store(&xas, folio);
xas_next(&xas);
}
address_space->nrpages += nr;
__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
unlock:
xas_unlock_irq(&xas);
} while (xas_nomem(&xas, gfp));
if (!xas_error(&xas))
return 0;
folio_clear_swapcache(folio);
folio_ref_sub(folio, nr);
return xas_error(&xas);
}
/*
* This must be called only on folios that have
* been verified to be in the swap cache.
*/
void __delete_from_swap_cache(struct folio *folio,
swp_entry_t entry, void *shadow)
{
struct address_space *address_space = swap_address_space(entry);
int i;
long nr = folio_nr_pages(folio);
pgoff_t idx = swp_offset(entry);
XA_STATE(xas, &address_space->i_pages, idx);
xas_set_update(&xas, workingset_update_node);
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
for (i = 0; i < nr; i++) {
void *entry = xas_store(&xas, shadow);
VM_BUG_ON_PAGE(entry != folio, entry);
xas_next(&xas);
}
folio->swap.val = 0;
folio_clear_swapcache(folio);
address_space->nrpages -= nr;
__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
}
/**
* add_to_swap - allocate swap space for a folio
* @folio: folio we want to move to swap
*
* Allocate swap space for the folio and add the folio to the
* swap cache.
*
* Context: Caller needs to hold the folio lock.
* Return: Whether the folio was added to the swap cache.
*/
bool add_to_swap(struct folio *folio)
{
swp_entry_t entry;
int err;
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
entry = folio_alloc_swap(folio);
if (!entry.val)
return false;
/*
* XArray node allocations from PF_MEMALLOC contexts could
* completely exhaust the page allocator. __GFP_NOMEMALLOC
* stops emergency reserves from being allocated.
*
* TODO: this could cause a theoretical memory reclaim
* deadlock in the swap out path.
*/
/*
* Add it to the swap cache.
*/
err = add_to_swap_cache(folio, entry,
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
if (err)
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
goto fail;
/*
* Normally the folio will be dirtied in unmap because its
* pte should be dirty. A special case is MADV_FREE page. The
* page's pte could have dirty bit cleared but the folio's
* SwapBacked flag is still set because clearing the dirty bit
* and SwapBacked flag has no lock protected. For such folio,
* unmap will not set dirty bit for it, so folio reclaim will
* not write the folio out. This can cause data corruption when
* the folio is swapped in later. Always setting the dirty flag
* for the folio solves the problem.
*/
folio_mark_dirty(folio);
return true;
fail:
put_swap_folio(folio, entry);
return false;
}
/*
* This must be called only on folios that have
* been verified to be in the swap cache and locked.
* It will never put the folio into the free list,
* the caller has a reference on the folio.
*/
void delete_from_swap_cache(struct folio *folio)
{
swp_entry_t entry = folio->swap;
struct address_space *address_space = swap_address_space(entry);
xa_lock_irq(&address_space->i_pages);
__delete_from_swap_cache(folio, entry, NULL);
xa_unlock_irq(&address_space->i_pages);
put_swap_folio(folio, entry);
folio_ref_sub(folio, folio_nr_pages(folio));
}
void clear_shadow_from_swap_cache(int type, unsigned long begin,
unsigned long end)
{
unsigned long curr = begin;
void *old;
for (;;) {
swp_entry_t entry = swp_entry(type, curr);
struct address_space *address_space = swap_address_space(entry);
XA_STATE(xas, &address_space->i_pages, curr);
xas_set_update(&xas, workingset_update_node);
xa_lock_irq(&address_space->i_pages);
xas_for_each(&xas, old, end) {
if (!xa_is_value(old))
continue;
xas_store(&xas, NULL);
}
xa_unlock_irq(&address_space->i_pages);
/* search the next swapcache until we meet end */
curr >>= SWAP_ADDRESS_SPACE_SHIFT;
curr++;
curr <<= SWAP_ADDRESS_SPACE_SHIFT;
if (curr > end)
break;
}
}
/*
* If we are the only user, then try to free up the swap cache.
*
* Its ok to check the swapcache flag without the folio lock
* here because we are going to recheck again inside
* folio_free_swap() _with_ the lock.
* - Marcelo
*/
void free_swap_cache(struct page *page)
{
struct folio *folio = page_folio(page);
if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
folio_trylock(folio)) {
folio_free_swap(folio);
folio_unlock(folio);
}
}
/*
* Perform a free_page(), also freeing any swap cache associated with
* this page if it is the last user of the page.
*/
void free_page_and_swap_cache(struct page *page)
{
free_swap_cache(page);
if (!is_huge_zero_page(page))
put_page(page);
}
/*
* Passed an array of pages, drop them all from swapcache and then release
* them. They are removed from the LRU and freed if this is their last use.
*/
void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
{
lru_add_drain();
for (int i = 0; i < nr; i++)
free_swap_cache(encoded_page_ptr(pages[i]));
release_pages(pages, nr);
}
static inline bool swap_use_vma_readahead(void)
{
return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
}
/*
* Lookup a swap entry in the swap cache. A found folio will be returned
* unlocked and with its refcount incremented - we rely on the kernel
* lock getting page table operations atomic even if we drop the folio
* lock before returning.
*
* Caller must lock the swap device or hold a reference to keep it valid.
*/
struct folio *swap_cache_get_folio(swp_entry_t entry,
struct vm_area_struct *vma, unsigned long addr)
{
struct folio *folio;
folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
if (!IS_ERR(folio)) {
bool vma_ra = swap_use_vma_readahead();
bool readahead;
/*
* At the moment, we don't support PG_readahead for anon THP
* so let's bail out rather than confusing the readahead stat.
*/
if (unlikely(folio_test_large(folio)))
return folio;
readahead = folio_test_clear_readahead(folio);
if (vma && vma_ra) {
unsigned long ra_val;
int win, hits;
ra_val = GET_SWAP_RA_VAL(vma);
win = SWAP_RA_WIN(ra_val);
hits = SWAP_RA_HITS(ra_val);
if (readahead)
hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
atomic_long_set(&vma->swap_readahead_info,
SWAP_RA_VAL(addr, win, hits));
}
if (readahead) {
count_vm_event(SWAP_RA_HIT);
if (!vma || !vma_ra)
atomic_inc(&swapin_readahead_hits);
}
} else {
folio = NULL;
}
return folio;
}
/**
* filemap_get_incore_folio - Find and get a folio from the page or swap caches.
* @mapping: The address_space to search.
* @index: The page cache index.
*
* This differs from filemap_get_folio() in that it will also look for the
* folio in the swap cache.
*
* Return: The found folio or %NULL.
*/
struct folio *filemap_get_incore_folio(struct address_space *mapping,
pgoff_t index)
{
swp_entry_t swp;
struct swap_info_struct *si;
struct folio *folio = filemap_get_entry(mapping, index);
if (!folio)
return ERR_PTR(-ENOENT);
if (!xa_is_value(folio))
return folio;
if (!shmem_mapping(mapping))
return ERR_PTR(-ENOENT);
swp = radix_to_swp_entry(folio);
/* There might be swapin error entries in shmem mapping. */
if (non_swap_entry(swp))
return ERR_PTR(-ENOENT);
/* Prevent swapoff from happening to us */
si = get_swap_device(swp);
if (!si)
return ERR_PTR(-ENOENT);
index = swp_offset(swp);
folio = filemap_get_folio(swap_address_space(swp), index);
put_swap_device(si);
return folio;
}
struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
bool skip_if_exists)
{
struct swap_info_struct *si;
struct folio *folio;
void *shadow = NULL;
*new_page_allocated = false;
si = get_swap_device(entry);
if (!si)
return NULL;
for (;;) {
int err;
/*
* First check the swap cache. Since this is normally
* called after swap_cache_get_folio() failed, re-calling
* that would confuse statistics.
*/
folio = filemap_get_folio(swap_address_space(entry),
swp_offset(entry));
if (!IS_ERR(folio))
goto got_folio;
/*
* Just skip read ahead for unused swap slot.
* During swap_off when swap_slot_cache is disabled,
* we have to handle the race between putting
* swap entry in swap cache and marking swap slot
* as SWAP_HAS_CACHE. That's done in later part of code or
* else swap_off will be aborted if we return NULL.
*/
if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
goto fail_put_swap;
/*
* Get a new folio to read into from swap. Allocate it now,
* before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
* cause any racers to loop around until we add it to cache.
*/
folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
mpol, ilx, numa_node_id());
if (!folio)
goto fail_put_swap;
/*
* Swap entry may have been freed since our caller observed it.
*/
err = swapcache_prepare(entry);
if (!err)
break;
folio_put(folio);
if (err != -EEXIST)
goto fail_put_swap;
/*
* Protect against a recursive call to __read_swap_cache_async()
* on the same entry waiting forever here because SWAP_HAS_CACHE
* is set but the folio is not the swap cache yet. This can
* happen today if mem_cgroup_swapin_charge_folio() below
* triggers reclaim through zswap, which may call
* __read_swap_cache_async() in the writeback path.
*/
if (skip_if_exists)
goto fail_put_swap;
/*
* We might race against __delete_from_swap_cache(), and
* stumble across a swap_map entry whose SWAP_HAS_CACHE
* has not yet been cleared. Or race against another
* __read_swap_cache_async(), which has set SWAP_HAS_CACHE
* in swap_map, but not yet added its folio to swap cache.
*/
schedule_timeout_uninterruptible(1);
}
/*
* The swap entry is ours to swap in. Prepare the new folio.
*/
__folio_set_locked(folio);
__folio_set_swapbacked(folio);
if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
goto fail_unlock;
/* May fail (-ENOMEM) if XArray node allocation failed. */
if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
goto fail_unlock;
mem_cgroup_swapin_uncharge_swap(entry);
if (shadow)
workingset_refault(folio, shadow);
/* Caller will initiate read into locked folio */
folio_add_lru(folio);
*new_page_allocated = true;
got_folio:
put_swap_device(si);
return folio;
fail_unlock:
put_swap_folio(folio, entry);
folio_unlock(folio);
folio_put(folio);
fail_put_swap:
put_swap_device(si);
return NULL;
}
/*
* Locate a page of swap in physical memory, reserving swap cache space
* and reading the disk if it is not already cached.
* A failure return means that either the page allocation failed or that
* the swap entry is no longer in use.
*
* get/put_swap_device() aren't needed to call this function, because
* __read_swap_cache_async() call them and swap_read_folio() holds the
* swap cache folio lock.
*/
struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr,
struct swap_iocb **plug)
{
bool page_allocated;
struct mempolicy *mpol;
pgoff_t ilx;
struct folio *folio;
mpol = get_vma_policy(vma, addr, 0, &ilx);
folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
&page_allocated, false);
mpol_cond_put(mpol);
if (page_allocated)
swap_read_folio(folio, false, plug);
return folio;
}
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
unsigned long offset,
int hits,
int max_pages,
int prev_win)
{
unsigned int pages, last_ra;
/*
* This heuristic has been found to work well on both sequential and
* random loads, swapping to hard disk or to SSD: please don't ask
* what the "+ 2" means, it just happens to work well, that's all.
*/
pages = hits + 2;
if (pages == 2) {
/*
* We can have no readahead hits to judge by: but must not get
* stuck here forever, so check for an adjacent offset instead
* (and don't even bother to check whether swap type is same).
*/
if (offset != prev_offset + 1 && offset != prev_offset - 1)
pages = 1;
} else {
unsigned int roundup = 4;
while (roundup < pages)
roundup <<= 1;
pages = roundup;
}
if (pages > max_pages)
pages = max_pages;
/* Don't shrink readahead too fast */
last_ra = prev_win / 2;
if (pages < last_ra)
pages = last_ra;
return pages;
}
static unsigned long swapin_nr_pages(unsigned long offset)
{
static unsigned long prev_offset;
unsigned int hits, pages, max_pages;
static atomic_t last_readahead_pages;
max_pages = 1 << READ_ONCE(page_cluster);
if (max_pages <= 1)
return 1;
hits = atomic_xchg(&swapin_readahead_hits, 0);
pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
max_pages,
atomic_read(&last_readahead_pages));
if (!hits)
WRITE_ONCE(prev_offset, offset);
atomic_set(&last_readahead_pages, pages);
return pages;
}
/**
* swap_cluster_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
* @mpol: NUMA memory allocation policy to be applied
* @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
*
* Returns the struct folio for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*
* Note: it is intentional that the same NUMA policy and interleave index
* are used for every page of the readahead: neighbouring pages on swap
* are fairly likely to have been swapped out from the same node.
*/
struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct mempolicy *mpol, pgoff_t ilx)
{
struct folio *folio;
unsigned long entry_offset = swp_offset(entry);
unsigned long offset = entry_offset;
unsigned long start_offset, end_offset;
unsigned long mask;
struct swap_info_struct *si = swp_swap_info(entry);
struct blk_plug plug;
struct swap_iocb *splug = NULL;
bool page_allocated;
mask = swapin_nr_pages(offset) - 1;
if (!mask)
goto skip;
/* Read a page_cluster sized and aligned cluster around offset. */
start_offset = offset & ~mask;
end_offset = offset | mask;
if (!start_offset) /* First page is swap header. */
start_offset++;
if (end_offset >= si->max)
end_offset = si->max - 1;
blk_start_plug(&plug);
for (offset = start_offset; offset <= end_offset ; offset++) {
/* Ok, do the async read-ahead now */
folio = __read_swap_cache_async(
swp_entry(swp_type(entry), offset),
gfp_mask, mpol, ilx, &page_allocated, false);
if (!folio)
continue;
if (page_allocated) {
swap_read_folio(folio, false, &splug);
if (offset != entry_offset) {
folio_set_readahead(folio);
count_vm_event(SWAP_RA);
}
}
folio_put(folio);
}
blk_finish_plug(&plug);
swap_read_unplug(splug);
lru_add_drain(); /* Push any new pages onto the LRU now */
skip:
/* The page was likely read above, so no need for plugging here */
folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
&page_allocated, false);
if (unlikely(page_allocated)) {
zswap_folio_swapin(folio);
swap_read_folio(folio, false, NULL);
}
return folio;
}
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
{
struct address_space *spaces, *space;
unsigned int i, nr;
nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
if (!spaces)
return -ENOMEM;
for (i = 0; i < nr; i++) {
space = spaces + i;
xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
atomic_set(&space->i_mmap_writable, 0);
space->a_ops = &swap_aops;
/* swap cache doesn't use writeback related tags */
mapping_set_no_writeback_tags(space);
}
nr_swapper_spaces[type] = nr;
swapper_spaces[type] = spaces;
return 0;
}
void exit_swap_address_space(unsigned int type)
{
int i;
struct address_space *spaces = swapper_spaces[type];
for (i = 0; i < nr_swapper_spaces[type]; i++)
VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
kvfree(spaces);
nr_swapper_spaces[type] = 0;
swapper_spaces[type] = NULL;
}
#define SWAP_RA_ORDER_CEILING 5
struct vma_swap_readahead {
unsigned short win;
unsigned short offset;
unsigned short nr_pte;
};
static void swap_ra_info(struct vm_fault *vmf,
struct vma_swap_readahead *ra_info)
{
struct vm_area_struct *vma = vmf->vma;
unsigned long ra_val;
unsigned long faddr, pfn, fpfn, lpfn, rpfn;
unsigned long start, end;
unsigned int max_win, hits, prev_win, win;
max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
SWAP_RA_ORDER_CEILING);
if (max_win == 1) {
ra_info->win = 1;
return;
}
faddr = vmf->address;
fpfn = PFN_DOWN(faddr);
ra_val = GET_SWAP_RA_VAL(vma);
pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
prev_win = SWAP_RA_WIN(ra_val);
hits = SWAP_RA_HITS(ra_val);
ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
max_win, prev_win);
atomic_long_set(&vma->swap_readahead_info,
SWAP_RA_VAL(faddr, win, 0));
if (win == 1)
return;
if (fpfn == pfn + 1) {
lpfn = fpfn;
rpfn = fpfn + win;
} else if (pfn == fpfn + 1) {
lpfn = fpfn - win + 1;
rpfn = fpfn + 1;
} else {
unsigned int left = (win - 1) / 2;
lpfn = fpfn - left;
rpfn = fpfn + win - left;
}
start = max3(lpfn, PFN_DOWN(vma->vm_start),
PFN_DOWN(faddr & PMD_MASK));
end = min3(rpfn, PFN_DOWN(vma->vm_end),
PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
ra_info->nr_pte = end - start;
ra_info->offset = fpfn - start;
}
/**
* swap_vma_readahead - swap in pages in hope we need them soon
* @targ_entry: swap entry of the targeted memory
* @gfp_mask: memory allocation flags
* @mpol: NUMA memory allocation policy to be applied
* @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
* @vmf: fault information
*
* Returns the struct folio for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read in a few pages whose
* virtual addresses are around the fault address in the same vma.
*
* Caller must hold read mmap_lock if vmf->vma is not NULL.
*
*/
static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
{
struct blk_plug plug;
struct swap_iocb *splug = NULL;
struct folio *folio;
pte_t *pte = NULL, pentry;
unsigned long addr;
swp_entry_t entry;
pgoff_t ilx;
unsigned int i;
bool page_allocated;
struct vma_swap_readahead ra_info = {
.win = 1,
};
swap_ra_info(vmf, &ra_info);
if (ra_info.win == 1)
goto skip;
addr = vmf->address - (ra_info.offset * PAGE_SIZE);
ilx = targ_ilx - ra_info.offset;
blk_start_plug(&plug);
for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
if (!pte++) {
pte = pte_offset_map(vmf->pmd, addr);
if (!pte)
break;
}
pentry = ptep_get_lockless(pte);
if (!is_swap_pte(pentry))
continue;
entry = pte_to_swp_entry(pentry);
if (unlikely(non_swap_entry(entry)))
continue;
pte_unmap(pte);
pte = NULL;
folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
&page_allocated, false);
if (!folio)
continue;
if (page_allocated) {
swap_read_folio(folio, false, &splug);
if (i != ra_info.offset) {
folio_set_readahead(folio);
count_vm_event(SWAP_RA);
}
}
folio_put(folio);
}
if (pte)
pte_unmap(pte);
blk_finish_plug(&plug);
swap_read_unplug(splug);
lru_add_drain();
skip:
/* The folio was likely read above, so no need for plugging here */
folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
&page_allocated, false);
if (unlikely(page_allocated)) {
zswap_folio_swapin(folio);
swap_read_folio(folio, false, NULL);
}
return folio;
}
/**
* swapin_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
* @vmf: fault information
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* It's a main entry function for swap readahead. By the configuration,
* it will read ahead blocks by cluster-based(ie, physical disk based)
* or vma-based(ie, virtual address based on faulty address) readahead.
*/
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct vm_fault *vmf)
{
struct mempolicy *mpol;
pgoff_t ilx;
struct folio *folio;
mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
folio = swap_use_vma_readahead() ?
swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
mpol_cond_put(mpol);
if (!folio)
return NULL;
return folio_file_page(folio, swp_offset(entry));
}
#ifdef CONFIG_SYSFS
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%s\n",
enable_vma_readahead ? "true" : "false");
}
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
ssize_t ret;
ret = kstrtobool(buf, &enable_vma_readahead);
if (ret)
return ret;
return count;
}
static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
static struct attribute *swap_attrs[] = {
&vma_ra_enabled_attr.attr,
NULL,
};
static const struct attribute_group swap_attr_group = {
.attrs = swap_attrs,
};
static int __init swap_init_sysfs(void)
{
int err;
struct kobject *swap_kobj;
swap_kobj = kobject_create_and_add("swap", mm_kobj);
if (!swap_kobj) {
pr_err("failed to create swap kobject\n");
return -ENOMEM;
}
err = sysfs_create_group(swap_kobj, &swap_attr_group);
if (err) {
pr_err("failed to register swap group\n");
goto delete_obj;
}
return 0;
delete_obj:
kobject_put(swap_kobj);
return err;
}
subsys_initcall(swap_init_sysfs);
#endif