mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 01:04:19 +08:00
db6ec53b7e
Two paths to update quota and f2fs_lock_op: 1. - lock_op | - quota_update `- unlock_op 2. - quota_update - lock_op `- unlock_op But, we need to make a transaction on quota_update + lock_op in #2 case. So, this patch introduces: 1. lock_op 2. down_write 3. check __need_flush 4. up_write 5. if there is dirty quota entries, flush them 6. otherwise, good to go Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
1675 lines
41 KiB
C
1675 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/f2fs/checkpoint.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *ino_entry_slab;
|
|
struct kmem_cache *f2fs_inode_entry_slab;
|
|
|
|
void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
|
|
{
|
|
f2fs_build_fault_attr(sbi, 0, 0);
|
|
set_ckpt_flags(sbi, CP_ERROR_FLAG);
|
|
if (!end_io)
|
|
f2fs_flush_merged_writes(sbi);
|
|
}
|
|
|
|
/*
|
|
* We guarantee no failure on the returned page.
|
|
*/
|
|
struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
struct page *page = NULL;
|
|
repeat:
|
|
page = f2fs_grab_cache_page(mapping, index, false);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
f2fs_wait_on_page_writeback(page, META, true, true);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* We guarantee no failure on the returned page.
|
|
*/
|
|
static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
|
|
bool is_meta)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
struct page *page;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.op = REQ_OP_READ,
|
|
.op_flags = REQ_META | REQ_PRIO,
|
|
.old_blkaddr = index,
|
|
.new_blkaddr = index,
|
|
.encrypted_page = NULL,
|
|
.is_por = !is_meta,
|
|
};
|
|
int err;
|
|
|
|
if (unlikely(!is_meta))
|
|
fio.op_flags &= ~REQ_META;
|
|
repeat:
|
|
page = f2fs_grab_cache_page(mapping, index, false);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
if (PageUptodate(page))
|
|
goto out;
|
|
|
|
fio.page = page;
|
|
|
|
err = f2fs_submit_page_bio(&fio);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
out:
|
|
return page;
|
|
}
|
|
|
|
struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
return __get_meta_page(sbi, index, true);
|
|
}
|
|
|
|
struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct page *page;
|
|
int count = 0;
|
|
|
|
retry:
|
|
page = __get_meta_page(sbi, index, true);
|
|
if (IS_ERR(page)) {
|
|
if (PTR_ERR(page) == -EIO &&
|
|
++count <= DEFAULT_RETRY_IO_COUNT)
|
|
goto retry;
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/* for POR only */
|
|
struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
return __get_meta_page(sbi, index, false);
|
|
}
|
|
|
|
static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
|
|
int type)
|
|
{
|
|
struct seg_entry *se;
|
|
unsigned int segno, offset;
|
|
bool exist;
|
|
|
|
if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
|
|
return true;
|
|
|
|
segno = GET_SEGNO(sbi, blkaddr);
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
|
se = get_seg_entry(sbi, segno);
|
|
|
|
exist = f2fs_test_bit(offset, se->cur_valid_map);
|
|
if (!exist && type == DATA_GENERIC_ENHANCE) {
|
|
f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
|
|
blkaddr, exist);
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
WARN_ON(1);
|
|
}
|
|
return exist;
|
|
}
|
|
|
|
bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
|
|
block_t blkaddr, int type)
|
|
{
|
|
switch (type) {
|
|
case META_NAT:
|
|
break;
|
|
case META_SIT:
|
|
if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
|
|
return false;
|
|
break;
|
|
case META_SSA:
|
|
if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
|
|
blkaddr < SM_I(sbi)->ssa_blkaddr))
|
|
return false;
|
|
break;
|
|
case META_CP:
|
|
if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
|
|
blkaddr < __start_cp_addr(sbi)))
|
|
return false;
|
|
break;
|
|
case META_POR:
|
|
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
|
|
blkaddr < MAIN_BLKADDR(sbi)))
|
|
return false;
|
|
break;
|
|
case DATA_GENERIC:
|
|
case DATA_GENERIC_ENHANCE:
|
|
case DATA_GENERIC_ENHANCE_READ:
|
|
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
|
|
blkaddr < MAIN_BLKADDR(sbi))) {
|
|
f2fs_warn(sbi, "access invalid blkaddr:%u",
|
|
blkaddr);
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
WARN_ON(1);
|
|
return false;
|
|
} else {
|
|
return __is_bitmap_valid(sbi, blkaddr, type);
|
|
}
|
|
break;
|
|
case META_GENERIC:
|
|
if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
|
|
blkaddr >= MAIN_BLKADDR(sbi)))
|
|
return false;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Readahead CP/NAT/SIT/SSA pages
|
|
*/
|
|
int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
|
|
int type, bool sync)
|
|
{
|
|
struct page *page;
|
|
block_t blkno = start;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.op = REQ_OP_READ,
|
|
.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
|
|
.encrypted_page = NULL,
|
|
.in_list = false,
|
|
.is_por = (type == META_POR),
|
|
};
|
|
struct blk_plug plug;
|
|
|
|
if (unlikely(type == META_POR))
|
|
fio.op_flags &= ~REQ_META;
|
|
|
|
blk_start_plug(&plug);
|
|
for (; nrpages-- > 0; blkno++) {
|
|
|
|
if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
|
|
goto out;
|
|
|
|
switch (type) {
|
|
case META_NAT:
|
|
if (unlikely(blkno >=
|
|
NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
|
|
blkno = 0;
|
|
/* get nat block addr */
|
|
fio.new_blkaddr = current_nat_addr(sbi,
|
|
blkno * NAT_ENTRY_PER_BLOCK);
|
|
break;
|
|
case META_SIT:
|
|
/* get sit block addr */
|
|
fio.new_blkaddr = current_sit_addr(sbi,
|
|
blkno * SIT_ENTRY_PER_BLOCK);
|
|
break;
|
|
case META_SSA:
|
|
case META_CP:
|
|
case META_POR:
|
|
fio.new_blkaddr = blkno;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
page = f2fs_grab_cache_page(META_MAPPING(sbi),
|
|
fio.new_blkaddr, false);
|
|
if (!page)
|
|
continue;
|
|
if (PageUptodate(page)) {
|
|
f2fs_put_page(page, 1);
|
|
continue;
|
|
}
|
|
|
|
fio.page = page;
|
|
f2fs_submit_page_bio(&fio);
|
|
f2fs_put_page(page, 0);
|
|
}
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
return blkno - start;
|
|
}
|
|
|
|
void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct page *page;
|
|
bool readahead = false;
|
|
|
|
page = find_get_page(META_MAPPING(sbi), index);
|
|
if (!page || !PageUptodate(page))
|
|
readahead = true;
|
|
f2fs_put_page(page, 0);
|
|
|
|
if (readahead)
|
|
f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
|
|
}
|
|
|
|
static int __f2fs_write_meta_page(struct page *page,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
|
|
trace_f2fs_writepage(page, META);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto redirty_out;
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
|
|
goto redirty_out;
|
|
|
|
f2fs_do_write_meta_page(sbi, page, io_type);
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
|
|
if (wbc->for_reclaim)
|
|
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
|
|
|
|
unlock_page(page);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
f2fs_submit_merged_write(sbi, META);
|
|
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
static int f2fs_write_meta_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
return __f2fs_write_meta_page(page, wbc, FS_META_IO);
|
|
}
|
|
|
|
static int f2fs_write_meta_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
|
|
long diff, written;
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
/* collect a number of dirty meta pages and write together */
|
|
if (wbc->sync_mode != WB_SYNC_ALL &&
|
|
get_pages(sbi, F2FS_DIRTY_META) <
|
|
nr_pages_to_skip(sbi, META))
|
|
goto skip_write;
|
|
|
|
/* if locked failed, cp will flush dirty pages instead */
|
|
if (!mutex_trylock(&sbi->cp_mutex))
|
|
goto skip_write;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, META);
|
|
diff = nr_pages_to_write(sbi, META, wbc);
|
|
written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
|
|
return 0;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
|
|
trace_f2fs_writepages(mapping->host, wbc, META);
|
|
return 0;
|
|
}
|
|
|
|
long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
|
|
long nr_to_write, enum iostat_type io_type)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
pgoff_t index = 0, prev = ULONG_MAX;
|
|
struct pagevec pvec;
|
|
long nwritten = 0;
|
|
int nr_pages;
|
|
struct writeback_control wbc = {
|
|
.for_reclaim = 0,
|
|
};
|
|
struct blk_plug plug;
|
|
|
|
pagevec_init(&pvec);
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
|
|
PAGECACHE_TAG_DIRTY))) {
|
|
int i;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
if (prev == ULONG_MAX)
|
|
prev = page->index - 1;
|
|
if (nr_to_write != LONG_MAX && page->index != prev + 1) {
|
|
pagevec_release(&pvec);
|
|
goto stop;
|
|
}
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, META, true, true);
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
if (__f2fs_write_meta_page(page, &wbc, io_type)) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
nwritten++;
|
|
prev = page->index;
|
|
if (unlikely(nwritten >= nr_to_write))
|
|
break;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
stop:
|
|
if (nwritten)
|
|
f2fs_submit_merged_write(sbi, type);
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
return nwritten;
|
|
}
|
|
|
|
static int f2fs_set_meta_page_dirty(struct page *page)
|
|
{
|
|
trace_f2fs_set_page_dirty(page, META);
|
|
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
|
|
f2fs_set_page_private(page, 0);
|
|
f2fs_trace_pid(page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const struct address_space_operations f2fs_meta_aops = {
|
|
.writepage = f2fs_write_meta_page,
|
|
.writepages = f2fs_write_meta_pages,
|
|
.set_page_dirty = f2fs_set_meta_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = f2fs_migrate_page,
|
|
#endif
|
|
};
|
|
|
|
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
|
|
unsigned int devidx, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e, *tmp;
|
|
|
|
tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
|
|
|
|
radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (!e) {
|
|
e = tmp;
|
|
if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
|
|
f2fs_bug_on(sbi, 1);
|
|
|
|
memset(e, 0, sizeof(struct ino_entry));
|
|
e->ino = ino;
|
|
|
|
list_add_tail(&e->list, &im->ino_list);
|
|
if (type != ORPHAN_INO)
|
|
im->ino_num++;
|
|
}
|
|
|
|
if (type == FLUSH_INO)
|
|
f2fs_set_bit(devidx, (char *)&e->dirty_device);
|
|
|
|
spin_unlock(&im->ino_lock);
|
|
radix_tree_preload_end();
|
|
|
|
if (e != tmp)
|
|
kmem_cache_free(ino_entry_slab, tmp);
|
|
}
|
|
|
|
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (e) {
|
|
list_del(&e->list);
|
|
radix_tree_delete(&im->ino_root, ino);
|
|
im->ino_num--;
|
|
spin_unlock(&im->ino_lock);
|
|
kmem_cache_free(ino_entry_slab, e);
|
|
return;
|
|
}
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
|
|
void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
/* add new dirty ino entry into list */
|
|
__add_ino_entry(sbi, ino, 0, type);
|
|
}
|
|
|
|
void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
/* remove dirty ino entry from list */
|
|
__remove_ino_entry(sbi, ino, type);
|
|
}
|
|
|
|
/* mode should be APPEND_INO or UPDATE_INO */
|
|
bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
|
|
{
|
|
struct inode_management *im = &sbi->im[mode];
|
|
struct ino_entry *e;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
spin_unlock(&im->ino_lock);
|
|
return e ? true : false;
|
|
}
|
|
|
|
void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
|
|
{
|
|
struct ino_entry *e, *tmp;
|
|
int i;
|
|
|
|
for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
|
|
struct inode_management *im = &sbi->im[i];
|
|
|
|
spin_lock(&im->ino_lock);
|
|
list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
|
|
list_del(&e->list);
|
|
radix_tree_delete(&im->ino_root, e->ino);
|
|
kmem_cache_free(ino_entry_slab, e);
|
|
im->ino_num--;
|
|
}
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
}
|
|
|
|
void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
|
|
unsigned int devidx, int type)
|
|
{
|
|
__add_ino_entry(sbi, ino, devidx, type);
|
|
}
|
|
|
|
bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
|
|
unsigned int devidx, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e;
|
|
bool is_dirty = false;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
|
|
is_dirty = true;
|
|
spin_unlock(&im->ino_lock);
|
|
return is_dirty;
|
|
}
|
|
|
|
int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
int err = 0;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
|
|
if (time_to_inject(sbi, FAULT_ORPHAN)) {
|
|
spin_unlock(&im->ino_lock);
|
|
f2fs_show_injection_info(FAULT_ORPHAN);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (unlikely(im->ino_num >= sbi->max_orphans))
|
|
err = -ENOSPC;
|
|
else
|
|
im->ino_num++;
|
|
spin_unlock(&im->ino_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
|
|
spin_lock(&im->ino_lock);
|
|
f2fs_bug_on(sbi, im->ino_num == 0);
|
|
im->ino_num--;
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
|
|
void f2fs_add_orphan_inode(struct inode *inode)
|
|
{
|
|
/* add new orphan ino entry into list */
|
|
__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
|
|
f2fs_update_inode_page(inode);
|
|
}
|
|
|
|
void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
/* remove orphan entry from orphan list */
|
|
__remove_ino_entry(sbi, ino, ORPHAN_INO);
|
|
}
|
|
|
|
static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct inode *inode;
|
|
struct node_info ni;
|
|
int err;
|
|
|
|
inode = f2fs_iget_retry(sbi->sb, ino);
|
|
if (IS_ERR(inode)) {
|
|
/*
|
|
* there should be a bug that we can't find the entry
|
|
* to orphan inode.
|
|
*/
|
|
f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
|
|
return PTR_ERR(inode);
|
|
}
|
|
|
|
err = dquot_initialize(inode);
|
|
if (err) {
|
|
iput(inode);
|
|
goto err_out;
|
|
}
|
|
|
|
clear_nlink(inode);
|
|
|
|
/* truncate all the data during iput */
|
|
iput(inode);
|
|
|
|
err = f2fs_get_node_info(sbi, ino, &ni);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* ENOMEM was fully retried in f2fs_evict_inode. */
|
|
if (ni.blk_addr != NULL_ADDR) {
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
return 0;
|
|
|
|
err_out:
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
|
|
__func__, ino);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
|
|
{
|
|
block_t start_blk, orphan_blocks, i, j;
|
|
unsigned int s_flags = sbi->sb->s_flags;
|
|
int err = 0;
|
|
#ifdef CONFIG_QUOTA
|
|
int quota_enabled;
|
|
#endif
|
|
|
|
if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
|
|
return 0;
|
|
|
|
if (bdev_read_only(sbi->sb->s_bdev)) {
|
|
f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
|
|
return 0;
|
|
}
|
|
|
|
if (s_flags & SB_RDONLY) {
|
|
f2fs_info(sbi, "orphan cleanup on readonly fs");
|
|
sbi->sb->s_flags &= ~SB_RDONLY;
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
/* Needed for iput() to work correctly and not trash data */
|
|
sbi->sb->s_flags |= SB_ACTIVE;
|
|
|
|
/*
|
|
* Turn on quotas which were not enabled for read-only mounts if
|
|
* filesystem has quota feature, so that they are updated correctly.
|
|
*/
|
|
quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
|
|
#endif
|
|
|
|
start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
|
|
orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
|
|
|
|
f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
|
|
|
|
for (i = 0; i < orphan_blocks; i++) {
|
|
struct page *page;
|
|
struct f2fs_orphan_block *orphan_blk;
|
|
|
|
page = f2fs_get_meta_page(sbi, start_blk + i);
|
|
if (IS_ERR(page)) {
|
|
err = PTR_ERR(page);
|
|
goto out;
|
|
}
|
|
|
|
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
|
|
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
|
|
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
|
|
err = recover_orphan_inode(sbi, ino);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
goto out;
|
|
}
|
|
}
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
/* clear Orphan Flag */
|
|
clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
|
|
out:
|
|
set_sbi_flag(sbi, SBI_IS_RECOVERED);
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
/* Turn quotas off */
|
|
if (quota_enabled)
|
|
f2fs_quota_off_umount(sbi->sb);
|
|
#endif
|
|
sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
|
|
|
|
return err;
|
|
}
|
|
|
|
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
struct list_head *head;
|
|
struct f2fs_orphan_block *orphan_blk = NULL;
|
|
unsigned int nentries = 0;
|
|
unsigned short index = 1;
|
|
unsigned short orphan_blocks;
|
|
struct page *page = NULL;
|
|
struct ino_entry *orphan = NULL;
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
|
|
orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
|
|
|
|
/*
|
|
* we don't need to do spin_lock(&im->ino_lock) here, since all the
|
|
* orphan inode operations are covered under f2fs_lock_op().
|
|
* And, spin_lock should be avoided due to page operations below.
|
|
*/
|
|
head = &im->ino_list;
|
|
|
|
/* loop for each orphan inode entry and write them in Jornal block */
|
|
list_for_each_entry(orphan, head, list) {
|
|
if (!page) {
|
|
page = f2fs_grab_meta_page(sbi, start_blk++);
|
|
orphan_blk =
|
|
(struct f2fs_orphan_block *)page_address(page);
|
|
memset(orphan_blk, 0, sizeof(*orphan_blk));
|
|
}
|
|
|
|
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
|
|
|
|
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
|
|
/*
|
|
* an orphan block is full of 1020 entries,
|
|
* then we need to flush current orphan blocks
|
|
* and bring another one in memory
|
|
*/
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
index++;
|
|
nentries = 0;
|
|
page = NULL;
|
|
}
|
|
}
|
|
|
|
if (page) {
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
}
|
|
|
|
static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
|
|
struct f2fs_checkpoint *ckpt)
|
|
{
|
|
unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
|
|
__u32 chksum;
|
|
|
|
chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
|
|
if (chksum_ofs < CP_CHKSUM_OFFSET) {
|
|
chksum_ofs += sizeof(chksum);
|
|
chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
|
|
F2FS_BLKSIZE - chksum_ofs);
|
|
}
|
|
return chksum;
|
|
}
|
|
|
|
static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
|
|
struct f2fs_checkpoint **cp_block, struct page **cp_page,
|
|
unsigned long long *version)
|
|
{
|
|
size_t crc_offset = 0;
|
|
__u32 crc;
|
|
|
|
*cp_page = f2fs_get_meta_page(sbi, cp_addr);
|
|
if (IS_ERR(*cp_page))
|
|
return PTR_ERR(*cp_page);
|
|
|
|
*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
|
|
|
|
crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
|
|
if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
|
|
crc_offset > CP_CHKSUM_OFFSET) {
|
|
f2fs_put_page(*cp_page, 1);
|
|
f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
crc = f2fs_checkpoint_chksum(sbi, *cp_block);
|
|
if (crc != cur_cp_crc(*cp_block)) {
|
|
f2fs_put_page(*cp_page, 1);
|
|
f2fs_warn(sbi, "invalid crc value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*version = cur_cp_version(*cp_block);
|
|
return 0;
|
|
}
|
|
|
|
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
|
|
block_t cp_addr, unsigned long long *version)
|
|
{
|
|
struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
|
|
struct f2fs_checkpoint *cp_block = NULL;
|
|
unsigned long long cur_version = 0, pre_version = 0;
|
|
int err;
|
|
|
|
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
|
|
&cp_page_1, version);
|
|
if (err)
|
|
return NULL;
|
|
|
|
if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
|
|
sbi->blocks_per_seg) {
|
|
f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
|
|
le32_to_cpu(cp_block->cp_pack_total_block_count));
|
|
goto invalid_cp;
|
|
}
|
|
pre_version = *version;
|
|
|
|
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
|
|
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
|
|
&cp_page_2, version);
|
|
if (err)
|
|
goto invalid_cp;
|
|
cur_version = *version;
|
|
|
|
if (cur_version == pre_version) {
|
|
*version = cur_version;
|
|
f2fs_put_page(cp_page_2, 1);
|
|
return cp_page_1;
|
|
}
|
|
f2fs_put_page(cp_page_2, 1);
|
|
invalid_cp:
|
|
f2fs_put_page(cp_page_1, 1);
|
|
return NULL;
|
|
}
|
|
|
|
int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *cp_block;
|
|
struct f2fs_super_block *fsb = sbi->raw_super;
|
|
struct page *cp1, *cp2, *cur_page;
|
|
unsigned long blk_size = sbi->blocksize;
|
|
unsigned long long cp1_version = 0, cp2_version = 0;
|
|
unsigned long long cp_start_blk_no;
|
|
unsigned int cp_blks = 1 + __cp_payload(sbi);
|
|
block_t cp_blk_no;
|
|
int i;
|
|
int err;
|
|
|
|
sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
|
|
GFP_KERNEL);
|
|
if (!sbi->ckpt)
|
|
return -ENOMEM;
|
|
/*
|
|
* Finding out valid cp block involves read both
|
|
* sets( cp pack1 and cp pack 2)
|
|
*/
|
|
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
|
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
|
|
|
|
/* The second checkpoint pack should start at the next segment */
|
|
cp_start_blk_no += ((unsigned long long)1) <<
|
|
le32_to_cpu(fsb->log_blocks_per_seg);
|
|
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
|
|
|
|
if (cp1 && cp2) {
|
|
if (ver_after(cp2_version, cp1_version))
|
|
cur_page = cp2;
|
|
else
|
|
cur_page = cp1;
|
|
} else if (cp1) {
|
|
cur_page = cp1;
|
|
} else if (cp2) {
|
|
cur_page = cp2;
|
|
} else {
|
|
err = -EFSCORRUPTED;
|
|
goto fail_no_cp;
|
|
}
|
|
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
|
|
memcpy(sbi->ckpt, cp_block, blk_size);
|
|
|
|
if (cur_page == cp1)
|
|
sbi->cur_cp_pack = 1;
|
|
else
|
|
sbi->cur_cp_pack = 2;
|
|
|
|
/* Sanity checking of checkpoint */
|
|
if (f2fs_sanity_check_ckpt(sbi)) {
|
|
err = -EFSCORRUPTED;
|
|
goto free_fail_no_cp;
|
|
}
|
|
|
|
if (cp_blks <= 1)
|
|
goto done;
|
|
|
|
cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
|
if (cur_page == cp2)
|
|
cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
|
|
|
|
for (i = 1; i < cp_blks; i++) {
|
|
void *sit_bitmap_ptr;
|
|
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
|
|
|
|
cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
|
|
if (IS_ERR(cur_page)) {
|
|
err = PTR_ERR(cur_page);
|
|
goto free_fail_no_cp;
|
|
}
|
|
sit_bitmap_ptr = page_address(cur_page);
|
|
memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
|
|
f2fs_put_page(cur_page, 1);
|
|
}
|
|
done:
|
|
f2fs_put_page(cp1, 1);
|
|
f2fs_put_page(cp2, 1);
|
|
return 0;
|
|
|
|
free_fail_no_cp:
|
|
f2fs_put_page(cp1, 1);
|
|
f2fs_put_page(cp2, 1);
|
|
fail_no_cp:
|
|
kvfree(sbi->ckpt);
|
|
return err;
|
|
}
|
|
|
|
static void __add_dirty_inode(struct inode *inode, enum inode_type type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
|
|
|
|
if (is_inode_flag_set(inode, flag))
|
|
return;
|
|
|
|
set_inode_flag(inode, flag);
|
|
if (!f2fs_is_volatile_file(inode))
|
|
list_add_tail(&F2FS_I(inode)->dirty_list,
|
|
&sbi->inode_list[type]);
|
|
stat_inc_dirty_inode(sbi, type);
|
|
}
|
|
|
|
static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
|
|
{
|
|
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
|
|
|
|
if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
|
|
return;
|
|
|
|
list_del_init(&F2FS_I(inode)->dirty_list);
|
|
clear_inode_flag(inode, flag);
|
|
stat_dec_dirty_inode(F2FS_I_SB(inode), type);
|
|
}
|
|
|
|
void f2fs_update_dirty_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
|
|
|
|
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
|
|
!S_ISLNK(inode->i_mode))
|
|
return;
|
|
|
|
spin_lock(&sbi->inode_lock[type]);
|
|
if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
|
|
__add_dirty_inode(inode, type);
|
|
inode_inc_dirty_pages(inode);
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
|
|
f2fs_set_page_private(page, 0);
|
|
f2fs_trace_pid(page);
|
|
}
|
|
|
|
void f2fs_remove_dirty_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
|
|
|
|
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
|
|
!S_ISLNK(inode->i_mode))
|
|
return;
|
|
|
|
if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
|
|
return;
|
|
|
|
spin_lock(&sbi->inode_lock[type]);
|
|
__remove_dirty_inode(inode, type);
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
}
|
|
|
|
int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
|
|
{
|
|
struct list_head *head;
|
|
struct inode *inode;
|
|
struct f2fs_inode_info *fi;
|
|
bool is_dir = (type == DIR_INODE);
|
|
unsigned long ino = 0;
|
|
|
|
trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
|
|
get_pages(sbi, is_dir ?
|
|
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
|
|
retry:
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return -EIO;
|
|
|
|
spin_lock(&sbi->inode_lock[type]);
|
|
|
|
head = &sbi->inode_list[type];
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
|
|
get_pages(sbi, is_dir ?
|
|
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
|
|
return 0;
|
|
}
|
|
fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
|
|
inode = igrab(&fi->vfs_inode);
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
if (inode) {
|
|
unsigned long cur_ino = inode->i_ino;
|
|
|
|
F2FS_I(inode)->cp_task = current;
|
|
|
|
filemap_fdatawrite(inode->i_mapping);
|
|
|
|
F2FS_I(inode)->cp_task = NULL;
|
|
|
|
iput(inode);
|
|
/* We need to give cpu to another writers. */
|
|
if (ino == cur_ino)
|
|
cond_resched();
|
|
else
|
|
ino = cur_ino;
|
|
} else {
|
|
/*
|
|
* We should submit bio, since it exists several
|
|
* wribacking dentry pages in the freeing inode.
|
|
*/
|
|
f2fs_submit_merged_write(sbi, DATA);
|
|
cond_resched();
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct list_head *head = &sbi->inode_list[DIRTY_META];
|
|
struct inode *inode;
|
|
struct f2fs_inode_info *fi;
|
|
s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
|
|
|
|
while (total--) {
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return -EIO;
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return 0;
|
|
}
|
|
fi = list_first_entry(head, struct f2fs_inode_info,
|
|
gdirty_list);
|
|
inode = igrab(&fi->vfs_inode);
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
if (inode) {
|
|
sync_inode_metadata(inode, 0);
|
|
|
|
/* it's on eviction */
|
|
if (is_inode_flag_set(inode, FI_DIRTY_INODE))
|
|
f2fs_update_inode_page(inode);
|
|
iput(inode);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __prepare_cp_block(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
nid_t last_nid = nm_i->next_scan_nid;
|
|
|
|
next_free_nid(sbi, &last_nid);
|
|
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
|
|
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
|
|
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
|
|
ckpt->next_free_nid = cpu_to_le32(last_nid);
|
|
}
|
|
|
|
static bool __need_flush_quota(struct f2fs_sb_info *sbi)
|
|
{
|
|
bool ret = false;
|
|
|
|
if (!is_journalled_quota(sbi))
|
|
return false;
|
|
|
|
down_write(&sbi->quota_sem);
|
|
if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
|
|
ret = false;
|
|
} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
|
|
ret = false;
|
|
} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
|
|
clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
|
|
ret = true;
|
|
} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
|
|
ret = true;
|
|
}
|
|
up_write(&sbi->quota_sem);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Freeze all the FS-operations for checkpoint.
|
|
*/
|
|
static int block_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = LONG_MAX,
|
|
.for_reclaim = 0,
|
|
};
|
|
struct blk_plug plug;
|
|
int err = 0, cnt = 0;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
retry_flush_quotas:
|
|
f2fs_lock_all(sbi);
|
|
if (__need_flush_quota(sbi)) {
|
|
int locked;
|
|
|
|
if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
|
|
set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
|
|
set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
|
|
goto retry_flush_dents;
|
|
}
|
|
f2fs_unlock_all(sbi);
|
|
|
|
/* only failed during mount/umount/freeze/quotactl */
|
|
locked = down_read_trylock(&sbi->sb->s_umount);
|
|
f2fs_quota_sync(sbi->sb, -1);
|
|
if (locked)
|
|
up_read(&sbi->sb->s_umount);
|
|
cond_resched();
|
|
goto retry_flush_quotas;
|
|
}
|
|
|
|
retry_flush_dents:
|
|
/* write all the dirty dentry pages */
|
|
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
|
|
f2fs_unlock_all(sbi);
|
|
err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
|
|
if (err)
|
|
goto out;
|
|
cond_resched();
|
|
goto retry_flush_quotas;
|
|
}
|
|
|
|
/*
|
|
* POR: we should ensure that there are no dirty node pages
|
|
* until finishing nat/sit flush. inode->i_blocks can be updated.
|
|
*/
|
|
down_write(&sbi->node_change);
|
|
|
|
if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
|
|
up_write(&sbi->node_change);
|
|
f2fs_unlock_all(sbi);
|
|
err = f2fs_sync_inode_meta(sbi);
|
|
if (err)
|
|
goto out;
|
|
cond_resched();
|
|
goto retry_flush_quotas;
|
|
}
|
|
|
|
retry_flush_nodes:
|
|
down_write(&sbi->node_write);
|
|
|
|
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
|
|
up_write(&sbi->node_write);
|
|
atomic_inc(&sbi->wb_sync_req[NODE]);
|
|
err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
|
|
atomic_dec(&sbi->wb_sync_req[NODE]);
|
|
if (err) {
|
|
up_write(&sbi->node_change);
|
|
f2fs_unlock_all(sbi);
|
|
goto out;
|
|
}
|
|
cond_resched();
|
|
goto retry_flush_nodes;
|
|
}
|
|
|
|
/*
|
|
* sbi->node_change is used only for AIO write_begin path which produces
|
|
* dirty node blocks and some checkpoint values by block allocation.
|
|
*/
|
|
__prepare_cp_block(sbi);
|
|
up_write(&sbi->node_change);
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
return err;
|
|
}
|
|
|
|
static void unblock_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
up_write(&sbi->node_write);
|
|
f2fs_unlock_all(sbi);
|
|
}
|
|
|
|
void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
for (;;) {
|
|
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (!get_pages(sbi, F2FS_WB_CP_DATA))
|
|
break;
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
break;
|
|
|
|
io_schedule_timeout(5*HZ);
|
|
}
|
|
finish_wait(&sbi->cp_wait, &wait);
|
|
}
|
|
|
|
static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sbi->cp_lock, flags);
|
|
|
|
if ((cpc->reason & CP_UMOUNT) &&
|
|
le32_to_cpu(ckpt->cp_pack_total_block_count) >
|
|
sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
|
|
disable_nat_bits(sbi, false);
|
|
|
|
if (cpc->reason & CP_TRIMMED)
|
|
__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
|
|
|
|
if (cpc->reason & CP_UMOUNT)
|
|
__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
|
|
if (cpc->reason & CP_FASTBOOT)
|
|
__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
|
|
|
|
if (orphan_num)
|
|
__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
|
|
is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
|
|
__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
|
|
__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
|
|
__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
|
|
__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
|
|
__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
|
|
|
|
/* set this flag to activate crc|cp_ver for recovery */
|
|
__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
|
|
__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
|
|
|
|
spin_unlock_irqrestore(&sbi->cp_lock, flags);
|
|
}
|
|
|
|
static void commit_checkpoint(struct f2fs_sb_info *sbi,
|
|
void *src, block_t blk_addr)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.for_reclaim = 0,
|
|
};
|
|
|
|
/*
|
|
* pagevec_lookup_tag and lock_page again will take
|
|
* some extra time. Therefore, f2fs_update_meta_pages and
|
|
* f2fs_sync_meta_pages are combined in this function.
|
|
*/
|
|
struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
|
|
int err;
|
|
|
|
f2fs_wait_on_page_writeback(page, META, true, true);
|
|
|
|
memcpy(page_address(page), src, PAGE_SIZE);
|
|
|
|
set_page_dirty(page);
|
|
if (unlikely(!clear_page_dirty_for_io(page)))
|
|
f2fs_bug_on(sbi, 1);
|
|
|
|
/* writeout cp pack 2 page */
|
|
err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
|
|
if (unlikely(err && f2fs_cp_error(sbi))) {
|
|
f2fs_put_page(page, 1);
|
|
return;
|
|
}
|
|
|
|
f2fs_bug_on(sbi, err);
|
|
f2fs_put_page(page, 0);
|
|
|
|
/* submit checkpoint (with barrier if NOBARRIER is not set) */
|
|
f2fs_submit_merged_write(sbi, META_FLUSH);
|
|
}
|
|
|
|
static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
|
|
block_t start_blk;
|
|
unsigned int data_sum_blocks, orphan_blocks;
|
|
__u32 crc32 = 0;
|
|
int i;
|
|
int cp_payload_blks = __cp_payload(sbi);
|
|
struct super_block *sb = sbi->sb;
|
|
struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
|
|
u64 kbytes_written;
|
|
int err;
|
|
|
|
/* Flush all the NAT/SIT pages */
|
|
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
|
|
f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
|
|
!f2fs_cp_error(sbi));
|
|
|
|
/*
|
|
* modify checkpoint
|
|
* version number is already updated
|
|
*/
|
|
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
|
|
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
|
|
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
|
|
ckpt->cur_node_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->cur_node_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
|
|
}
|
|
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
|
|
ckpt->cur_data_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->cur_data_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
|
|
}
|
|
|
|
/* 2 cp + n data seg summary + orphan inode blocks */
|
|
data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
|
|
spin_lock_irqsave(&sbi->cp_lock, flags);
|
|
if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
|
|
__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
spin_unlock_irqrestore(&sbi->cp_lock, flags);
|
|
|
|
orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
|
|
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
|
|
orphan_blocks);
|
|
|
|
if (__remain_node_summaries(cpc->reason))
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
|
|
cp_payload_blks + data_sum_blocks +
|
|
orphan_blocks + NR_CURSEG_NODE_TYPE);
|
|
else
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
|
|
cp_payload_blks + data_sum_blocks +
|
|
orphan_blocks);
|
|
|
|
/* update ckpt flag for checkpoint */
|
|
update_ckpt_flags(sbi, cpc);
|
|
|
|
/* update SIT/NAT bitmap */
|
|
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
|
|
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
|
|
|
|
crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
|
|
*((__le32 *)((unsigned char *)ckpt +
|
|
le32_to_cpu(ckpt->checksum_offset)))
|
|
= cpu_to_le32(crc32);
|
|
|
|
start_blk = __start_cp_next_addr(sbi);
|
|
|
|
/* write nat bits */
|
|
if (enabled_nat_bits(sbi, cpc)) {
|
|
__u64 cp_ver = cur_cp_version(ckpt);
|
|
block_t blk;
|
|
|
|
cp_ver |= ((__u64)crc32 << 32);
|
|
*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
|
|
|
|
blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
|
|
for (i = 0; i < nm_i->nat_bits_blocks; i++)
|
|
f2fs_update_meta_page(sbi, nm_i->nat_bits +
|
|
(i << F2FS_BLKSIZE_BITS), blk + i);
|
|
}
|
|
|
|
/* write out checkpoint buffer at block 0 */
|
|
f2fs_update_meta_page(sbi, ckpt, start_blk++);
|
|
|
|
for (i = 1; i < 1 + cp_payload_blks; i++)
|
|
f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
|
|
start_blk++);
|
|
|
|
if (orphan_num) {
|
|
write_orphan_inodes(sbi, start_blk);
|
|
start_blk += orphan_blocks;
|
|
}
|
|
|
|
f2fs_write_data_summaries(sbi, start_blk);
|
|
start_blk += data_sum_blocks;
|
|
|
|
/* Record write statistics in the hot node summary */
|
|
kbytes_written = sbi->kbytes_written;
|
|
if (sb->s_bdev->bd_part)
|
|
kbytes_written += BD_PART_WRITTEN(sbi);
|
|
|
|
seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
|
|
|
|
if (__remain_node_summaries(cpc->reason)) {
|
|
f2fs_write_node_summaries(sbi, start_blk);
|
|
start_blk += NR_CURSEG_NODE_TYPE;
|
|
}
|
|
|
|
/* update user_block_counts */
|
|
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
|
percpu_counter_set(&sbi->alloc_valid_block_count, 0);
|
|
|
|
/* Here, we have one bio having CP pack except cp pack 2 page */
|
|
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
|
|
f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
|
|
!f2fs_cp_error(sbi));
|
|
|
|
/* wait for previous submitted meta pages writeback */
|
|
f2fs_wait_on_all_pages_writeback(sbi);
|
|
|
|
/* flush all device cache */
|
|
err = f2fs_flush_device_cache(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
/* barrier and flush checkpoint cp pack 2 page if it can */
|
|
commit_checkpoint(sbi, ckpt, start_blk);
|
|
f2fs_wait_on_all_pages_writeback(sbi);
|
|
|
|
/*
|
|
* invalidate intermediate page cache borrowed from meta inode
|
|
* which are used for migration of encrypted inode's blocks.
|
|
*/
|
|
if (f2fs_sb_has_encrypt(sbi))
|
|
invalidate_mapping_pages(META_MAPPING(sbi),
|
|
MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
|
|
|
|
f2fs_release_ino_entry(sbi, false);
|
|
|
|
f2fs_reset_fsync_node_info(sbi);
|
|
|
|
clear_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
clear_sbi_flag(sbi, SBI_NEED_CP);
|
|
clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
|
|
|
|
spin_lock(&sbi->stat_lock);
|
|
sbi->unusable_block_count = 0;
|
|
spin_unlock(&sbi->stat_lock);
|
|
|
|
__set_cp_next_pack(sbi);
|
|
|
|
/*
|
|
* redirty superblock if metadata like node page or inode cache is
|
|
* updated during writing checkpoint.
|
|
*/
|
|
if (get_pages(sbi, F2FS_DIRTY_NODES) ||
|
|
get_pages(sbi, F2FS_DIRTY_IMETA))
|
|
set_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
|
|
f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
|
|
|
|
return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
|
|
}
|
|
|
|
/*
|
|
* We guarantee that this checkpoint procedure will not fail.
|
|
*/
|
|
int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned long long ckpt_ver;
|
|
int err = 0;
|
|
|
|
if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
|
|
return -EROFS;
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
|
|
if (cpc->reason != CP_PAUSE)
|
|
return 0;
|
|
f2fs_warn(sbi, "Start checkpoint disabled!");
|
|
}
|
|
mutex_lock(&sbi->cp_mutex);
|
|
|
|
if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
|
|
((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
|
|
((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
|
|
goto out;
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
|
|
|
|
err = block_operations(sbi);
|
|
if (err)
|
|
goto out;
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
|
|
|
|
f2fs_flush_merged_writes(sbi);
|
|
|
|
/* this is the case of multiple fstrims without any changes */
|
|
if (cpc->reason & CP_DISCARD) {
|
|
if (!f2fs_exist_trim_candidates(sbi, cpc)) {
|
|
unblock_operations(sbi);
|
|
goto out;
|
|
}
|
|
|
|
if (NM_I(sbi)->dirty_nat_cnt == 0 &&
|
|
SIT_I(sbi)->dirty_sentries == 0 &&
|
|
prefree_segments(sbi) == 0) {
|
|
f2fs_flush_sit_entries(sbi, cpc);
|
|
f2fs_clear_prefree_segments(sbi, cpc);
|
|
unblock_operations(sbi);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* update checkpoint pack index
|
|
* Increase the version number so that
|
|
* SIT entries and seg summaries are written at correct place
|
|
*/
|
|
ckpt_ver = cur_cp_version(ckpt);
|
|
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
|
|
|
|
/* write cached NAT/SIT entries to NAT/SIT area */
|
|
err = f2fs_flush_nat_entries(sbi, cpc);
|
|
if (err)
|
|
goto stop;
|
|
|
|
f2fs_flush_sit_entries(sbi, cpc);
|
|
|
|
/* unlock all the fs_lock[] in do_checkpoint() */
|
|
err = do_checkpoint(sbi, cpc);
|
|
if (err)
|
|
f2fs_release_discard_addrs(sbi);
|
|
else
|
|
f2fs_clear_prefree_segments(sbi, cpc);
|
|
stop:
|
|
unblock_operations(sbi);
|
|
stat_inc_cp_count(sbi->stat_info);
|
|
|
|
if (cpc->reason & CP_RECOVERY)
|
|
f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
|
|
|
|
/* do checkpoint periodically */
|
|
f2fs_update_time(sbi, CP_TIME);
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
|
|
out:
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
return err;
|
|
}
|
|
|
|
void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_INO_ENTRY; i++) {
|
|
struct inode_management *im = &sbi->im[i];
|
|
|
|
INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
|
|
spin_lock_init(&im->ino_lock);
|
|
INIT_LIST_HEAD(&im->ino_list);
|
|
im->ino_num = 0;
|
|
}
|
|
|
|
sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
|
|
NR_CURSEG_TYPE - __cp_payload(sbi)) *
|
|
F2FS_ORPHANS_PER_BLOCK;
|
|
}
|
|
|
|
int __init f2fs_create_checkpoint_caches(void)
|
|
{
|
|
ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
|
|
sizeof(struct ino_entry));
|
|
if (!ino_entry_slab)
|
|
return -ENOMEM;
|
|
f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
|
|
sizeof(struct inode_entry));
|
|
if (!f2fs_inode_entry_slab) {
|
|
kmem_cache_destroy(ino_entry_slab);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_checkpoint_caches(void)
|
|
{
|
|
kmem_cache_destroy(ino_entry_slab);
|
|
kmem_cache_destroy(f2fs_inode_entry_slab);
|
|
}
|