mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 09:14:19 +08:00
5dc8326282
The vmx hardware state restore restores the tss selector and base address, but not its length. Usually, this does not matter since most of the tss contents is within the default length of 0x67. However, if a process is using ioperm() to grant itself I/O port permissions, an additional bitmap within the tss, but outside the default length is consulted. The effect is that the process will receive a SIGSEGV instead of transparently accessing the port. Fix by restoring the tss length. Note that i386 had this working already. Closes bugzilla 10246. Signed-off-by: Avi Kivity <avi@qumranet.com>
2681 lines
68 KiB
C
2681 lines
68 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "irq.h"
|
|
#include "vmx.h"
|
|
#include "segment_descriptor.h"
|
|
#include "mmu.h"
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/moduleparam.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/desc.h>
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int bypass_guest_pf = 1;
|
|
module_param(bypass_guest_pf, bool, 0);
|
|
|
|
struct vmcs {
|
|
u32 revision_id;
|
|
u32 abort;
|
|
char data[0];
|
|
};
|
|
|
|
struct vcpu_vmx {
|
|
struct kvm_vcpu vcpu;
|
|
int launched;
|
|
u8 fail;
|
|
u32 idt_vectoring_info;
|
|
struct kvm_msr_entry *guest_msrs;
|
|
struct kvm_msr_entry *host_msrs;
|
|
int nmsrs;
|
|
int save_nmsrs;
|
|
int msr_offset_efer;
|
|
#ifdef CONFIG_X86_64
|
|
int msr_offset_kernel_gs_base;
|
|
#endif
|
|
struct vmcs *vmcs;
|
|
struct {
|
|
int loaded;
|
|
u16 fs_sel, gs_sel, ldt_sel;
|
|
int gs_ldt_reload_needed;
|
|
int fs_reload_needed;
|
|
int guest_efer_loaded;
|
|
} host_state;
|
|
struct {
|
|
struct {
|
|
bool pending;
|
|
u8 vector;
|
|
unsigned rip;
|
|
} irq;
|
|
} rmode;
|
|
};
|
|
|
|
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
|
|
{
|
|
return container_of(vcpu, struct vcpu_vmx, vcpu);
|
|
}
|
|
|
|
static int init_rmode_tss(struct kvm *kvm);
|
|
|
|
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
|
|
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
|
|
|
|
static struct page *vmx_io_bitmap_a;
|
|
static struct page *vmx_io_bitmap_b;
|
|
|
|
static struct vmcs_config {
|
|
int size;
|
|
int order;
|
|
u32 revision_id;
|
|
u32 pin_based_exec_ctrl;
|
|
u32 cpu_based_exec_ctrl;
|
|
u32 cpu_based_2nd_exec_ctrl;
|
|
u32 vmexit_ctrl;
|
|
u32 vmentry_ctrl;
|
|
} vmcs_config;
|
|
|
|
#define VMX_SEGMENT_FIELD(seg) \
|
|
[VCPU_SREG_##seg] = { \
|
|
.selector = GUEST_##seg##_SELECTOR, \
|
|
.base = GUEST_##seg##_BASE, \
|
|
.limit = GUEST_##seg##_LIMIT, \
|
|
.ar_bytes = GUEST_##seg##_AR_BYTES, \
|
|
}
|
|
|
|
static struct kvm_vmx_segment_field {
|
|
unsigned selector;
|
|
unsigned base;
|
|
unsigned limit;
|
|
unsigned ar_bytes;
|
|
} kvm_vmx_segment_fields[] = {
|
|
VMX_SEGMENT_FIELD(CS),
|
|
VMX_SEGMENT_FIELD(DS),
|
|
VMX_SEGMENT_FIELD(ES),
|
|
VMX_SEGMENT_FIELD(FS),
|
|
VMX_SEGMENT_FIELD(GS),
|
|
VMX_SEGMENT_FIELD(SS),
|
|
VMX_SEGMENT_FIELD(TR),
|
|
VMX_SEGMENT_FIELD(LDTR),
|
|
};
|
|
|
|
/*
|
|
* Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
|
|
* away by decrementing the array size.
|
|
*/
|
|
static const u32 vmx_msr_index[] = {
|
|
#ifdef CONFIG_X86_64
|
|
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
|
|
#endif
|
|
MSR_EFER, MSR_K6_STAR,
|
|
};
|
|
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
|
|
|
|
static void load_msrs(struct kvm_msr_entry *e, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
wrmsrl(e[i].index, e[i].data);
|
|
}
|
|
|
|
static void save_msrs(struct kvm_msr_entry *e, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
rdmsrl(e[i].index, e[i].data);
|
|
}
|
|
|
|
static inline int is_page_fault(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
|
|
INTR_INFO_VALID_MASK)) ==
|
|
(INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int is_no_device(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
|
|
INTR_INFO_VALID_MASK)) ==
|
|
(INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int is_invalid_opcode(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
|
|
INTR_INFO_VALID_MASK)) ==
|
|
(INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int is_external_interrupt(u32 intr_info)
|
|
{
|
|
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
|
|
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static inline int cpu_has_vmx_tpr_shadow(void)
|
|
{
|
|
return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
|
|
}
|
|
|
|
static inline int vm_need_tpr_shadow(struct kvm *kvm)
|
|
{
|
|
return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
|
|
}
|
|
|
|
static inline int cpu_has_secondary_exec_ctrls(void)
|
|
{
|
|
return (vmcs_config.cpu_based_exec_ctrl &
|
|
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
|
|
}
|
|
|
|
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
|
|
{
|
|
return (vmcs_config.cpu_based_2nd_exec_ctrl &
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
|
|
}
|
|
|
|
static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
|
|
{
|
|
return ((cpu_has_vmx_virtualize_apic_accesses()) &&
|
|
(irqchip_in_kernel(kvm)));
|
|
}
|
|
|
|
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < vmx->nmsrs; ++i)
|
|
if (vmx->guest_msrs[i].index == msr)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
|
|
{
|
|
int i;
|
|
|
|
i = __find_msr_index(vmx, msr);
|
|
if (i >= 0)
|
|
return &vmx->guest_msrs[i];
|
|
return NULL;
|
|
}
|
|
|
|
static void vmcs_clear(struct vmcs *vmcs)
|
|
{
|
|
u64 phys_addr = __pa(vmcs);
|
|
u8 error;
|
|
|
|
asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
|
|
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
|
|
: "cc", "memory");
|
|
if (error)
|
|
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
|
|
vmcs, phys_addr);
|
|
}
|
|
|
|
static void __vcpu_clear(void *arg)
|
|
{
|
|
struct vcpu_vmx *vmx = arg;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (vmx->vcpu.cpu == cpu)
|
|
vmcs_clear(vmx->vmcs);
|
|
if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
|
|
per_cpu(current_vmcs, cpu) = NULL;
|
|
rdtscll(vmx->vcpu.arch.host_tsc);
|
|
}
|
|
|
|
static void vcpu_clear(struct vcpu_vmx *vmx)
|
|
{
|
|
if (vmx->vcpu.cpu == -1)
|
|
return;
|
|
smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
|
|
vmx->launched = 0;
|
|
}
|
|
|
|
static unsigned long vmcs_readl(unsigned long field)
|
|
{
|
|
unsigned long value;
|
|
|
|
asm volatile (ASM_VMX_VMREAD_RDX_RAX
|
|
: "=a"(value) : "d"(field) : "cc");
|
|
return value;
|
|
}
|
|
|
|
static u16 vmcs_read16(unsigned long field)
|
|
{
|
|
return vmcs_readl(field);
|
|
}
|
|
|
|
static u32 vmcs_read32(unsigned long field)
|
|
{
|
|
return vmcs_readl(field);
|
|
}
|
|
|
|
static u64 vmcs_read64(unsigned long field)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return vmcs_readl(field);
|
|
#else
|
|
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
|
|
#endif
|
|
}
|
|
|
|
static noinline void vmwrite_error(unsigned long field, unsigned long value)
|
|
{
|
|
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
|
|
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
|
|
dump_stack();
|
|
}
|
|
|
|
static void vmcs_writel(unsigned long field, unsigned long value)
|
|
{
|
|
u8 error;
|
|
|
|
asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
|
|
: "=q"(error) : "a"(value), "d"(field) : "cc");
|
|
if (unlikely(error))
|
|
vmwrite_error(field, value);
|
|
}
|
|
|
|
static void vmcs_write16(unsigned long field, u16 value)
|
|
{
|
|
vmcs_writel(field, value);
|
|
}
|
|
|
|
static void vmcs_write32(unsigned long field, u32 value)
|
|
{
|
|
vmcs_writel(field, value);
|
|
}
|
|
|
|
static void vmcs_write64(unsigned long field, u64 value)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
vmcs_writel(field, value);
|
|
#else
|
|
vmcs_writel(field, value);
|
|
asm volatile ("");
|
|
vmcs_writel(field+1, value >> 32);
|
|
#endif
|
|
}
|
|
|
|
static void vmcs_clear_bits(unsigned long field, u32 mask)
|
|
{
|
|
vmcs_writel(field, vmcs_readl(field) & ~mask);
|
|
}
|
|
|
|
static void vmcs_set_bits(unsigned long field, u32 mask)
|
|
{
|
|
vmcs_writel(field, vmcs_readl(field) | mask);
|
|
}
|
|
|
|
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eb;
|
|
|
|
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
|
|
if (!vcpu->fpu_active)
|
|
eb |= 1u << NM_VECTOR;
|
|
if (vcpu->guest_debug.enabled)
|
|
eb |= 1u << 1;
|
|
if (vcpu->arch.rmode.active)
|
|
eb = ~0;
|
|
vmcs_write32(EXCEPTION_BITMAP, eb);
|
|
}
|
|
|
|
static void reload_tss(void)
|
|
{
|
|
/*
|
|
* VT restores TR but not its size. Useless.
|
|
*/
|
|
struct descriptor_table gdt;
|
|
struct segment_descriptor *descs;
|
|
|
|
get_gdt(&gdt);
|
|
descs = (void *)gdt.base;
|
|
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
|
|
load_TR_desc();
|
|
}
|
|
|
|
static void load_transition_efer(struct vcpu_vmx *vmx)
|
|
{
|
|
int efer_offset = vmx->msr_offset_efer;
|
|
u64 host_efer = vmx->host_msrs[efer_offset].data;
|
|
u64 guest_efer = vmx->guest_msrs[efer_offset].data;
|
|
u64 ignore_bits;
|
|
|
|
if (efer_offset < 0)
|
|
return;
|
|
/*
|
|
* NX is emulated; LMA and LME handled by hardware; SCE meaninless
|
|
* outside long mode
|
|
*/
|
|
ignore_bits = EFER_NX | EFER_SCE;
|
|
#ifdef CONFIG_X86_64
|
|
ignore_bits |= EFER_LMA | EFER_LME;
|
|
/* SCE is meaningful only in long mode on Intel */
|
|
if (guest_efer & EFER_LMA)
|
|
ignore_bits &= ~(u64)EFER_SCE;
|
|
#endif
|
|
if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
|
|
return;
|
|
|
|
vmx->host_state.guest_efer_loaded = 1;
|
|
guest_efer &= ~ignore_bits;
|
|
guest_efer |= host_efer & ignore_bits;
|
|
wrmsrl(MSR_EFER, guest_efer);
|
|
vmx->vcpu.stat.efer_reload++;
|
|
}
|
|
|
|
static void reload_host_efer(struct vcpu_vmx *vmx)
|
|
{
|
|
if (vmx->host_state.guest_efer_loaded) {
|
|
vmx->host_state.guest_efer_loaded = 0;
|
|
load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
|
|
}
|
|
}
|
|
|
|
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (vmx->host_state.loaded)
|
|
return;
|
|
|
|
vmx->host_state.loaded = 1;
|
|
/*
|
|
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
|
|
* allow segment selectors with cpl > 0 or ti == 1.
|
|
*/
|
|
vmx->host_state.ldt_sel = read_ldt();
|
|
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
|
|
vmx->host_state.fs_sel = read_fs();
|
|
if (!(vmx->host_state.fs_sel & 7)) {
|
|
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
|
|
vmx->host_state.fs_reload_needed = 0;
|
|
} else {
|
|
vmcs_write16(HOST_FS_SELECTOR, 0);
|
|
vmx->host_state.fs_reload_needed = 1;
|
|
}
|
|
vmx->host_state.gs_sel = read_gs();
|
|
if (!(vmx->host_state.gs_sel & 7))
|
|
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
|
|
else {
|
|
vmcs_write16(HOST_GS_SELECTOR, 0);
|
|
vmx->host_state.gs_ldt_reload_needed = 1;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
|
|
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
|
|
#else
|
|
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
|
|
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (is_long_mode(&vmx->vcpu))
|
|
save_msrs(vmx->host_msrs +
|
|
vmx->msr_offset_kernel_gs_base, 1);
|
|
|
|
#endif
|
|
load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
|
|
load_transition_efer(vmx);
|
|
}
|
|
|
|
static void vmx_load_host_state(struct vcpu_vmx *vmx)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!vmx->host_state.loaded)
|
|
return;
|
|
|
|
++vmx->vcpu.stat.host_state_reload;
|
|
vmx->host_state.loaded = 0;
|
|
if (vmx->host_state.fs_reload_needed)
|
|
load_fs(vmx->host_state.fs_sel);
|
|
if (vmx->host_state.gs_ldt_reload_needed) {
|
|
load_ldt(vmx->host_state.ldt_sel);
|
|
/*
|
|
* If we have to reload gs, we must take care to
|
|
* preserve our gs base.
|
|
*/
|
|
local_irq_save(flags);
|
|
load_gs(vmx->host_state.gs_sel);
|
|
#ifdef CONFIG_X86_64
|
|
wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
|
|
#endif
|
|
local_irq_restore(flags);
|
|
}
|
|
reload_tss();
|
|
save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
|
|
load_msrs(vmx->host_msrs, vmx->save_nmsrs);
|
|
reload_host_efer(vmx);
|
|
}
|
|
|
|
/*
|
|
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
|
|
* vcpu mutex is already taken.
|
|
*/
|
|
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 phys_addr = __pa(vmx->vmcs);
|
|
u64 tsc_this, delta;
|
|
|
|
if (vcpu->cpu != cpu) {
|
|
vcpu_clear(vmx);
|
|
kvm_migrate_apic_timer(vcpu);
|
|
}
|
|
|
|
if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
|
|
u8 error;
|
|
|
|
per_cpu(current_vmcs, cpu) = vmx->vmcs;
|
|
asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
|
|
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
|
|
: "cc");
|
|
if (error)
|
|
printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
|
|
vmx->vmcs, phys_addr);
|
|
}
|
|
|
|
if (vcpu->cpu != cpu) {
|
|
struct descriptor_table dt;
|
|
unsigned long sysenter_esp;
|
|
|
|
vcpu->cpu = cpu;
|
|
/*
|
|
* Linux uses per-cpu TSS and GDT, so set these when switching
|
|
* processors.
|
|
*/
|
|
vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
|
|
get_gdt(&dt);
|
|
vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
|
|
|
|
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
|
|
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
|
|
|
|
/*
|
|
* Make sure the time stamp counter is monotonous.
|
|
*/
|
|
rdtscll(tsc_this);
|
|
delta = vcpu->arch.host_tsc - tsc_this;
|
|
vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
|
|
}
|
|
}
|
|
|
|
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_load_host_state(to_vmx(vcpu));
|
|
}
|
|
|
|
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->fpu_active)
|
|
return;
|
|
vcpu->fpu_active = 1;
|
|
vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
|
|
if (vcpu->arch.cr0 & X86_CR0_TS)
|
|
vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
|
|
update_exception_bitmap(vcpu);
|
|
}
|
|
|
|
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->fpu_active)
|
|
return;
|
|
vcpu->fpu_active = 0;
|
|
vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
|
|
update_exception_bitmap(vcpu);
|
|
}
|
|
|
|
static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu_clear(to_vmx(vcpu));
|
|
}
|
|
|
|
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vmcs_readl(GUEST_RFLAGS);
|
|
}
|
|
|
|
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (vcpu->arch.rmode.active)
|
|
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
|
|
vmcs_writel(GUEST_RFLAGS, rflags);
|
|
}
|
|
|
|
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rip;
|
|
u32 interruptibility;
|
|
|
|
rip = vmcs_readl(GUEST_RIP);
|
|
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
|
|
vmcs_writel(GUEST_RIP, rip);
|
|
|
|
/*
|
|
* We emulated an instruction, so temporary interrupt blocking
|
|
* should be removed, if set.
|
|
*/
|
|
interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
|
|
if (interruptibility & 3)
|
|
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
|
|
interruptibility & ~3);
|
|
vcpu->arch.interrupt_window_open = 1;
|
|
}
|
|
|
|
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
|
|
bool has_error_code, u32 error_code)
|
|
{
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
nr | INTR_TYPE_EXCEPTION
|
|
| (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
|
|
| INTR_INFO_VALID_MASK);
|
|
if (has_error_code)
|
|
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
|
|
}
|
|
|
|
static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
|
|
}
|
|
|
|
/*
|
|
* Swap MSR entry in host/guest MSR entry array.
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
|
|
{
|
|
struct kvm_msr_entry tmp;
|
|
|
|
tmp = vmx->guest_msrs[to];
|
|
vmx->guest_msrs[to] = vmx->guest_msrs[from];
|
|
vmx->guest_msrs[from] = tmp;
|
|
tmp = vmx->host_msrs[to];
|
|
vmx->host_msrs[to] = vmx->host_msrs[from];
|
|
vmx->host_msrs[from] = tmp;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set up the vmcs to automatically save and restore system
|
|
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
|
|
* mode, as fiddling with msrs is very expensive.
|
|
*/
|
|
static void setup_msrs(struct vcpu_vmx *vmx)
|
|
{
|
|
int save_nmsrs;
|
|
|
|
vmx_load_host_state(vmx);
|
|
save_nmsrs = 0;
|
|
#ifdef CONFIG_X86_64
|
|
if (is_long_mode(&vmx->vcpu)) {
|
|
int index;
|
|
|
|
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
|
|
if (index >= 0)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
index = __find_msr_index(vmx, MSR_LSTAR);
|
|
if (index >= 0)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
index = __find_msr_index(vmx, MSR_CSTAR);
|
|
if (index >= 0)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
|
|
if (index >= 0)
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
/*
|
|
* MSR_K6_STAR is only needed on long mode guests, and only
|
|
* if efer.sce is enabled.
|
|
*/
|
|
index = __find_msr_index(vmx, MSR_K6_STAR);
|
|
if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
|
|
move_msr_up(vmx, index, save_nmsrs++);
|
|
}
|
|
#endif
|
|
vmx->save_nmsrs = save_nmsrs;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
vmx->msr_offset_kernel_gs_base =
|
|
__find_msr_index(vmx, MSR_KERNEL_GS_BASE);
|
|
#endif
|
|
vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
|
|
}
|
|
|
|
/*
|
|
* reads and returns guest's timestamp counter "register"
|
|
* guest_tsc = host_tsc + tsc_offset -- 21.3
|
|
*/
|
|
static u64 guest_read_tsc(void)
|
|
{
|
|
u64 host_tsc, tsc_offset;
|
|
|
|
rdtscll(host_tsc);
|
|
tsc_offset = vmcs_read64(TSC_OFFSET);
|
|
return host_tsc + tsc_offset;
|
|
}
|
|
|
|
/*
|
|
* writes 'guest_tsc' into guest's timestamp counter "register"
|
|
* guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
|
|
*/
|
|
static void guest_write_tsc(u64 guest_tsc)
|
|
{
|
|
u64 host_tsc;
|
|
|
|
rdtscll(host_tsc);
|
|
vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
|
|
}
|
|
|
|
/*
|
|
* Reads an msr value (of 'msr_index') into 'pdata'.
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
|
|
{
|
|
u64 data;
|
|
struct kvm_msr_entry *msr;
|
|
|
|
if (!pdata) {
|
|
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (msr_index) {
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_FS_BASE:
|
|
data = vmcs_readl(GUEST_FS_BASE);
|
|
break;
|
|
case MSR_GS_BASE:
|
|
data = vmcs_readl(GUEST_GS_BASE);
|
|
break;
|
|
case MSR_EFER:
|
|
return kvm_get_msr_common(vcpu, msr_index, pdata);
|
|
#endif
|
|
case MSR_IA32_TIME_STAMP_COUNTER:
|
|
data = guest_read_tsc();
|
|
break;
|
|
case MSR_IA32_SYSENTER_CS:
|
|
data = vmcs_read32(GUEST_SYSENTER_CS);
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
data = vmcs_readl(GUEST_SYSENTER_EIP);
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
data = vmcs_readl(GUEST_SYSENTER_ESP);
|
|
break;
|
|
default:
|
|
msr = find_msr_entry(to_vmx(vcpu), msr_index);
|
|
if (msr) {
|
|
data = msr->data;
|
|
break;
|
|
}
|
|
return kvm_get_msr_common(vcpu, msr_index, pdata);
|
|
}
|
|
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Writes msr value into into the appropriate "register".
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_msr_entry *msr;
|
|
int ret = 0;
|
|
|
|
switch (msr_index) {
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_EFER:
|
|
ret = kvm_set_msr_common(vcpu, msr_index, data);
|
|
if (vmx->host_state.loaded) {
|
|
reload_host_efer(vmx);
|
|
load_transition_efer(vmx);
|
|
}
|
|
break;
|
|
case MSR_FS_BASE:
|
|
vmcs_writel(GUEST_FS_BASE, data);
|
|
break;
|
|
case MSR_GS_BASE:
|
|
vmcs_writel(GUEST_GS_BASE, data);
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
vmcs_write32(GUEST_SYSENTER_CS, data);
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
vmcs_writel(GUEST_SYSENTER_EIP, data);
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
vmcs_writel(GUEST_SYSENTER_ESP, data);
|
|
break;
|
|
case MSR_IA32_TIME_STAMP_COUNTER:
|
|
guest_write_tsc(data);
|
|
break;
|
|
default:
|
|
msr = find_msr_entry(vmx, msr_index);
|
|
if (msr) {
|
|
msr->data = data;
|
|
if (vmx->host_state.loaded)
|
|
load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
|
|
break;
|
|
}
|
|
ret = kvm_set_msr_common(vcpu, msr_index, data);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sync the rsp and rip registers into the vcpu structure. This allows
|
|
* registers to be accessed by indexing vcpu->arch.regs.
|
|
*/
|
|
static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
|
|
vcpu->arch.rip = vmcs_readl(GUEST_RIP);
|
|
}
|
|
|
|
/*
|
|
* Syncs rsp and rip back into the vmcs. Should be called after possible
|
|
* modification.
|
|
*/
|
|
static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
|
|
vmcs_writel(GUEST_RIP, vcpu->arch.rip);
|
|
}
|
|
|
|
static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
|
|
{
|
|
unsigned long dr7 = 0x400;
|
|
int old_singlestep;
|
|
|
|
old_singlestep = vcpu->guest_debug.singlestep;
|
|
|
|
vcpu->guest_debug.enabled = dbg->enabled;
|
|
if (vcpu->guest_debug.enabled) {
|
|
int i;
|
|
|
|
dr7 |= 0x200; /* exact */
|
|
for (i = 0; i < 4; ++i) {
|
|
if (!dbg->breakpoints[i].enabled)
|
|
continue;
|
|
vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
|
|
dr7 |= 2 << (i*2); /* global enable */
|
|
dr7 |= 0 << (i*4+16); /* execution breakpoint */
|
|
}
|
|
|
|
vcpu->guest_debug.singlestep = dbg->singlestep;
|
|
} else
|
|
vcpu->guest_debug.singlestep = 0;
|
|
|
|
if (old_singlestep && !vcpu->guest_debug.singlestep) {
|
|
unsigned long flags;
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
}
|
|
|
|
update_exception_bitmap(vcpu);
|
|
vmcs_writel(GUEST_DR7, dr7);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_get_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 idtv_info_field;
|
|
|
|
idtv_info_field = vmx->idt_vectoring_info;
|
|
if (idtv_info_field & INTR_INFO_VALID_MASK) {
|
|
if (is_external_interrupt(idtv_info_field))
|
|
return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
|
|
else
|
|
printk(KERN_DEBUG "pending exception: not handled yet\n");
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static __init int cpu_has_kvm_support(void)
|
|
{
|
|
unsigned long ecx = cpuid_ecx(1);
|
|
return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
|
|
}
|
|
|
|
static __init int vmx_disabled_by_bios(void)
|
|
{
|
|
u64 msr;
|
|
|
|
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
|
|
return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
|
|
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
|
|
== MSR_IA32_FEATURE_CONTROL_LOCKED;
|
|
/* locked but not enabled */
|
|
}
|
|
|
|
static void hardware_enable(void *garbage)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
|
|
u64 old;
|
|
|
|
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
|
|
if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
|
|
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
|
|
!= (MSR_IA32_FEATURE_CONTROL_LOCKED |
|
|
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
|
|
/* enable and lock */
|
|
wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
|
|
MSR_IA32_FEATURE_CONTROL_LOCKED |
|
|
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
|
|
write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
|
|
asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
|
|
: "memory", "cc");
|
|
}
|
|
|
|
static void hardware_disable(void *garbage)
|
|
{
|
|
asm volatile (ASM_VMX_VMXOFF : : : "cc");
|
|
}
|
|
|
|
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
|
|
u32 msr, u32 *result)
|
|
{
|
|
u32 vmx_msr_low, vmx_msr_high;
|
|
u32 ctl = ctl_min | ctl_opt;
|
|
|
|
rdmsr(msr, vmx_msr_low, vmx_msr_high);
|
|
|
|
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
|
|
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
|
|
|
|
/* Ensure minimum (required) set of control bits are supported. */
|
|
if (ctl_min & ~ctl)
|
|
return -EIO;
|
|
|
|
*result = ctl;
|
|
return 0;
|
|
}
|
|
|
|
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
|
|
{
|
|
u32 vmx_msr_low, vmx_msr_high;
|
|
u32 min, opt;
|
|
u32 _pin_based_exec_control = 0;
|
|
u32 _cpu_based_exec_control = 0;
|
|
u32 _cpu_based_2nd_exec_control = 0;
|
|
u32 _vmexit_control = 0;
|
|
u32 _vmentry_control = 0;
|
|
|
|
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
|
|
opt = 0;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
|
|
&_pin_based_exec_control) < 0)
|
|
return -EIO;
|
|
|
|
min = CPU_BASED_HLT_EXITING |
|
|
#ifdef CONFIG_X86_64
|
|
CPU_BASED_CR8_LOAD_EXITING |
|
|
CPU_BASED_CR8_STORE_EXITING |
|
|
#endif
|
|
CPU_BASED_USE_IO_BITMAPS |
|
|
CPU_BASED_MOV_DR_EXITING |
|
|
CPU_BASED_USE_TSC_OFFSETING;
|
|
opt = CPU_BASED_TPR_SHADOW |
|
|
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
|
|
&_cpu_based_exec_control) < 0)
|
|
return -EIO;
|
|
#ifdef CONFIG_X86_64
|
|
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
|
|
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
|
|
~CPU_BASED_CR8_STORE_EXITING;
|
|
#endif
|
|
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
|
|
min = 0;
|
|
opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
|
|
SECONDARY_EXEC_WBINVD_EXITING;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
&_cpu_based_2nd_exec_control) < 0)
|
|
return -EIO;
|
|
}
|
|
#ifndef CONFIG_X86_64
|
|
if (!(_cpu_based_2nd_exec_control &
|
|
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
|
|
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
|
|
#endif
|
|
|
|
min = 0;
|
|
#ifdef CONFIG_X86_64
|
|
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
|
|
#endif
|
|
opt = 0;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
|
|
&_vmexit_control) < 0)
|
|
return -EIO;
|
|
|
|
min = opt = 0;
|
|
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
|
|
&_vmentry_control) < 0)
|
|
return -EIO;
|
|
|
|
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
|
|
|
|
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
|
|
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
|
|
return -EIO;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
|
|
if (vmx_msr_high & (1u<<16))
|
|
return -EIO;
|
|
#endif
|
|
|
|
/* Require Write-Back (WB) memory type for VMCS accesses. */
|
|
if (((vmx_msr_high >> 18) & 15) != 6)
|
|
return -EIO;
|
|
|
|
vmcs_conf->size = vmx_msr_high & 0x1fff;
|
|
vmcs_conf->order = get_order(vmcs_config.size);
|
|
vmcs_conf->revision_id = vmx_msr_low;
|
|
|
|
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
|
|
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
|
|
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
|
|
vmcs_conf->vmexit_ctrl = _vmexit_control;
|
|
vmcs_conf->vmentry_ctrl = _vmentry_control;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct vmcs *alloc_vmcs_cpu(int cpu)
|
|
{
|
|
int node = cpu_to_node(cpu);
|
|
struct page *pages;
|
|
struct vmcs *vmcs;
|
|
|
|
pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
|
|
if (!pages)
|
|
return NULL;
|
|
vmcs = page_address(pages);
|
|
memset(vmcs, 0, vmcs_config.size);
|
|
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
|
|
return vmcs;
|
|
}
|
|
|
|
static struct vmcs *alloc_vmcs(void)
|
|
{
|
|
return alloc_vmcs_cpu(raw_smp_processor_id());
|
|
}
|
|
|
|
static void free_vmcs(struct vmcs *vmcs)
|
|
{
|
|
free_pages((unsigned long)vmcs, vmcs_config.order);
|
|
}
|
|
|
|
static void free_kvm_area(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu)
|
|
free_vmcs(per_cpu(vmxarea, cpu));
|
|
}
|
|
|
|
static __init int alloc_kvm_area(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct vmcs *vmcs;
|
|
|
|
vmcs = alloc_vmcs_cpu(cpu);
|
|
if (!vmcs) {
|
|
free_kvm_area();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
per_cpu(vmxarea, cpu) = vmcs;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __init int hardware_setup(void)
|
|
{
|
|
if (setup_vmcs_config(&vmcs_config) < 0)
|
|
return -EIO;
|
|
return alloc_kvm_area();
|
|
}
|
|
|
|
static __exit void hardware_unsetup(void)
|
|
{
|
|
free_kvm_area();
|
|
}
|
|
|
|
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
|
|
vmcs_write16(sf->selector, save->selector);
|
|
vmcs_writel(sf->base, save->base);
|
|
vmcs_write32(sf->limit, save->limit);
|
|
vmcs_write32(sf->ar_bytes, save->ar);
|
|
} else {
|
|
u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
|
|
<< AR_DPL_SHIFT;
|
|
vmcs_write32(sf->ar_bytes, 0x93 | dpl);
|
|
}
|
|
}
|
|
|
|
static void enter_pmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
vcpu->arch.rmode.active = 0;
|
|
|
|
vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
|
|
vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
|
|
flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
|
|
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
|
|
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
|
|
|
|
update_exception_bitmap(vcpu);
|
|
|
|
fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
|
|
fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
|
|
fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
|
|
fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
|
|
|
|
vmcs_write16(GUEST_SS_SELECTOR, 0);
|
|
vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
|
|
|
|
vmcs_write16(GUEST_CS_SELECTOR,
|
|
vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
|
|
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
|
|
}
|
|
|
|
static gva_t rmode_tss_base(struct kvm *kvm)
|
|
{
|
|
if (!kvm->arch.tss_addr) {
|
|
gfn_t base_gfn = kvm->memslots[0].base_gfn +
|
|
kvm->memslots[0].npages - 3;
|
|
return base_gfn << PAGE_SHIFT;
|
|
}
|
|
return kvm->arch.tss_addr;
|
|
}
|
|
|
|
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
save->selector = vmcs_read16(sf->selector);
|
|
save->base = vmcs_readl(sf->base);
|
|
save->limit = vmcs_read32(sf->limit);
|
|
save->ar = vmcs_read32(sf->ar_bytes);
|
|
vmcs_write16(sf->selector, save->base >> 4);
|
|
vmcs_write32(sf->base, save->base & 0xfffff);
|
|
vmcs_write32(sf->limit, 0xffff);
|
|
vmcs_write32(sf->ar_bytes, 0xf3);
|
|
}
|
|
|
|
static void enter_rmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
vcpu->arch.rmode.active = 1;
|
|
|
|
vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
|
|
vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
|
|
|
|
vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
|
|
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
|
|
|
|
vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
vcpu->arch.rmode.save_iopl
|
|
= (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
|
|
|
|
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
|
|
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
|
|
update_exception_bitmap(vcpu);
|
|
|
|
vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
|
|
vmcs_write32(GUEST_SS_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
|
|
|
|
vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
|
|
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
|
|
if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
|
|
vmcs_writel(GUEST_CS_BASE, 0xf0000);
|
|
vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
|
|
|
|
fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
|
|
fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
|
|
fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
|
|
fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
|
|
|
|
kvm_mmu_reset_context(vcpu);
|
|
init_rmode_tss(vcpu->kvm);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static void enter_lmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 guest_tr_ar;
|
|
|
|
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
|
|
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
|
|
printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
|
|
__FUNCTION__);
|
|
vmcs_write32(GUEST_TR_AR_BYTES,
|
|
(guest_tr_ar & ~AR_TYPE_MASK)
|
|
| AR_TYPE_BUSY_64_TSS);
|
|
}
|
|
|
|
vcpu->arch.shadow_efer |= EFER_LMA;
|
|
|
|
find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
|
|
vmcs_write32(VM_ENTRY_CONTROLS,
|
|
vmcs_read32(VM_ENTRY_CONTROLS)
|
|
| VM_ENTRY_IA32E_MODE);
|
|
}
|
|
|
|
static void exit_lmode(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.shadow_efer &= ~EFER_LMA;
|
|
|
|
vmcs_write32(VM_ENTRY_CONTROLS,
|
|
vmcs_read32(VM_ENTRY_CONTROLS)
|
|
& ~VM_ENTRY_IA32E_MODE);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
|
|
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
|
|
}
|
|
|
|
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
vmx_fpu_deactivate(vcpu);
|
|
|
|
if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
|
|
enter_pmode(vcpu);
|
|
|
|
if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
|
|
enter_rmode(vcpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.shadow_efer & EFER_LME) {
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
|
|
enter_lmode(vcpu);
|
|
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
|
|
exit_lmode(vcpu);
|
|
}
|
|
#endif
|
|
|
|
vmcs_writel(CR0_READ_SHADOW, cr0);
|
|
vmcs_writel(GUEST_CR0,
|
|
(cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
|
|
vcpu->arch.cr0 = cr0;
|
|
|
|
if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
|
|
vmx_fpu_activate(vcpu);
|
|
}
|
|
|
|
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
|
|
{
|
|
vmcs_writel(GUEST_CR3, cr3);
|
|
if (vcpu->arch.cr0 & X86_CR0_PE)
|
|
vmx_fpu_deactivate(vcpu);
|
|
}
|
|
|
|
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
vmcs_writel(CR4_READ_SHADOW, cr4);
|
|
vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
|
|
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
|
|
vcpu->arch.cr4 = cr4;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
|
|
|
|
vcpu->arch.shadow_efer = efer;
|
|
if (efer & EFER_LMA) {
|
|
vmcs_write32(VM_ENTRY_CONTROLS,
|
|
vmcs_read32(VM_ENTRY_CONTROLS) |
|
|
VM_ENTRY_IA32E_MODE);
|
|
msr->data = efer;
|
|
|
|
} else {
|
|
vmcs_write32(VM_ENTRY_CONTROLS,
|
|
vmcs_read32(VM_ENTRY_CONTROLS) &
|
|
~VM_ENTRY_IA32E_MODE);
|
|
|
|
msr->data = efer & ~EFER_LME;
|
|
}
|
|
setup_msrs(vmx);
|
|
}
|
|
|
|
#endif
|
|
|
|
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
return vmcs_readl(sf->base);
|
|
}
|
|
|
|
static void vmx_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
u32 ar;
|
|
|
|
var->base = vmcs_readl(sf->base);
|
|
var->limit = vmcs_read32(sf->limit);
|
|
var->selector = vmcs_read16(sf->selector);
|
|
ar = vmcs_read32(sf->ar_bytes);
|
|
if (ar & AR_UNUSABLE_MASK)
|
|
ar = 0;
|
|
var->type = ar & 15;
|
|
var->s = (ar >> 4) & 1;
|
|
var->dpl = (ar >> 5) & 3;
|
|
var->present = (ar >> 7) & 1;
|
|
var->avl = (ar >> 12) & 1;
|
|
var->l = (ar >> 13) & 1;
|
|
var->db = (ar >> 14) & 1;
|
|
var->g = (ar >> 15) & 1;
|
|
var->unusable = (ar >> 16) & 1;
|
|
}
|
|
|
|
static u32 vmx_segment_access_rights(struct kvm_segment *var)
|
|
{
|
|
u32 ar;
|
|
|
|
if (var->unusable)
|
|
ar = 1 << 16;
|
|
else {
|
|
ar = var->type & 15;
|
|
ar |= (var->s & 1) << 4;
|
|
ar |= (var->dpl & 3) << 5;
|
|
ar |= (var->present & 1) << 7;
|
|
ar |= (var->avl & 1) << 12;
|
|
ar |= (var->l & 1) << 13;
|
|
ar |= (var->db & 1) << 14;
|
|
ar |= (var->g & 1) << 15;
|
|
}
|
|
if (ar == 0) /* a 0 value means unusable */
|
|
ar = AR_UNUSABLE_MASK;
|
|
|
|
return ar;
|
|
}
|
|
|
|
static void vmx_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
u32 ar;
|
|
|
|
if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
|
|
vcpu->arch.rmode.tr.selector = var->selector;
|
|
vcpu->arch.rmode.tr.base = var->base;
|
|
vcpu->arch.rmode.tr.limit = var->limit;
|
|
vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
|
|
return;
|
|
}
|
|
vmcs_writel(sf->base, var->base);
|
|
vmcs_write32(sf->limit, var->limit);
|
|
vmcs_write16(sf->selector, var->selector);
|
|
if (vcpu->arch.rmode.active && var->s) {
|
|
/*
|
|
* Hack real-mode segments into vm86 compatibility.
|
|
*/
|
|
if (var->base == 0xffff0000 && var->selector == 0xf000)
|
|
vmcs_writel(sf->base, 0xf0000);
|
|
ar = 0xf3;
|
|
} else
|
|
ar = vmx_segment_access_rights(var);
|
|
vmcs_write32(sf->ar_bytes, ar);
|
|
}
|
|
|
|
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
|
|
|
|
*db = (ar >> 14) & 1;
|
|
*l = (ar >> 13) & 1;
|
|
}
|
|
|
|
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
|
|
dt->base = vmcs_readl(GUEST_IDTR_BASE);
|
|
}
|
|
|
|
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
|
|
vmcs_writel(GUEST_IDTR_BASE, dt->base);
|
|
}
|
|
|
|
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
|
|
dt->base = vmcs_readl(GUEST_GDTR_BASE);
|
|
}
|
|
|
|
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
|
|
vmcs_writel(GUEST_GDTR_BASE, dt->base);
|
|
}
|
|
|
|
static int init_rmode_tss(struct kvm *kvm)
|
|
{
|
|
gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
|
|
u16 data = 0;
|
|
int ret = 0;
|
|
int r;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
|
|
r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
|
|
if (r < 0)
|
|
goto out;
|
|
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
data = ~0;
|
|
r = kvm_write_guest_page(kvm, fn, &data,
|
|
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
|
|
sizeof(u8));
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
ret = 1;
|
|
out:
|
|
up_read(¤t->mm->mmap_sem);
|
|
return ret;
|
|
}
|
|
|
|
static void seg_setup(int seg)
|
|
{
|
|
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
|
|
|
|
vmcs_write16(sf->selector, 0);
|
|
vmcs_writel(sf->base, 0);
|
|
vmcs_write32(sf->limit, 0xffff);
|
|
vmcs_write32(sf->ar_bytes, 0x93);
|
|
}
|
|
|
|
static int alloc_apic_access_page(struct kvm *kvm)
|
|
{
|
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
|
int r = 0;
|
|
|
|
down_write(&kvm->slots_lock);
|
|
if (kvm->arch.apic_access_page)
|
|
goto out;
|
|
kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
|
|
kvm_userspace_mem.flags = 0;
|
|
kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
|
|
kvm_userspace_mem.memory_size = PAGE_SIZE;
|
|
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
|
|
if (r)
|
|
goto out;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
|
|
up_read(¤t->mm->mmap_sem);
|
|
out:
|
|
up_write(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Sets up the vmcs for emulated real mode.
|
|
*/
|
|
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
|
|
{
|
|
u32 host_sysenter_cs;
|
|
u32 junk;
|
|
unsigned long a;
|
|
struct descriptor_table dt;
|
|
int i;
|
|
unsigned long kvm_vmx_return;
|
|
u32 exec_control;
|
|
|
|
/* I/O */
|
|
vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
|
|
vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
|
|
|
|
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
|
|
|
|
/* Control */
|
|
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
|
|
vmcs_config.pin_based_exec_ctrl);
|
|
|
|
exec_control = vmcs_config.cpu_based_exec_ctrl;
|
|
if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
|
|
exec_control &= ~CPU_BASED_TPR_SHADOW;
|
|
#ifdef CONFIG_X86_64
|
|
exec_control |= CPU_BASED_CR8_STORE_EXITING |
|
|
CPU_BASED_CR8_LOAD_EXITING;
|
|
#endif
|
|
}
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
|
|
|
|
if (cpu_has_secondary_exec_ctrls()) {
|
|
exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
|
|
if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
|
|
exec_control &=
|
|
~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
|
|
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
|
|
}
|
|
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
|
|
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
|
|
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
|
|
|
|
vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
|
|
vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
|
|
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
|
|
|
|
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
|
|
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
|
|
vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
|
|
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
|
|
#ifdef CONFIG_X86_64
|
|
rdmsrl(MSR_FS_BASE, a);
|
|
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
|
|
rdmsrl(MSR_GS_BASE, a);
|
|
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
|
|
#else
|
|
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
|
|
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
|
|
#endif
|
|
|
|
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
|
|
|
|
get_idt(&dt);
|
|
vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
|
|
|
|
asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
|
|
vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
|
|
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
|
|
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
|
|
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
|
|
|
|
rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
|
|
vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
|
|
rdmsrl(MSR_IA32_SYSENTER_ESP, a);
|
|
vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
|
|
rdmsrl(MSR_IA32_SYSENTER_EIP, a);
|
|
vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
|
|
|
|
for (i = 0; i < NR_VMX_MSR; ++i) {
|
|
u32 index = vmx_msr_index[i];
|
|
u32 data_low, data_high;
|
|
u64 data;
|
|
int j = vmx->nmsrs;
|
|
|
|
if (rdmsr_safe(index, &data_low, &data_high) < 0)
|
|
continue;
|
|
if (wrmsr_safe(index, data_low, data_high) < 0)
|
|
continue;
|
|
data = data_low | ((u64)data_high << 32);
|
|
vmx->host_msrs[j].index = index;
|
|
vmx->host_msrs[j].reserved = 0;
|
|
vmx->host_msrs[j].data = data;
|
|
vmx->guest_msrs[j] = vmx->host_msrs[j];
|
|
++vmx->nmsrs;
|
|
}
|
|
|
|
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
|
|
|
|
/* 22.2.1, 20.8.1 */
|
|
vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
|
|
|
|
vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
|
|
vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u64 msr;
|
|
int ret;
|
|
|
|
if (!init_rmode_tss(vmx->vcpu.kvm)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
vmx->vcpu.arch.rmode.active = 0;
|
|
|
|
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
|
|
set_cr8(&vmx->vcpu, 0);
|
|
msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
|
|
if (vmx->vcpu.vcpu_id == 0)
|
|
msr |= MSR_IA32_APICBASE_BSP;
|
|
kvm_set_apic_base(&vmx->vcpu, msr);
|
|
|
|
fx_init(&vmx->vcpu);
|
|
|
|
/*
|
|
* GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
|
|
* insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
|
|
*/
|
|
if (vmx->vcpu.vcpu_id == 0) {
|
|
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
|
|
vmcs_writel(GUEST_CS_BASE, 0x000f0000);
|
|
} else {
|
|
vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
|
|
vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
|
|
}
|
|
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
|
|
|
|
seg_setup(VCPU_SREG_DS);
|
|
seg_setup(VCPU_SREG_ES);
|
|
seg_setup(VCPU_SREG_FS);
|
|
seg_setup(VCPU_SREG_GS);
|
|
seg_setup(VCPU_SREG_SS);
|
|
|
|
vmcs_write16(GUEST_TR_SELECTOR, 0);
|
|
vmcs_writel(GUEST_TR_BASE, 0);
|
|
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
|
|
|
|
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
|
|
vmcs_writel(GUEST_LDTR_BASE, 0);
|
|
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
|
|
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
|
|
|
|
vmcs_write32(GUEST_SYSENTER_CS, 0);
|
|
vmcs_writel(GUEST_SYSENTER_ESP, 0);
|
|
vmcs_writel(GUEST_SYSENTER_EIP, 0);
|
|
|
|
vmcs_writel(GUEST_RFLAGS, 0x02);
|
|
if (vmx->vcpu.vcpu_id == 0)
|
|
vmcs_writel(GUEST_RIP, 0xfff0);
|
|
else
|
|
vmcs_writel(GUEST_RIP, 0);
|
|
vmcs_writel(GUEST_RSP, 0);
|
|
|
|
/* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
|
|
vmcs_writel(GUEST_DR7, 0x400);
|
|
|
|
vmcs_writel(GUEST_GDTR_BASE, 0);
|
|
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
|
|
|
|
vmcs_writel(GUEST_IDTR_BASE, 0);
|
|
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
|
|
|
|
vmcs_write32(GUEST_ACTIVITY_STATE, 0);
|
|
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
|
|
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
|
|
|
|
guest_write_tsc(0);
|
|
|
|
/* Special registers */
|
|
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
|
|
|
|
setup_msrs(vmx);
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
|
|
|
|
if (cpu_has_vmx_tpr_shadow()) {
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
|
|
if (vm_need_tpr_shadow(vmx->vcpu.kvm))
|
|
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
|
|
page_to_phys(vmx->vcpu.arch.apic->regs_page));
|
|
vmcs_write32(TPR_THRESHOLD, 0);
|
|
}
|
|
|
|
if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
|
|
vmcs_write64(APIC_ACCESS_ADDR,
|
|
page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
|
|
|
|
vmx->vcpu.arch.cr0 = 0x60000010;
|
|
vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
|
|
vmx_set_cr4(&vmx->vcpu, 0);
|
|
#ifdef CONFIG_X86_64
|
|
vmx_set_efer(&vmx->vcpu, 0);
|
|
#endif
|
|
vmx_fpu_activate(&vmx->vcpu);
|
|
update_exception_bitmap(&vmx->vcpu);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (vcpu->arch.rmode.active) {
|
|
vmx->rmode.irq.pending = true;
|
|
vmx->rmode.irq.vector = irq;
|
|
vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
|
|
vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
|
|
return;
|
|
}
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
|
|
irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
|
|
}
|
|
|
|
static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
int word_index = __ffs(vcpu->arch.irq_summary);
|
|
int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
|
|
int irq = word_index * BITS_PER_LONG + bit_index;
|
|
|
|
clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
|
|
if (!vcpu->arch.irq_pending[word_index])
|
|
clear_bit(word_index, &vcpu->arch.irq_summary);
|
|
vmx_inject_irq(vcpu, irq);
|
|
}
|
|
|
|
|
|
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
u32 cpu_based_vm_exec_control;
|
|
|
|
vcpu->arch.interrupt_window_open =
|
|
((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
|
|
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
|
|
|
|
if (vcpu->arch.interrupt_window_open &&
|
|
vcpu->arch.irq_summary &&
|
|
!(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
|
|
/*
|
|
* If interrupts enabled, and not blocked by sti or mov ss. Good.
|
|
*/
|
|
kvm_do_inject_irq(vcpu);
|
|
|
|
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
if (!vcpu->arch.interrupt_window_open &&
|
|
(vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
|
|
/*
|
|
* Interrupts blocked. Wait for unblock.
|
|
*/
|
|
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
|
|
else
|
|
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
|
|
}
|
|
|
|
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
|
|
{
|
|
int ret;
|
|
struct kvm_userspace_memory_region tss_mem = {
|
|
.slot = 8,
|
|
.guest_phys_addr = addr,
|
|
.memory_size = PAGE_SIZE * 3,
|
|
.flags = 0,
|
|
};
|
|
|
|
ret = kvm_set_memory_region(kvm, &tss_mem, 0);
|
|
if (ret)
|
|
return ret;
|
|
kvm->arch.tss_addr = addr;
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_guest_debug *dbg = &vcpu->guest_debug;
|
|
|
|
set_debugreg(dbg->bp[0], 0);
|
|
set_debugreg(dbg->bp[1], 1);
|
|
set_debugreg(dbg->bp[2], 2);
|
|
set_debugreg(dbg->bp[3], 3);
|
|
|
|
if (dbg->singlestep) {
|
|
unsigned long flags;
|
|
|
|
flags = vmcs_readl(GUEST_RFLAGS);
|
|
flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
|
|
vmcs_writel(GUEST_RFLAGS, flags);
|
|
}
|
|
}
|
|
|
|
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
|
|
int vec, u32 err_code)
|
|
{
|
|
if (!vcpu->arch.rmode.active)
|
|
return 0;
|
|
|
|
/*
|
|
* Instruction with address size override prefix opcode 0x67
|
|
* Cause the #SS fault with 0 error code in VM86 mode.
|
|
*/
|
|
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
|
|
if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 intr_info, error_code;
|
|
unsigned long cr2, rip;
|
|
u32 vect_info;
|
|
enum emulation_result er;
|
|
|
|
vect_info = vmx->idt_vectoring_info;
|
|
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
|
|
|
|
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
|
|
!is_page_fault(intr_info))
|
|
printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
|
|
"intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
|
|
int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
|
|
set_bit(irq, vcpu->arch.irq_pending);
|
|
set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
|
|
}
|
|
|
|
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
|
|
return 1; /* already handled by vmx_vcpu_run() */
|
|
|
|
if (is_no_device(intr_info)) {
|
|
vmx_fpu_activate(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
if (is_invalid_opcode(intr_info)) {
|
|
er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
|
|
if (er != EMULATE_DONE)
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
error_code = 0;
|
|
rip = vmcs_readl(GUEST_RIP);
|
|
if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
|
|
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
|
|
if (is_page_fault(intr_info)) {
|
|
cr2 = vmcs_readl(EXIT_QUALIFICATION);
|
|
return kvm_mmu_page_fault(vcpu, cr2, error_code);
|
|
}
|
|
|
|
if (vcpu->arch.rmode.active &&
|
|
handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
|
|
error_code)) {
|
|
if (vcpu->arch.halt_request) {
|
|
vcpu->arch.halt_request = 0;
|
|
return kvm_emulate_halt(vcpu);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
|
|
(INTR_TYPE_EXCEPTION | 1)) {
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
return 0;
|
|
}
|
|
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
|
|
kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
|
|
kvm_run->ex.error_code = error_code;
|
|
return 0;
|
|
}
|
|
|
|
static int handle_external_interrupt(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
++vcpu->stat.irq_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
|
|
static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
unsigned long exit_qualification;
|
|
int size, down, in, string, rep;
|
|
unsigned port;
|
|
|
|
++vcpu->stat.io_exits;
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
string = (exit_qualification & 16) != 0;
|
|
|
|
if (string) {
|
|
if (emulate_instruction(vcpu,
|
|
kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
size = (exit_qualification & 7) + 1;
|
|
in = (exit_qualification & 8) != 0;
|
|
down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
|
|
rep = (exit_qualification & 32) != 0;
|
|
port = exit_qualification >> 16;
|
|
|
|
return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
|
|
}
|
|
|
|
static void
|
|
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xc1;
|
|
}
|
|
|
|
static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
unsigned long exit_qualification;
|
|
int cr;
|
|
int reg;
|
|
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
cr = exit_qualification & 15;
|
|
reg = (exit_qualification >> 8) & 15;
|
|
switch ((exit_qualification >> 4) & 3) {
|
|
case 0: /* mov to cr */
|
|
switch (cr) {
|
|
case 0:
|
|
vcpu_load_rsp_rip(vcpu);
|
|
set_cr0(vcpu, vcpu->arch.regs[reg]);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 3:
|
|
vcpu_load_rsp_rip(vcpu);
|
|
set_cr3(vcpu, vcpu->arch.regs[reg]);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 4:
|
|
vcpu_load_rsp_rip(vcpu);
|
|
set_cr4(vcpu, vcpu->arch.regs[reg]);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 8:
|
|
vcpu_load_rsp_rip(vcpu);
|
|
set_cr8(vcpu, vcpu->arch.regs[reg]);
|
|
skip_emulated_instruction(vcpu);
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return 1;
|
|
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
};
|
|
break;
|
|
case 2: /* clts */
|
|
vcpu_load_rsp_rip(vcpu);
|
|
vmx_fpu_deactivate(vcpu);
|
|
vcpu->arch.cr0 &= ~X86_CR0_TS;
|
|
vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
|
|
vmx_fpu_activate(vcpu);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 1: /*mov from cr*/
|
|
switch (cr) {
|
|
case 3:
|
|
vcpu_load_rsp_rip(vcpu);
|
|
vcpu->arch.regs[reg] = vcpu->arch.cr3;
|
|
vcpu_put_rsp_rip(vcpu);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
case 8:
|
|
vcpu_load_rsp_rip(vcpu);
|
|
vcpu->arch.regs[reg] = get_cr8(vcpu);
|
|
vcpu_put_rsp_rip(vcpu);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
break;
|
|
case 3: /* lmsw */
|
|
lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
|
|
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
kvm_run->exit_reason = 0;
|
|
pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
|
|
(int)(exit_qualification >> 4) & 3, cr);
|
|
return 0;
|
|
}
|
|
|
|
static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
unsigned long exit_qualification;
|
|
unsigned long val;
|
|
int dr, reg;
|
|
|
|
/*
|
|
* FIXME: this code assumes the host is debugging the guest.
|
|
* need to deal with guest debugging itself too.
|
|
*/
|
|
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
|
|
dr = exit_qualification & 7;
|
|
reg = (exit_qualification >> 8) & 15;
|
|
vcpu_load_rsp_rip(vcpu);
|
|
if (exit_qualification & 16) {
|
|
/* mov from dr */
|
|
switch (dr) {
|
|
case 6:
|
|
val = 0xffff0ff0;
|
|
break;
|
|
case 7:
|
|
val = 0x400;
|
|
break;
|
|
default:
|
|
val = 0;
|
|
}
|
|
vcpu->arch.regs[reg] = val;
|
|
} else {
|
|
/* mov to dr */
|
|
}
|
|
vcpu_put_rsp_rip(vcpu);
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
kvm_emulate_cpuid(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
|
|
u64 data;
|
|
|
|
if (vmx_get_msr(vcpu, ecx, &data)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME: handling of bits 32:63 of rax, rdx */
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
|
|
vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
|
|
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
|
|
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
|
|
|
|
if (vmx_set_msr(vcpu, ecx, data) != 0) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
skip_emulated_instruction(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int handle_interrupt_window(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
u32 cpu_based_vm_exec_control;
|
|
|
|
/* clear pending irq */
|
|
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
|
|
/*
|
|
* If the user space waits to inject interrupts, exit as soon as
|
|
* possible
|
|
*/
|
|
if (kvm_run->request_interrupt_window &&
|
|
!vcpu->arch.irq_summary) {
|
|
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
++vcpu->stat.irq_window_exits;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
skip_emulated_instruction(vcpu);
|
|
return kvm_emulate_halt(vcpu);
|
|
}
|
|
|
|
static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
skip_emulated_instruction(vcpu);
|
|
kvm_emulate_hypercall(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
skip_emulated_instruction(vcpu);
|
|
/* TODO: Add support for VT-d/pass-through device */
|
|
return 1;
|
|
}
|
|
|
|
static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
u64 exit_qualification;
|
|
enum emulation_result er;
|
|
unsigned long offset;
|
|
|
|
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
|
|
offset = exit_qualification & 0xffful;
|
|
|
|
er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
|
|
|
|
if (er != EMULATE_DONE) {
|
|
printk(KERN_ERR
|
|
"Fail to handle apic access vmexit! Offset is 0x%lx\n",
|
|
offset);
|
|
return -ENOTSUPP;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The exit handlers return 1 if the exit was handled fully and guest execution
|
|
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
|
|
* to be done to userspace and return 0.
|
|
*/
|
|
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
|
|
struct kvm_run *kvm_run) = {
|
|
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
|
|
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
|
|
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
|
|
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
|
|
[EXIT_REASON_CR_ACCESS] = handle_cr,
|
|
[EXIT_REASON_DR_ACCESS] = handle_dr,
|
|
[EXIT_REASON_CPUID] = handle_cpuid,
|
|
[EXIT_REASON_MSR_READ] = handle_rdmsr,
|
|
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
|
|
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
|
|
[EXIT_REASON_HLT] = handle_halt,
|
|
[EXIT_REASON_VMCALL] = handle_vmcall,
|
|
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
|
|
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
|
|
[EXIT_REASON_WBINVD] = handle_wbinvd,
|
|
};
|
|
|
|
static const int kvm_vmx_max_exit_handlers =
|
|
ARRAY_SIZE(kvm_vmx_exit_handlers);
|
|
|
|
/*
|
|
* The guest has exited. See if we can fix it or if we need userspace
|
|
* assistance.
|
|
*/
|
|
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 vectoring_info = vmx->idt_vectoring_info;
|
|
|
|
if (unlikely(vmx->fail)) {
|
|
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
kvm_run->fail_entry.hardware_entry_failure_reason
|
|
= vmcs_read32(VM_INSTRUCTION_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
|
|
exit_reason != EXIT_REASON_EXCEPTION_NMI)
|
|
printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
|
|
"exit reason is 0x%x\n", __FUNCTION__, exit_reason);
|
|
if (exit_reason < kvm_vmx_max_exit_handlers
|
|
&& kvm_vmx_exit_handlers[exit_reason])
|
|
return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
|
|
else {
|
|
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
kvm_run->hw.hardware_exit_reason = exit_reason;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void update_tpr_threshold(struct kvm_vcpu *vcpu)
|
|
{
|
|
int max_irr, tpr;
|
|
|
|
if (!vm_need_tpr_shadow(vcpu->kvm))
|
|
return;
|
|
|
|
if (!kvm_lapic_enabled(vcpu) ||
|
|
((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
|
|
vmcs_write32(TPR_THRESHOLD, 0);
|
|
return;
|
|
}
|
|
|
|
tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
|
|
vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
|
|
}
|
|
|
|
static void enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 cpu_based_vm_exec_control;
|
|
|
|
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
|
|
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
|
|
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
|
|
}
|
|
|
|
static void vmx_intr_assist(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 idtv_info_field, intr_info_field;
|
|
int has_ext_irq, interrupt_window_open;
|
|
int vector;
|
|
|
|
update_tpr_threshold(vcpu);
|
|
|
|
has_ext_irq = kvm_cpu_has_interrupt(vcpu);
|
|
intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
|
|
idtv_info_field = vmx->idt_vectoring_info;
|
|
if (intr_info_field & INTR_INFO_VALID_MASK) {
|
|
if (idtv_info_field & INTR_INFO_VALID_MASK) {
|
|
/* TODO: fault when IDT_Vectoring */
|
|
if (printk_ratelimit())
|
|
printk(KERN_ERR "Fault when IDT_Vectoring\n");
|
|
}
|
|
if (has_ext_irq)
|
|
enable_irq_window(vcpu);
|
|
return;
|
|
}
|
|
if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
|
|
if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
|
|
== INTR_TYPE_EXT_INTR
|
|
&& vcpu->arch.rmode.active) {
|
|
u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
|
|
|
|
vmx_inject_irq(vcpu, vect);
|
|
if (unlikely(has_ext_irq))
|
|
enable_irq_window(vcpu);
|
|
return;
|
|
}
|
|
|
|
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
|
|
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
|
|
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
|
|
|
|
if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
|
|
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
|
|
vmcs_read32(IDT_VECTORING_ERROR_CODE));
|
|
if (unlikely(has_ext_irq))
|
|
enable_irq_window(vcpu);
|
|
return;
|
|
}
|
|
if (!has_ext_irq)
|
|
return;
|
|
interrupt_window_open =
|
|
((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
|
|
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
|
|
if (interrupt_window_open) {
|
|
vector = kvm_cpu_get_interrupt(vcpu);
|
|
vmx_inject_irq(vcpu, vector);
|
|
kvm_timer_intr_post(vcpu, vector);
|
|
} else
|
|
enable_irq_window(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Failure to inject an interrupt should give us the information
|
|
* in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
|
|
* when fetching the interrupt redirection bitmap in the real-mode
|
|
* tss, this doesn't happen. So we do it ourselves.
|
|
*/
|
|
static void fixup_rmode_irq(struct vcpu_vmx *vmx)
|
|
{
|
|
vmx->rmode.irq.pending = 0;
|
|
if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
|
|
return;
|
|
vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
|
|
if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
|
|
vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
|
|
vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
|
|
return;
|
|
}
|
|
vmx->idt_vectoring_info =
|
|
VECTORING_INFO_VALID_MASK
|
|
| INTR_TYPE_EXT_INTR
|
|
| vmx->rmode.irq.vector;
|
|
}
|
|
|
|
static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
u32 intr_info;
|
|
|
|
/*
|
|
* Loading guest fpu may have cleared host cr0.ts
|
|
*/
|
|
vmcs_writel(HOST_CR0, read_cr0());
|
|
|
|
asm(
|
|
/* Store host registers */
|
|
#ifdef CONFIG_X86_64
|
|
"push %%rdx; push %%rbp;"
|
|
"push %%rcx \n\t"
|
|
#else
|
|
"push %%edx; push %%ebp;"
|
|
"push %%ecx \n\t"
|
|
#endif
|
|
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
|
|
/* Check if vmlaunch of vmresume is needed */
|
|
"cmpl $0, %c[launched](%0) \n\t"
|
|
/* Load guest registers. Don't clobber flags. */
|
|
#ifdef CONFIG_X86_64
|
|
"mov %c[cr2](%0), %%rax \n\t"
|
|
"mov %%rax, %%cr2 \n\t"
|
|
"mov %c[rax](%0), %%rax \n\t"
|
|
"mov %c[rbx](%0), %%rbx \n\t"
|
|
"mov %c[rdx](%0), %%rdx \n\t"
|
|
"mov %c[rsi](%0), %%rsi \n\t"
|
|
"mov %c[rdi](%0), %%rdi \n\t"
|
|
"mov %c[rbp](%0), %%rbp \n\t"
|
|
"mov %c[r8](%0), %%r8 \n\t"
|
|
"mov %c[r9](%0), %%r9 \n\t"
|
|
"mov %c[r10](%0), %%r10 \n\t"
|
|
"mov %c[r11](%0), %%r11 \n\t"
|
|
"mov %c[r12](%0), %%r12 \n\t"
|
|
"mov %c[r13](%0), %%r13 \n\t"
|
|
"mov %c[r14](%0), %%r14 \n\t"
|
|
"mov %c[r15](%0), %%r15 \n\t"
|
|
"mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
|
|
#else
|
|
"mov %c[cr2](%0), %%eax \n\t"
|
|
"mov %%eax, %%cr2 \n\t"
|
|
"mov %c[rax](%0), %%eax \n\t"
|
|
"mov %c[rbx](%0), %%ebx \n\t"
|
|
"mov %c[rdx](%0), %%edx \n\t"
|
|
"mov %c[rsi](%0), %%esi \n\t"
|
|
"mov %c[rdi](%0), %%edi \n\t"
|
|
"mov %c[rbp](%0), %%ebp \n\t"
|
|
"mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
|
|
#endif
|
|
/* Enter guest mode */
|
|
"jne .Llaunched \n\t"
|
|
ASM_VMX_VMLAUNCH "\n\t"
|
|
"jmp .Lkvm_vmx_return \n\t"
|
|
".Llaunched: " ASM_VMX_VMRESUME "\n\t"
|
|
".Lkvm_vmx_return: "
|
|
/* Save guest registers, load host registers, keep flags */
|
|
#ifdef CONFIG_X86_64
|
|
"xchg %0, (%%rsp) \n\t"
|
|
"mov %%rax, %c[rax](%0) \n\t"
|
|
"mov %%rbx, %c[rbx](%0) \n\t"
|
|
"pushq (%%rsp); popq %c[rcx](%0) \n\t"
|
|
"mov %%rdx, %c[rdx](%0) \n\t"
|
|
"mov %%rsi, %c[rsi](%0) \n\t"
|
|
"mov %%rdi, %c[rdi](%0) \n\t"
|
|
"mov %%rbp, %c[rbp](%0) \n\t"
|
|
"mov %%r8, %c[r8](%0) \n\t"
|
|
"mov %%r9, %c[r9](%0) \n\t"
|
|
"mov %%r10, %c[r10](%0) \n\t"
|
|
"mov %%r11, %c[r11](%0) \n\t"
|
|
"mov %%r12, %c[r12](%0) \n\t"
|
|
"mov %%r13, %c[r13](%0) \n\t"
|
|
"mov %%r14, %c[r14](%0) \n\t"
|
|
"mov %%r15, %c[r15](%0) \n\t"
|
|
"mov %%cr2, %%rax \n\t"
|
|
"mov %%rax, %c[cr2](%0) \n\t"
|
|
|
|
"pop %%rbp; pop %%rbp; pop %%rdx \n\t"
|
|
#else
|
|
"xchg %0, (%%esp) \n\t"
|
|
"mov %%eax, %c[rax](%0) \n\t"
|
|
"mov %%ebx, %c[rbx](%0) \n\t"
|
|
"pushl (%%esp); popl %c[rcx](%0) \n\t"
|
|
"mov %%edx, %c[rdx](%0) \n\t"
|
|
"mov %%esi, %c[rsi](%0) \n\t"
|
|
"mov %%edi, %c[rdi](%0) \n\t"
|
|
"mov %%ebp, %c[rbp](%0) \n\t"
|
|
"mov %%cr2, %%eax \n\t"
|
|
"mov %%eax, %c[cr2](%0) \n\t"
|
|
|
|
"pop %%ebp; pop %%ebp; pop %%edx \n\t"
|
|
#endif
|
|
"setbe %c[fail](%0) \n\t"
|
|
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
|
|
[launched]"i"(offsetof(struct vcpu_vmx, launched)),
|
|
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
|
|
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
|
|
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
|
|
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
|
|
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
|
|
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
|
|
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
|
|
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
|
|
#ifdef CONFIG_X86_64
|
|
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
|
|
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
|
|
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
|
|
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
|
|
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
|
|
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
|
|
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
|
|
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
|
|
#endif
|
|
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
|
|
: "cc", "memory"
|
|
#ifdef CONFIG_X86_64
|
|
, "rbx", "rdi", "rsi"
|
|
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
|
|
#else
|
|
, "ebx", "edi", "rsi"
|
|
#endif
|
|
);
|
|
|
|
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
|
|
if (vmx->rmode.irq.pending)
|
|
fixup_rmode_irq(vmx);
|
|
|
|
vcpu->arch.interrupt_window_open =
|
|
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
|
|
|
|
asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
|
|
vmx->launched = 1;
|
|
|
|
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
|
|
|
|
/* We need to handle NMIs before interrupts are enabled */
|
|
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
|
|
asm("int $2");
|
|
}
|
|
|
|
static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
if (vmx->vmcs) {
|
|
on_each_cpu(__vcpu_clear, vmx, 0, 1);
|
|
free_vmcs(vmx->vmcs);
|
|
vmx->vmcs = NULL;
|
|
}
|
|
}
|
|
|
|
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
vmx_free_vmcs(vcpu);
|
|
kfree(vmx->host_msrs);
|
|
kfree(vmx->guest_msrs);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, vmx);
|
|
}
|
|
|
|
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
|
|
{
|
|
int err;
|
|
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
int cpu;
|
|
|
|
if (!vmx)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
|
|
if (err)
|
|
goto free_vcpu;
|
|
|
|
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!vmx->guest_msrs) {
|
|
err = -ENOMEM;
|
|
goto uninit_vcpu;
|
|
}
|
|
|
|
vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!vmx->host_msrs)
|
|
goto free_guest_msrs;
|
|
|
|
vmx->vmcs = alloc_vmcs();
|
|
if (!vmx->vmcs)
|
|
goto free_msrs;
|
|
|
|
vmcs_clear(vmx->vmcs);
|
|
|
|
cpu = get_cpu();
|
|
vmx_vcpu_load(&vmx->vcpu, cpu);
|
|
err = vmx_vcpu_setup(vmx);
|
|
vmx_vcpu_put(&vmx->vcpu);
|
|
put_cpu();
|
|
if (err)
|
|
goto free_vmcs;
|
|
if (vm_need_virtualize_apic_accesses(kvm))
|
|
if (alloc_apic_access_page(kvm) != 0)
|
|
goto free_vmcs;
|
|
|
|
return &vmx->vcpu;
|
|
|
|
free_vmcs:
|
|
free_vmcs(vmx->vmcs);
|
|
free_msrs:
|
|
kfree(vmx->host_msrs);
|
|
free_guest_msrs:
|
|
kfree(vmx->guest_msrs);
|
|
uninit_vcpu:
|
|
kvm_vcpu_uninit(&vmx->vcpu);
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vmx);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void __init vmx_check_processor_compat(void *rtn)
|
|
{
|
|
struct vmcs_config vmcs_conf;
|
|
|
|
*(int *)rtn = 0;
|
|
if (setup_vmcs_config(&vmcs_conf) < 0)
|
|
*(int *)rtn = -EIO;
|
|
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
|
|
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
|
|
smp_processor_id());
|
|
*(int *)rtn = -EIO;
|
|
}
|
|
}
|
|
|
|
static struct kvm_x86_ops vmx_x86_ops = {
|
|
.cpu_has_kvm_support = cpu_has_kvm_support,
|
|
.disabled_by_bios = vmx_disabled_by_bios,
|
|
.hardware_setup = hardware_setup,
|
|
.hardware_unsetup = hardware_unsetup,
|
|
.check_processor_compatibility = vmx_check_processor_compat,
|
|
.hardware_enable = hardware_enable,
|
|
.hardware_disable = hardware_disable,
|
|
.cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
|
|
|
|
.vcpu_create = vmx_create_vcpu,
|
|
.vcpu_free = vmx_free_vcpu,
|
|
.vcpu_reset = vmx_vcpu_reset,
|
|
|
|
.prepare_guest_switch = vmx_save_host_state,
|
|
.vcpu_load = vmx_vcpu_load,
|
|
.vcpu_put = vmx_vcpu_put,
|
|
.vcpu_decache = vmx_vcpu_decache,
|
|
|
|
.set_guest_debug = set_guest_debug,
|
|
.guest_debug_pre = kvm_guest_debug_pre,
|
|
.get_msr = vmx_get_msr,
|
|
.set_msr = vmx_set_msr,
|
|
.get_segment_base = vmx_get_segment_base,
|
|
.get_segment = vmx_get_segment,
|
|
.set_segment = vmx_set_segment,
|
|
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
|
|
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
|
|
.set_cr0 = vmx_set_cr0,
|
|
.set_cr3 = vmx_set_cr3,
|
|
.set_cr4 = vmx_set_cr4,
|
|
#ifdef CONFIG_X86_64
|
|
.set_efer = vmx_set_efer,
|
|
#endif
|
|
.get_idt = vmx_get_idt,
|
|
.set_idt = vmx_set_idt,
|
|
.get_gdt = vmx_get_gdt,
|
|
.set_gdt = vmx_set_gdt,
|
|
.cache_regs = vcpu_load_rsp_rip,
|
|
.decache_regs = vcpu_put_rsp_rip,
|
|
.get_rflags = vmx_get_rflags,
|
|
.set_rflags = vmx_set_rflags,
|
|
|
|
.tlb_flush = vmx_flush_tlb,
|
|
|
|
.run = vmx_vcpu_run,
|
|
.handle_exit = kvm_handle_exit,
|
|
.skip_emulated_instruction = skip_emulated_instruction,
|
|
.patch_hypercall = vmx_patch_hypercall,
|
|
.get_irq = vmx_get_irq,
|
|
.set_irq = vmx_inject_irq,
|
|
.queue_exception = vmx_queue_exception,
|
|
.exception_injected = vmx_exception_injected,
|
|
.inject_pending_irq = vmx_intr_assist,
|
|
.inject_pending_vectors = do_interrupt_requests,
|
|
|
|
.set_tss_addr = vmx_set_tss_addr,
|
|
};
|
|
|
|
static int __init vmx_init(void)
|
|
{
|
|
void *iova;
|
|
int r;
|
|
|
|
vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
|
|
if (!vmx_io_bitmap_a)
|
|
return -ENOMEM;
|
|
|
|
vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
|
|
if (!vmx_io_bitmap_b) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Allow direct access to the PC debug port (it is often used for I/O
|
|
* delays, but the vmexits simply slow things down).
|
|
*/
|
|
iova = kmap(vmx_io_bitmap_a);
|
|
memset(iova, 0xff, PAGE_SIZE);
|
|
clear_bit(0x80, iova);
|
|
kunmap(vmx_io_bitmap_a);
|
|
|
|
iova = kmap(vmx_io_bitmap_b);
|
|
memset(iova, 0xff, PAGE_SIZE);
|
|
kunmap(vmx_io_bitmap_b);
|
|
|
|
r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
|
|
if (r)
|
|
goto out1;
|
|
|
|
if (bypass_guest_pf)
|
|
kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
|
|
|
|
return 0;
|
|
|
|
out1:
|
|
__free_page(vmx_io_bitmap_b);
|
|
out:
|
|
__free_page(vmx_io_bitmap_a);
|
|
return r;
|
|
}
|
|
|
|
static void __exit vmx_exit(void)
|
|
{
|
|
__free_page(vmx_io_bitmap_b);
|
|
__free_page(vmx_io_bitmap_a);
|
|
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(vmx_init)
|
|
module_exit(vmx_exit)
|