mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 02:04:19 +08:00
c205fb7d7d
When emulating an instruction that reads the destination memory operand (i.e., instructions without the Mov flag in the emulator), the operand is first read. If a page-fault is detected in this phase, the error-code which would be delivered to the VM does not indicate that the access that caused the exception is a write one. This does not conform with real hardware, and may cause the VM to enter the page-fault handler twice for no reason (once for read, once for write). Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
174 lines
5.7 KiB
C
174 lines
5.7 KiB
C
#ifndef __KVM_X86_MMU_H
|
|
#define __KVM_X86_MMU_H
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "kvm_cache_regs.h"
|
|
|
|
#define PT64_PT_BITS 9
|
|
#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
|
|
#define PT32_PT_BITS 10
|
|
#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
|
|
|
|
#define PT_WRITABLE_SHIFT 1
|
|
|
|
#define PT_PRESENT_MASK (1ULL << 0)
|
|
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
|
|
#define PT_USER_MASK (1ULL << 2)
|
|
#define PT_PWT_MASK (1ULL << 3)
|
|
#define PT_PCD_MASK (1ULL << 4)
|
|
#define PT_ACCESSED_SHIFT 5
|
|
#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
|
|
#define PT_DIRTY_SHIFT 6
|
|
#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
|
|
#define PT_PAGE_SIZE_SHIFT 7
|
|
#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
|
|
#define PT_PAT_MASK (1ULL << 7)
|
|
#define PT_GLOBAL_MASK (1ULL << 8)
|
|
#define PT64_NX_SHIFT 63
|
|
#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
|
|
|
|
#define PT_PAT_SHIFT 7
|
|
#define PT_DIR_PAT_SHIFT 12
|
|
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
|
|
|
|
#define PT32_DIR_PSE36_SIZE 4
|
|
#define PT32_DIR_PSE36_SHIFT 13
|
|
#define PT32_DIR_PSE36_MASK \
|
|
(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
|
|
|
|
#define PT64_ROOT_LEVEL 4
|
|
#define PT32_ROOT_LEVEL 2
|
|
#define PT32E_ROOT_LEVEL 3
|
|
|
|
#define PT_PDPE_LEVEL 3
|
|
#define PT_DIRECTORY_LEVEL 2
|
|
#define PT_PAGE_TABLE_LEVEL 1
|
|
|
|
static inline u64 rsvd_bits(int s, int e)
|
|
{
|
|
return ((1ULL << (e - s + 1)) - 1) << s;
|
|
}
|
|
|
|
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
|
|
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
|
|
|
|
/*
|
|
* Return values of handle_mmio_page_fault_common:
|
|
* RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
|
|
* directly.
|
|
* RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
|
|
* fault path update the mmio spte.
|
|
* RET_MMIO_PF_RETRY: let CPU fault again on the address.
|
|
* RET_MMIO_PF_BUG: bug is detected.
|
|
*/
|
|
enum {
|
|
RET_MMIO_PF_EMULATE = 1,
|
|
RET_MMIO_PF_INVALID = 2,
|
|
RET_MMIO_PF_RETRY = 0,
|
|
RET_MMIO_PF_BUG = -1
|
|
};
|
|
|
|
int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
|
|
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
|
|
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
|
|
void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
bool ept);
|
|
|
|
static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
|
|
{
|
|
if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
|
|
return kvm->arch.n_max_mmu_pages -
|
|
kvm->arch.n_used_mmu_pages;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
|
|
return 0;
|
|
|
|
return kvm_mmu_load(vcpu);
|
|
}
|
|
|
|
static inline int is_present_gpte(unsigned long pte)
|
|
{
|
|
return pte & PT_PRESENT_MASK;
|
|
}
|
|
|
|
/*
|
|
* Currently, we have two sorts of write-protection, a) the first one
|
|
* write-protects guest page to sync the guest modification, b) another one is
|
|
* used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
|
|
* between these two sorts are:
|
|
* 1) the first case clears SPTE_MMU_WRITEABLE bit.
|
|
* 2) the first case requires flushing tlb immediately avoiding corrupting
|
|
* shadow page table between all vcpus so it should be in the protection of
|
|
* mmu-lock. And the another case does not need to flush tlb until returning
|
|
* the dirty bitmap to userspace since it only write-protects the page
|
|
* logged in the bitmap, that means the page in the dirty bitmap is not
|
|
* missed, so it can flush tlb out of mmu-lock.
|
|
*
|
|
* So, there is the problem: the first case can meet the corrupted tlb caused
|
|
* by another case which write-protects pages but without flush tlb
|
|
* immediately. In order to making the first case be aware this problem we let
|
|
* it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
|
|
* is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
|
|
*
|
|
* Anyway, whenever a spte is updated (only permission and status bits are
|
|
* changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
|
|
* readonly, if that happens, we need to flush tlb. Fortunately,
|
|
* mmu_spte_update() has already handled it perfectly.
|
|
*
|
|
* The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
|
|
* - if we want to see if it has writable tlb entry or if the spte can be
|
|
* writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
|
|
* case, otherwise
|
|
* - if we fix page fault on the spte or do write-protection by dirty logging,
|
|
* check PT_WRITABLE_MASK.
|
|
*
|
|
* TODO: introduce APIs to split these two cases.
|
|
*/
|
|
static inline int is_writable_pte(unsigned long pte)
|
|
{
|
|
return pte & PT_WRITABLE_MASK;
|
|
}
|
|
|
|
static inline bool is_write_protection(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
|
|
}
|
|
|
|
/*
|
|
* Will a fault with a given page-fault error code (pfec) cause a permission
|
|
* fault with the given access (in ACC_* format)?
|
|
*/
|
|
static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
unsigned pte_access, unsigned pfec)
|
|
{
|
|
int cpl = kvm_x86_ops->get_cpl(vcpu);
|
|
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
|
|
/*
|
|
* If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
|
|
*
|
|
* If CPL = 3, SMAP applies to all supervisor-mode data accesses
|
|
* (these are implicit supervisor accesses) regardless of the value
|
|
* of EFLAGS.AC.
|
|
*
|
|
* This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
|
|
* the result in X86_EFLAGS_AC. We then insert it in place of
|
|
* the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
|
|
* but it will be one in index if SMAP checks are being overridden.
|
|
* It is important to keep this branchless.
|
|
*/
|
|
unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
|
|
int index = (pfec >> 1) +
|
|
(smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
|
|
|
|
return (mmu->permissions[index] >> pte_access) & 1;
|
|
}
|
|
|
|
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
|
|
#endif
|