mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-23 02:54:32 +08:00
334ae61477
This thing was completely pointless. Just find the OF device in the parent of drivers that want to program this device, and map the DMA regs inside such drivers too. This also moves the dummy claim_dma_lock() and release_dma_lock() implementation to floppy_32.h, which makes it handle this issue just like floppy_64.h does. Signed-off-by: David S. Miller <davem@davemloft.net>
567 lines
21 KiB
C
567 lines
21 KiB
C
/* esp_scsi.h: Defines and structures for the ESP drier.
|
|
*
|
|
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
|
|
*/
|
|
|
|
#ifndef _ESP_SCSI_H
|
|
#define _ESP_SCSI_H
|
|
|
|
/* Access Description Offset */
|
|
#define ESP_TCLOW 0x00UL /* rw Low bits transfer count 0x00 */
|
|
#define ESP_TCMED 0x01UL /* rw Mid bits transfer count 0x04 */
|
|
#define ESP_FDATA 0x02UL /* rw FIFO data bits 0x08 */
|
|
#define ESP_CMD 0x03UL /* rw SCSI command bits 0x0c */
|
|
#define ESP_STATUS 0x04UL /* ro ESP status register 0x10 */
|
|
#define ESP_BUSID ESP_STATUS /* wo BusID for sel/resel 0x10 */
|
|
#define ESP_INTRPT 0x05UL /* ro Kind of interrupt 0x14 */
|
|
#define ESP_TIMEO ESP_INTRPT /* wo Timeout for sel/resel 0x14 */
|
|
#define ESP_SSTEP 0x06UL /* ro Sequence step register 0x18 */
|
|
#define ESP_STP ESP_SSTEP /* wo Transfer period/sync 0x18 */
|
|
#define ESP_FFLAGS 0x07UL /* ro Bits current FIFO info 0x1c */
|
|
#define ESP_SOFF ESP_FFLAGS /* wo Sync offset 0x1c */
|
|
#define ESP_CFG1 0x08UL /* rw First cfg register 0x20 */
|
|
#define ESP_CFACT 0x09UL /* wo Clock conv factor 0x24 */
|
|
#define ESP_STATUS2 ESP_CFACT /* ro HME status2 register 0x24 */
|
|
#define ESP_CTEST 0x0aUL /* wo Chip test register 0x28 */
|
|
#define ESP_CFG2 0x0bUL /* rw Second cfg register 0x2c */
|
|
#define ESP_CFG3 0x0cUL /* rw Third cfg register 0x30 */
|
|
#define ESP_TCHI 0x0eUL /* rw High bits transf count 0x38 */
|
|
#define ESP_UID ESP_TCHI /* ro Unique ID code 0x38 */
|
|
#define FAS_RLO ESP_TCHI /* rw HME extended counter 0x38 */
|
|
#define ESP_FGRND 0x0fUL /* rw Data base for fifo 0x3c */
|
|
#define FAS_RHI ESP_FGRND /* rw HME extended counter 0x3c */
|
|
|
|
#define SBUS_ESP_REG_SIZE 0x40UL
|
|
|
|
/* Bitfield meanings for the above registers. */
|
|
|
|
/* ESP config reg 1, read-write, found on all ESP chips */
|
|
#define ESP_CONFIG1_ID 0x07 /* My BUS ID bits */
|
|
#define ESP_CONFIG1_CHTEST 0x08 /* Enable ESP chip tests */
|
|
#define ESP_CONFIG1_PENABLE 0x10 /* Enable parity checks */
|
|
#define ESP_CONFIG1_PARTEST 0x20 /* Parity test mode enabled? */
|
|
#define ESP_CONFIG1_SRRDISAB 0x40 /* Disable SCSI reset reports */
|
|
#define ESP_CONFIG1_SLCABLE 0x80 /* Enable slow cable mode */
|
|
|
|
/* ESP config reg 2, read-write, found only on esp100a+esp200+esp236 chips */
|
|
#define ESP_CONFIG2_DMAPARITY 0x01 /* enable DMA Parity (200,236) */
|
|
#define ESP_CONFIG2_REGPARITY 0x02 /* enable reg Parity (200,236) */
|
|
#define ESP_CONFIG2_BADPARITY 0x04 /* Bad parity target abort */
|
|
#define ESP_CONFIG2_SCSI2ENAB 0x08 /* Enable SCSI-2 features (tgtmode) */
|
|
#define ESP_CONFIG2_HI 0x10 /* High Impedance DREQ ??? */
|
|
#define ESP_CONFIG2_HMEFENAB 0x10 /* HME features enable */
|
|
#define ESP_CONFIG2_BCM 0x20 /* Enable byte-ctrl (236) */
|
|
#define ESP_CONFIG2_DISPINT 0x20 /* Disable pause irq (hme) */
|
|
#define ESP_CONFIG2_FENAB 0x40 /* Enable features (fas100,216) */
|
|
#define ESP_CONFIG2_SPL 0x40 /* Enable status-phase latch (236) */
|
|
#define ESP_CONFIG2_MKDONE 0x40 /* HME magic feature */
|
|
#define ESP_CONFIG2_HME32 0x80 /* HME 32 extended */
|
|
#define ESP_CONFIG2_MAGIC 0xe0 /* Invalid bits... */
|
|
|
|
/* ESP config register 3 read-write, found only esp236+fas236+fas100a+hme chips */
|
|
#define ESP_CONFIG3_FCLOCK 0x01 /* FAST SCSI clock rate (esp100a/hme) */
|
|
#define ESP_CONFIG3_TEM 0x01 /* Enable thresh-8 mode (esp/fas236) */
|
|
#define ESP_CONFIG3_FAST 0x02 /* Enable FAST SCSI (esp100a/hme) */
|
|
#define ESP_CONFIG3_ADMA 0x02 /* Enable alternate-dma (esp/fas236) */
|
|
#define ESP_CONFIG3_TENB 0x04 /* group2 SCSI2 support (esp100a/hme) */
|
|
#define ESP_CONFIG3_SRB 0x04 /* Save residual byte (esp/fas236) */
|
|
#define ESP_CONFIG3_TMS 0x08 /* Three-byte msg's ok (esp100a/hme) */
|
|
#define ESP_CONFIG3_FCLK 0x08 /* Fast SCSI clock rate (esp/fas236) */
|
|
#define ESP_CONFIG3_IDMSG 0x10 /* ID message checking (esp100a/hme) */
|
|
#define ESP_CONFIG3_FSCSI 0x10 /* Enable FAST SCSI (esp/fas236) */
|
|
#define ESP_CONFIG3_GTM 0x20 /* group2 SCSI2 support (esp/fas236) */
|
|
#define ESP_CONFIG3_IDBIT3 0x20 /* Bit 3 of HME SCSI-ID (hme) */
|
|
#define ESP_CONFIG3_TBMS 0x40 /* Three-byte msg's ok (esp/fas236) */
|
|
#define ESP_CONFIG3_EWIDE 0x40 /* Enable Wide-SCSI (hme) */
|
|
#define ESP_CONFIG3_IMS 0x80 /* ID msg chk'ng (esp/fas236) */
|
|
#define ESP_CONFIG3_OBPUSH 0x80 /* Push odd-byte to dma (hme) */
|
|
|
|
/* ESP command register read-write */
|
|
/* Group 1 commands: These may be sent at any point in time to the ESP
|
|
* chip. None of them can generate interrupts 'cept
|
|
* the "SCSI bus reset" command if you have not disabled
|
|
* SCSI reset interrupts in the config1 ESP register.
|
|
*/
|
|
#define ESP_CMD_NULL 0x00 /* Null command, ie. a nop */
|
|
#define ESP_CMD_FLUSH 0x01 /* FIFO Flush */
|
|
#define ESP_CMD_RC 0x02 /* Chip reset */
|
|
#define ESP_CMD_RS 0x03 /* SCSI bus reset */
|
|
|
|
/* Group 2 commands: ESP must be an initiator and connected to a target
|
|
* for these commands to work.
|
|
*/
|
|
#define ESP_CMD_TI 0x10 /* Transfer Information */
|
|
#define ESP_CMD_ICCSEQ 0x11 /* Initiator cmd complete sequence */
|
|
#define ESP_CMD_MOK 0x12 /* Message okie-dokie */
|
|
#define ESP_CMD_TPAD 0x18 /* Transfer Pad */
|
|
#define ESP_CMD_SATN 0x1a /* Set ATN */
|
|
#define ESP_CMD_RATN 0x1b /* De-assert ATN */
|
|
|
|
/* Group 3 commands: ESP must be in the MSGOUT or MSGIN state and be connected
|
|
* to a target as the initiator for these commands to work.
|
|
*/
|
|
#define ESP_CMD_SMSG 0x20 /* Send message */
|
|
#define ESP_CMD_SSTAT 0x21 /* Send status */
|
|
#define ESP_CMD_SDATA 0x22 /* Send data */
|
|
#define ESP_CMD_DSEQ 0x23 /* Discontinue Sequence */
|
|
#define ESP_CMD_TSEQ 0x24 /* Terminate Sequence */
|
|
#define ESP_CMD_TCCSEQ 0x25 /* Target cmd cmplt sequence */
|
|
#define ESP_CMD_DCNCT 0x27 /* Disconnect */
|
|
#define ESP_CMD_RMSG 0x28 /* Receive Message */
|
|
#define ESP_CMD_RCMD 0x29 /* Receive Command */
|
|
#define ESP_CMD_RDATA 0x2a /* Receive Data */
|
|
#define ESP_CMD_RCSEQ 0x2b /* Receive cmd sequence */
|
|
|
|
/* Group 4 commands: The ESP must be in the disconnected state and must
|
|
* not be connected to any targets as initiator for
|
|
* these commands to work.
|
|
*/
|
|
#define ESP_CMD_RSEL 0x40 /* Reselect */
|
|
#define ESP_CMD_SEL 0x41 /* Select w/o ATN */
|
|
#define ESP_CMD_SELA 0x42 /* Select w/ATN */
|
|
#define ESP_CMD_SELAS 0x43 /* Select w/ATN & STOP */
|
|
#define ESP_CMD_ESEL 0x44 /* Enable selection */
|
|
#define ESP_CMD_DSEL 0x45 /* Disable selections */
|
|
#define ESP_CMD_SA3 0x46 /* Select w/ATN3 */
|
|
#define ESP_CMD_RSEL3 0x47 /* Reselect3 */
|
|
|
|
/* This bit enables the ESP's DMA on the SBus */
|
|
#define ESP_CMD_DMA 0x80 /* Do DMA? */
|
|
|
|
/* ESP status register read-only */
|
|
#define ESP_STAT_PIO 0x01 /* IO phase bit */
|
|
#define ESP_STAT_PCD 0x02 /* CD phase bit */
|
|
#define ESP_STAT_PMSG 0x04 /* MSG phase bit */
|
|
#define ESP_STAT_PMASK 0x07 /* Mask of phase bits */
|
|
#define ESP_STAT_TDONE 0x08 /* Transfer Completed */
|
|
#define ESP_STAT_TCNT 0x10 /* Transfer Counter Is Zero */
|
|
#define ESP_STAT_PERR 0x20 /* Parity error */
|
|
#define ESP_STAT_SPAM 0x40 /* Real bad error */
|
|
/* This indicates the 'interrupt pending' condition on esp236, it is a reserved
|
|
* bit on other revs of the ESP.
|
|
*/
|
|
#define ESP_STAT_INTR 0x80 /* Interrupt */
|
|
|
|
/* The status register can be masked with ESP_STAT_PMASK and compared
|
|
* with the following values to determine the current phase the ESP
|
|
* (at least thinks it) is in. For our purposes we also add our own
|
|
* software 'done' bit for our phase management engine.
|
|
*/
|
|
#define ESP_DOP (0) /* Data Out */
|
|
#define ESP_DIP (ESP_STAT_PIO) /* Data In */
|
|
#define ESP_CMDP (ESP_STAT_PCD) /* Command */
|
|
#define ESP_STATP (ESP_STAT_PCD|ESP_STAT_PIO) /* Status */
|
|
#define ESP_MOP (ESP_STAT_PMSG|ESP_STAT_PCD) /* Message Out */
|
|
#define ESP_MIP (ESP_STAT_PMSG|ESP_STAT_PCD|ESP_STAT_PIO) /* Message In */
|
|
|
|
/* HME only: status 2 register */
|
|
#define ESP_STAT2_SCHBIT 0x01 /* Upper bits 3-7 of sstep enabled */
|
|
#define ESP_STAT2_FFLAGS 0x02 /* The fifo flags are now latched */
|
|
#define ESP_STAT2_XCNT 0x04 /* The transfer counter is latched */
|
|
#define ESP_STAT2_CREGA 0x08 /* The command reg is active now */
|
|
#define ESP_STAT2_WIDE 0x10 /* Interface on this adapter is wide */
|
|
#define ESP_STAT2_F1BYTE 0x20 /* There is one byte at top of fifo */
|
|
#define ESP_STAT2_FMSB 0x40 /* Next byte in fifo is most significant */
|
|
#define ESP_STAT2_FEMPTY 0x80 /* FIFO is empty */
|
|
|
|
/* ESP interrupt register read-only */
|
|
#define ESP_INTR_S 0x01 /* Select w/o ATN */
|
|
#define ESP_INTR_SATN 0x02 /* Select w/ATN */
|
|
#define ESP_INTR_RSEL 0x04 /* Reselected */
|
|
#define ESP_INTR_FDONE 0x08 /* Function done */
|
|
#define ESP_INTR_BSERV 0x10 /* Bus service */
|
|
#define ESP_INTR_DC 0x20 /* Disconnect */
|
|
#define ESP_INTR_IC 0x40 /* Illegal command given */
|
|
#define ESP_INTR_SR 0x80 /* SCSI bus reset detected */
|
|
|
|
/* ESP sequence step register read-only */
|
|
#define ESP_STEP_VBITS 0x07 /* Valid bits */
|
|
#define ESP_STEP_ASEL 0x00 /* Selection&Arbitrate cmplt */
|
|
#define ESP_STEP_SID 0x01 /* One msg byte sent */
|
|
#define ESP_STEP_NCMD 0x02 /* Was not in command phase */
|
|
#define ESP_STEP_PPC 0x03 /* Early phase chg caused cmnd
|
|
* bytes to be lost
|
|
*/
|
|
#define ESP_STEP_FINI4 0x04 /* Command was sent ok */
|
|
|
|
/* Ho hum, some ESP's set the step register to this as well... */
|
|
#define ESP_STEP_FINI5 0x05
|
|
#define ESP_STEP_FINI6 0x06
|
|
#define ESP_STEP_FINI7 0x07
|
|
|
|
/* ESP chip-test register read-write */
|
|
#define ESP_TEST_TARG 0x01 /* Target test mode */
|
|
#define ESP_TEST_INI 0x02 /* Initiator test mode */
|
|
#define ESP_TEST_TS 0x04 /* Tristate test mode */
|
|
|
|
/* ESP unique ID register read-only, found on fas236+fas100a only */
|
|
#define ESP_UID_F100A 0x00 /* ESP FAS100A */
|
|
#define ESP_UID_F236 0x02 /* ESP FAS236 */
|
|
#define ESP_UID_REV 0x07 /* ESP revision */
|
|
#define ESP_UID_FAM 0xf8 /* ESP family */
|
|
|
|
/* ESP fifo flags register read-only */
|
|
/* Note that the following implies a 16 byte FIFO on the ESP. */
|
|
#define ESP_FF_FBYTES 0x1f /* Num bytes in FIFO */
|
|
#define ESP_FF_ONOTZERO 0x20 /* offset ctr not zero (esp100) */
|
|
#define ESP_FF_SSTEP 0xe0 /* Sequence step */
|
|
|
|
/* ESP clock conversion factor register write-only */
|
|
#define ESP_CCF_F0 0x00 /* 35.01MHz - 40MHz */
|
|
#define ESP_CCF_NEVER 0x01 /* Set it to this and die */
|
|
#define ESP_CCF_F2 0x02 /* 10MHz */
|
|
#define ESP_CCF_F3 0x03 /* 10.01MHz - 15MHz */
|
|
#define ESP_CCF_F4 0x04 /* 15.01MHz - 20MHz */
|
|
#define ESP_CCF_F5 0x05 /* 20.01MHz - 25MHz */
|
|
#define ESP_CCF_F6 0x06 /* 25.01MHz - 30MHz */
|
|
#define ESP_CCF_F7 0x07 /* 30.01MHz - 35MHz */
|
|
|
|
/* HME only... */
|
|
#define ESP_BUSID_RESELID 0x10
|
|
#define ESP_BUSID_CTR32BIT 0x40
|
|
|
|
#define ESP_BUS_TIMEOUT 250 /* In milli-seconds */
|
|
#define ESP_TIMEO_CONST 8192
|
|
#define ESP_NEG_DEFP(mhz, cfact) \
|
|
((ESP_BUS_TIMEOUT * ((mhz) / 1000)) / (8192 * (cfact)))
|
|
#define ESP_HZ_TO_CYCLE(hertz) ((1000000000) / ((hertz) / 1000))
|
|
#define ESP_TICK(ccf, cycle) ((7682 * (ccf) * (cycle) / 1000))
|
|
|
|
/* For slow to medium speed input clock rates we shoot for 5mb/s, but for high
|
|
* input clock rates we try to do 10mb/s although I don't think a transfer can
|
|
* even run that fast with an ESP even with DMA2 scatter gather pipelining.
|
|
*/
|
|
#define SYNC_DEFP_SLOW 0x32 /* 5mb/s */
|
|
#define SYNC_DEFP_FAST 0x19 /* 10mb/s */
|
|
|
|
struct esp_cmd_priv {
|
|
union {
|
|
dma_addr_t dma_addr;
|
|
int num_sg;
|
|
} u;
|
|
|
|
int cur_residue;
|
|
struct scatterlist *cur_sg;
|
|
int tot_residue;
|
|
};
|
|
#define ESP_CMD_PRIV(CMD) ((struct esp_cmd_priv *)(&(CMD)->SCp))
|
|
|
|
enum esp_rev {
|
|
ESP100 = 0x00, /* NCR53C90 - very broken */
|
|
ESP100A = 0x01, /* NCR53C90A */
|
|
ESP236 = 0x02,
|
|
FAS236 = 0x03,
|
|
FAS100A = 0x04,
|
|
FAST = 0x05,
|
|
FASHME = 0x06,
|
|
};
|
|
|
|
struct esp_cmd_entry {
|
|
struct list_head list;
|
|
|
|
struct scsi_cmnd *cmd;
|
|
|
|
unsigned int saved_cur_residue;
|
|
struct scatterlist *saved_cur_sg;
|
|
unsigned int saved_tot_residue;
|
|
|
|
u8 flags;
|
|
#define ESP_CMD_FLAG_WRITE 0x01 /* DMA is a write */
|
|
#define ESP_CMD_FLAG_ABORT 0x02 /* being aborted */
|
|
#define ESP_CMD_FLAG_AUTOSENSE 0x04 /* Doing automatic REQUEST_SENSE */
|
|
|
|
u8 tag[2];
|
|
|
|
u8 status;
|
|
u8 message;
|
|
|
|
unsigned char *sense_ptr;
|
|
unsigned char *saved_sense_ptr;
|
|
dma_addr_t sense_dma;
|
|
|
|
struct completion *eh_done;
|
|
};
|
|
|
|
/* XXX make this configurable somehow XXX */
|
|
#define ESP_DEFAULT_TAGS 16
|
|
|
|
#define ESP_MAX_TARGET 16
|
|
#define ESP_MAX_LUN 8
|
|
#define ESP_MAX_TAG 256
|
|
|
|
struct esp_lun_data {
|
|
struct esp_cmd_entry *non_tagged_cmd;
|
|
int num_tagged;
|
|
int hold;
|
|
struct esp_cmd_entry *tagged_cmds[ESP_MAX_TAG];
|
|
};
|
|
|
|
struct esp_target_data {
|
|
/* These are the ESP_STP, ESP_SOFF, and ESP_CFG3 register values which
|
|
* match the currently negotiated settings for this target. The SCSI
|
|
* protocol values are maintained in spi_{offset,period,wide}(starget).
|
|
*/
|
|
u8 esp_period;
|
|
u8 esp_offset;
|
|
u8 esp_config3;
|
|
|
|
u8 flags;
|
|
#define ESP_TGT_WIDE 0x01
|
|
#define ESP_TGT_DISCONNECT 0x02
|
|
#define ESP_TGT_NEGO_WIDE 0x04
|
|
#define ESP_TGT_NEGO_SYNC 0x08
|
|
#define ESP_TGT_CHECK_NEGO 0x40
|
|
#define ESP_TGT_BROKEN 0x80
|
|
|
|
/* When ESP_TGT_CHECK_NEGO is set, on the next scsi command to this
|
|
* device we will try to negotiate the following parameters.
|
|
*/
|
|
u8 nego_goal_period;
|
|
u8 nego_goal_offset;
|
|
u8 nego_goal_width;
|
|
u8 nego_goal_tags;
|
|
|
|
struct scsi_target *starget;
|
|
};
|
|
|
|
struct esp_event_ent {
|
|
u8 type;
|
|
#define ESP_EVENT_TYPE_EVENT 0x01
|
|
#define ESP_EVENT_TYPE_CMD 0x02
|
|
u8 val;
|
|
|
|
u8 sreg;
|
|
u8 seqreg;
|
|
u8 sreg2;
|
|
u8 ireg;
|
|
u8 select_state;
|
|
u8 event;
|
|
u8 __pad;
|
|
};
|
|
|
|
struct esp;
|
|
struct esp_driver_ops {
|
|
/* Read and write the ESP 8-bit registers. On some
|
|
* applications of the ESP chip the registers are at 4-byte
|
|
* instead of 1-byte intervals.
|
|
*/
|
|
void (*esp_write8)(struct esp *esp, u8 val, unsigned long reg);
|
|
u8 (*esp_read8)(struct esp *esp, unsigned long reg);
|
|
|
|
/* Map and unmap DMA memory. Eventually the driver will be
|
|
* converted to the generic DMA API as soon as SBUS is able to
|
|
* cope with that. At such time we can remove this.
|
|
*/
|
|
dma_addr_t (*map_single)(struct esp *esp, void *buf,
|
|
size_t sz, int dir);
|
|
int (*map_sg)(struct esp *esp, struct scatterlist *sg,
|
|
int num_sg, int dir);
|
|
void (*unmap_single)(struct esp *esp, dma_addr_t addr,
|
|
size_t sz, int dir);
|
|
void (*unmap_sg)(struct esp *esp, struct scatterlist *sg,
|
|
int num_sg, int dir);
|
|
|
|
/* Return non-zero if there is an IRQ pending. Usually this
|
|
* status bit lives in the DMA controller sitting in front of
|
|
* the ESP. This has to be accurate or else the ESP interrupt
|
|
* handler will not run.
|
|
*/
|
|
int (*irq_pending)(struct esp *esp);
|
|
|
|
/* Return the maximum allowable size of a DMA transfer for a
|
|
* given buffer.
|
|
*/
|
|
u32 (*dma_length_limit)(struct esp *esp, u32 dma_addr,
|
|
u32 dma_len);
|
|
|
|
/* Reset the DMA engine entirely. On return, ESP interrupts
|
|
* should be enabled. Often the interrupt enabling is
|
|
* controlled in the DMA engine.
|
|
*/
|
|
void (*reset_dma)(struct esp *esp);
|
|
|
|
/* Drain any pending DMA in the DMA engine after a transfer.
|
|
* This is for writes to memory.
|
|
*/
|
|
void (*dma_drain)(struct esp *esp);
|
|
|
|
/* Invalidate the DMA engine after a DMA transfer. */
|
|
void (*dma_invalidate)(struct esp *esp);
|
|
|
|
/* Setup an ESP command that will use a DMA transfer.
|
|
* The 'esp_count' specifies what transfer length should be
|
|
* programmed into the ESP transfer counter registers, whereas
|
|
* the 'dma_count' is the length that should be programmed into
|
|
* the DMA controller. Usually they are the same. If 'write'
|
|
* is non-zero, this transfer is a write into memory. 'cmd'
|
|
* holds the ESP command that should be issued by calling
|
|
* scsi_esp_cmd() at the appropriate time while programming
|
|
* the DMA hardware.
|
|
*/
|
|
void (*send_dma_cmd)(struct esp *esp, u32 dma_addr, u32 esp_count,
|
|
u32 dma_count, int write, u8 cmd);
|
|
|
|
/* Return non-zero if the DMA engine is reporting an error
|
|
* currently.
|
|
*/
|
|
int (*dma_error)(struct esp *esp);
|
|
};
|
|
|
|
#define ESP_MAX_MSG_SZ 8
|
|
#define ESP_EVENT_LOG_SZ 32
|
|
|
|
#define ESP_QUICKIRQ_LIMIT 100
|
|
#define ESP_RESELECT_TAG_LIMIT 2500
|
|
|
|
struct esp {
|
|
void __iomem *regs;
|
|
void __iomem *dma_regs;
|
|
|
|
const struct esp_driver_ops *ops;
|
|
|
|
struct Scsi_Host *host;
|
|
void *dev;
|
|
|
|
struct esp_cmd_entry *active_cmd;
|
|
|
|
struct list_head queued_cmds;
|
|
struct list_head active_cmds;
|
|
|
|
u8 *command_block;
|
|
dma_addr_t command_block_dma;
|
|
|
|
unsigned int data_dma_len;
|
|
|
|
/* The following are used to determine the cause of an IRQ. Upon every
|
|
* IRQ entry we synchronize these with the hardware registers.
|
|
*/
|
|
u8 sreg;
|
|
u8 seqreg;
|
|
u8 sreg2;
|
|
u8 ireg;
|
|
|
|
u32 prev_hme_dmacsr;
|
|
u8 prev_soff;
|
|
u8 prev_stp;
|
|
u8 prev_cfg3;
|
|
u8 __pad;
|
|
|
|
struct list_head esp_cmd_pool;
|
|
|
|
struct esp_target_data target[ESP_MAX_TARGET];
|
|
|
|
int fifo_cnt;
|
|
u8 fifo[16];
|
|
|
|
struct esp_event_ent esp_event_log[ESP_EVENT_LOG_SZ];
|
|
int esp_event_cur;
|
|
|
|
u8 msg_out[ESP_MAX_MSG_SZ];
|
|
int msg_out_len;
|
|
|
|
u8 msg_in[ESP_MAX_MSG_SZ];
|
|
int msg_in_len;
|
|
|
|
u8 bursts;
|
|
u8 config1;
|
|
u8 config2;
|
|
|
|
u8 scsi_id;
|
|
u32 scsi_id_mask;
|
|
|
|
enum esp_rev rev;
|
|
|
|
u32 flags;
|
|
#define ESP_FLAG_DIFFERENTIAL 0x00000001
|
|
#define ESP_FLAG_RESETTING 0x00000002
|
|
#define ESP_FLAG_DOING_SLOWCMD 0x00000004
|
|
#define ESP_FLAG_WIDE_CAPABLE 0x00000008
|
|
#define ESP_FLAG_QUICKIRQ_CHECK 0x00000010
|
|
#define ESP_FLAG_DISABLE_SYNC 0x00000020
|
|
|
|
u8 select_state;
|
|
#define ESP_SELECT_NONE 0x00 /* Not selecting */
|
|
#define ESP_SELECT_BASIC 0x01 /* Select w/o MSGOUT phase */
|
|
#define ESP_SELECT_MSGOUT 0x02 /* Select with MSGOUT */
|
|
|
|
/* When we are not selecting, we are expecting an event. */
|
|
u8 event;
|
|
#define ESP_EVENT_NONE 0x00
|
|
#define ESP_EVENT_CMD_START 0x01
|
|
#define ESP_EVENT_CMD_DONE 0x02
|
|
#define ESP_EVENT_DATA_IN 0x03
|
|
#define ESP_EVENT_DATA_OUT 0x04
|
|
#define ESP_EVENT_DATA_DONE 0x05
|
|
#define ESP_EVENT_MSGIN 0x06
|
|
#define ESP_EVENT_MSGIN_MORE 0x07
|
|
#define ESP_EVENT_MSGIN_DONE 0x08
|
|
#define ESP_EVENT_MSGOUT 0x09
|
|
#define ESP_EVENT_MSGOUT_DONE 0x0a
|
|
#define ESP_EVENT_STATUS 0x0b
|
|
#define ESP_EVENT_FREE_BUS 0x0c
|
|
#define ESP_EVENT_CHECK_PHASE 0x0d
|
|
#define ESP_EVENT_RESET 0x10
|
|
|
|
/* Probed in esp_get_clock_params() */
|
|
u32 cfact;
|
|
u32 cfreq;
|
|
u32 ccycle;
|
|
u32 ctick;
|
|
u32 neg_defp;
|
|
u32 sync_defp;
|
|
|
|
/* Computed in esp_reset_esp() */
|
|
u32 max_period;
|
|
u32 min_period;
|
|
u32 radelay;
|
|
|
|
/* Slow command state. */
|
|
u8 *cmd_bytes_ptr;
|
|
int cmd_bytes_left;
|
|
|
|
struct completion *eh_reset;
|
|
|
|
void *dma;
|
|
int dmarev;
|
|
};
|
|
|
|
/* A front-end driver for the ESP chip should do the following in
|
|
* it's device probe routine:
|
|
* 1) Allocate the host and private area using scsi_host_alloc()
|
|
* with size 'sizeof(struct esp)'. The first argument to
|
|
* scsi_host_alloc() should be &scsi_esp_template.
|
|
* 2) Set host->max_id as appropriate.
|
|
* 3) Set esp->host to the scsi_host itself, and esp->dev
|
|
* to the device object pointer.
|
|
* 4) Hook up esp->ops to the front-end implementation.
|
|
* 5) If the ESP chip supports wide transfers, set ESP_FLAG_WIDE_CAPABLE
|
|
* in esp->flags.
|
|
* 6) Map the DMA and ESP chip registers.
|
|
* 7) DMA map the ESP command block, store the DMA address
|
|
* in esp->command_block_dma.
|
|
* 8) Register the scsi_esp_intr() interrupt handler.
|
|
* 9) Probe for and provide the following chip properties:
|
|
* esp->scsi_id (assign to esp->host->this_id too)
|
|
* esp->scsi_id_mask
|
|
* If ESP bus is differential, set ESP_FLAG_DIFFERENTIAL
|
|
* esp->cfreq
|
|
* DMA burst bit mask in esp->bursts, if necessary
|
|
* 10) Perform any actions necessary before the ESP device can
|
|
* be programmed for the first time. On some configs, for
|
|
* example, the DMA engine has to be reset before ESP can
|
|
* be programmed.
|
|
* 11) If necessary, call dev_set_drvdata() as needed.
|
|
* 12) Call scsi_esp_register() with prepared 'esp' structure
|
|
* and a device pointer if possible.
|
|
* 13) Check scsi_esp_register() return value, release all resources
|
|
* if an error was returned.
|
|
*/
|
|
extern struct scsi_host_template scsi_esp_template;
|
|
extern int scsi_esp_register(struct esp *, struct device *);
|
|
|
|
extern void scsi_esp_unregister(struct esp *);
|
|
extern irqreturn_t scsi_esp_intr(int, void *);
|
|
extern void scsi_esp_cmd(struct esp *, u8);
|
|
|
|
#endif /* !(_ESP_SCSI_H) */
|